initial version of PPO for LunarLander-v2
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +5 -5
- ppo-LunarLander-v2/policy.optimizer.pth +2 -2
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +2 -2
- results.json +1 -1
README.md
CHANGED
@@ -10,7 +10,7 @@ model-index:
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
-
value:
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
+
value: 262.22 +/- 15.09
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1113275d40>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1113275dd0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1113275e60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1113275ef0>", "_build": "<function ActorCriticPolicy._build at 0x7f1113275f80>", "forward": "<function ActorCriticPolicy.forward at 0x7f111327d050>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f111327d0e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f111327d170>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f111327d200>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f111327d290>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f111327d320>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f11132bec00>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651916743.2054403, "learning_rate": 0.001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAC38Db49Ils69SBrOmT+zLYfpVK85DKKuQAAgD8AAIA/gNF3PY9marr1JP67oCqkta+y17pKYhE1AACAPwAAgD9ttFy+SYFHPYXKtr1skZa+pPIlPpNxYb4AAAAAAAAAADPV4Lz2MDm6Ei9jOpoD3jNnloG7EAuDuQAAgD8AAIA/mmVyvY/uYLpLutG6JNfItUcns7myKfY5AACAPwAAgD8AnKg7j05huqR5kbmv3Mg0OsMpOtO4qDgAAIA/AACAPzNiBz4fuz4/1V7Tu5O5iL7yMA0+DXQFvgAAAAAAAAAAM//zPArXIbdXMg+6TW8JtoCOHDsk7is5AACAPwAAgD9Nnk+9KdQeulLujLs8fCU2ZRbEu7HnpToAAIA/AACAPzMsMz1cnxW69qjlOlqCjrV4SoS7TzgGugAAgD8AAIA/mqXvPQf2Bj/Cv4a+N2GLvtIjUL2O5JW8AAAAAAAAAADASui9rr2Junq9NDfD0QC1dkWWOo/2vbUAAIA/AACAP5quy73s+aS56YSRO1IOFzh5CVS68wtPugAAgD8AAIA/M1/IOx+1urniBts5wimOta2sdTuF5v24AACAPwAAgD+a0HU99owcuhlGmrdzsjmyNxVhuo3crzYAAIA/AACAPzOXLb3DkRC6v9aiu0kyWztBS0k6mroBuwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVbRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIw9hCkAMpZECUhpRSlIwBbJRN6AOMAXSUR0CjTQA5q/M4dX2UKGgGaAloD0MICRnIs8sMWECUhpRSlGgVTegDaBZHQKNPAxASnLt1fZQoaAZoCWgPQwiPN/ktOjJeQJSGlFKUaBVN6ANoFkdAo1AGzD4xlHV9lChoBmgJaA9DCF6dY0D2LjJAlIaUUpRoFUutaBZHQKNQNYHxBmh1fZQoaAZoCWgPQwjZz2IpEpllQJSGlFKUaBVN6ANoFkdAo20yKLsKLXV9lChoBmgJaA9DCONuEK0Vi05AlIaUUpRoFUvCaBZHQKNvIXUH6dl1fZQoaAZoCWgPQwj/6Js0jR1gQJSGlFKUaBVN6ANoFkdAo3CiVv/BFnV9lChoBmgJaA9DCPCiryDNDEFAlIaUUpRoFUuzaBZHQKNxidjoZAJ1fZQoaAZoCWgPQwjJWG3+X1hdQJSGlFKUaBVN6ANoFkdAo3esOd5IH3V9lChoBmgJaA9DCHizBu8rpmNAlIaUUpRoFU3oA2gWR0CjeWOAy2x6dX2UKGgGaAloD0MIUADFyJJbZUCUhpRSlGgVTegDaBZHQKN5591EE1V1fZQoaAZoCWgPQwipTDEHwZRiQJSGlFKUaBVN6ANoFkdAo3pkx46fa3V9lChoBmgJaA9DCOBjsOLU02FAlIaUUpRoFU3oA2gWR0CjgHjZcs19dX2UKGgGaAloD0MIJ2iTw6dXYkCUhpRSlGgVTegDaBZHQKOA4GFi8Wd1fZQoaAZoCWgPQwg5mE2AYZlgQJSGlFKUaBVN6ANoFkdAo4Q28wpOOHV9lChoBmgJaA9DCMkeoWbI9GVAlIaUUpRoFU3oA2gWR0CjhSPp6hQFdX2UKGgGaAloD0MIB5j5Dn5MX0CUhpRSlGgVTegDaBZHQKOIWTQmeDp1fZQoaAZoCWgPQwgUWtb9Y/NhQJSGlFKUaBVN6ANoFkdAo4s0JSiudXV9lChoBmgJaA9DCAd5PZgU22FAlIaUUpRoFU3oA2gWR0CjjzqYzBRAdX2UKGgGaAloD0MI+3lTkQqbQUCUhpRSlGgVTegDaBZHQKOQV00WM0h1fZQoaAZoCWgPQwholgSoKSBjQJSGlFKUaBVN6ANoFkdAo6091nuiOHV9lChoBmgJaA9DCCoDB7R0H1hAlIaUUpRoFU3oA2gWR0Cjr3o065oXdX2UKGgGaAloD0MIW1zjM9nHPkCUhpRSlGgVS4loFkdAo7BMLDye7XV9lChoBmgJaA9DCJuSrMNR8mFAlIaUUpRoFU3oA2gWR0CjsRrBKtgbdX2UKGgGaAloD0MIfNKJBFMpRECUhpRSlGgVS8JoFkdAo7F8KNQ0oHV9lChoBmgJaA9DCOv822U/r2BAlIaUUpRoFU3oA2gWR0CjshrEUCaJdX2UKGgGaAloD0MIjKAxk6ibRkCUhpRSlGgVS7toFkdAo7adHpbD/HV9lChoBmgJaA9DCHHmV3OAgEVAlIaUUpRoFUu7aBZHQKO3aQlruYx1fZQoaAZoCWgPQwj/y7VogVBgQJSGlFKUaBVN6ANoFkdAo7g/S8an8HV9lChoBmgJaA9DCIfCZ+vgyDJAlIaUUpRoFUvHaBZHQKO5FHiFTNt1fZQoaAZoCWgPQwhTr1sExgVgQJSGlFKUaBVN6ANoFkdAo7nnK+zt1XV9lChoBmgJaA9DCOCGGK95tVRAlIaUUpRoFU3oA2gWR0CjumSFoL5RdX2UKGgGaAloD0MI1SZO7nccUECUhpRSlGgVTegDaBZHQKO630cwQDp1fZQoaAZoCWgPQwiwxW6fVVo7QJSGlFKUaBVLoGgWR0Cjvd+sPrfMdX2UKGgGaAloD0MI9+rjoW+OY0CUhpRSlGgVTegDaBZHQKPA4LYwqRV1fZQoaAZoCWgPQwgc7E0Myf9jQJSGlFKUaBVN6ANoFkdAo8FFTtLL6nV9lChoBmgJaA9DCEq05PG0/WVAlIaUUpRoFU3oA2gWR0CjxJr9l2/0dX2UKGgGaAloD0MIe4hGdxBIX0CUhpRSlGgVTegDaBZHQKPFmR28qWl1fZQoaAZoCWgPQwhKJNHLqJVlQJSGlFKUaBVN6ANoFkdAo8ktZxJd0XV9lChoBmgJaA9DCIEiFjHskDFAlIaUUpRoFUvSaBZHQKPJdjqfOD91fZQoaAZoCWgPQwi54XfTrXtlQJSGlFKUaBVN6ANoFkdAo8wbKcNH6XV9lChoBmgJaA9DCKezk8FRkjbAlIaUUpRoFUumaBZHQKPPoxCY1Hh1fZQoaAZoCWgPQwhp/MIrSeBKQJSGlFKUaBVLs2gWR0Cj0HW7e2uxdX2UKGgGaAloD0MImNu93Cc3FkCUhpRSlGgVS69oFkdAo9L9cv/R3XV9lChoBmgJaA9DCM0hqYUSd2FAlIaUUpRoFU3oA2gWR0Cj7mMMI/qxdX2UKGgGaAloD0MI73TniWcIZUCUhpRSlGgVTegDaBZHQKPyFLxqfvp1fZQoaAZoCWgPQwgTukvirO9bQJSGlFKUaBVN6ANoFkdAo/Mh1q33H3V9lChoBmgJaA9DCP4pVaLsN05AlIaUUpRoFUulaBZHQKP0Sswtapx1fZQoaAZoCWgPQwj5nSYz3hxhQJSGlFKUaBVN6ANoFkdAo/elnwob43V9lChoBmgJaA9DCEIJM23/jF1AlIaUUpRoFU3oA2gWR0Cj+GfUF0PpdX2UKGgGaAloD0MIFOgTeZLFYkCUhpRSlGgVTegDaBZHQKP59q/M4cZ1fZQoaAZoCWgPQwjrbp7qkM1QQJSGlFKUaBVLmGgWR0Cj+fzsyBTXdX2UKGgGaAloD0MI6GhVSzpPZECUhpRSlGgVTegDaBZHQKP6savzOHF1fZQoaAZoCWgPQwgld9hE5uxjQJSGlFKUaBVN6ANoFkdAo/slpKzzE3V9lChoBmgJaA9DCLqilBCsO1JAlIaUUpRoFU3oA2gWR0Cj+5JLdvbXdX2UKGgGaAloD0MI3e7lPrnPYUCUhpRSlGgVTegDaBZHQKP+QFKTSst1fZQoaAZoCWgPQwimtP6WAH5TQJSGlFKUaBVLrWgWR0Cj/91vES/TdX2UKGgGaAloD0MIYW2MnfAySkCUhpRSlGgVTQIBaBZHQKQAfcqOLix1fZQoaAZoCWgPQwj/dtmvO5ljQJSGlFKUaBVN6ANoFkdApACszQ/oq3V9lChoBmgJaA9DCDFfXoB9FlNAlIaUUpRoFU3oA2gWR0CkA5QazeGgdX2UKGgGaAloD0MIoidlUkNUaUCUhpRSlGgVTegDaBZHQKQEZRjz7Mx1fZQoaAZoCWgPQwgRHm0csUI0QJSGlFKUaBVLw2gWR0CkBqrpiZv2dX2UKGgGaAloD0MIqP3WTpS8QsCUhpRSlGgVS4BoFkdApAiVgnc+JXV9lChoBmgJaA9DCNWxSumZDmNAlIaUUpRoFU3oA2gWR0CkDOmKAJ9idX2UKGgGaAloD0MIUoGTbeCGXECUhpRSlGgVTegDaBZHQKQNnYU34sV1fZQoaAZoCWgPQwguU5PgjQVgQJSGlFKUaBVN6ANoFkdApBAzDuSfUXV9lChoBmgJaA9DCMxCO6dZzWRAlIaUUpRoFU3oA2gWR0CkLmjriVB2dX2UKGgGaAloD0MI7pi6K7vzW0CUhpRSlGgVTegDaBZHQKQvWl54W1t1fZQoaAZoCWgPQwhnutdJfQNiwJSGlFKUaBVNewNoFkdApDNgYHgP3HV9lChoBmgJaA9DCPd14JwRvF9AlIaUUpRoFU3oA2gWR0CkM9TQE6kqdX2UKGgGaAloD0MImwMEc/TZUECUhpRSlGgVTegDaBZHQKQ1/ZJ04ip1fZQoaAZoCWgPQwjzqzlAMGBiQJSGlFKUaBVN6ANoFkdApDYDqY7aI3V9lChoBmgJaA9DCBWQ9j/Ae2BAlIaUUpRoFU3oA2gWR0CkN5iJGe+VdX2UKGgGaAloD0MInrXbLjQpU0CUhpRSlGgVTegDaBZHQKQ6sRKYiPh1fZQoaAZoCWgPQwhLrmLxm0ZOQJSGlFKUaBVLvWgWR0CkPIRqO939dX2UKGgGaAloD0MIyERKs3leYkCUhpRSlGgVTegDaBZHQKQ8r2SMcZN1fZQoaAZoCWgPQwjk1qTbEutQQJSGlFKUaBVLomgWR0CkPTrjo6jndX2UKGgGaAloD0MIR3TPusabY0CUhpRSlGgVTegDaBZHQKQ9Zf4yoGZ1fZQoaAZoCWgPQwhDVrd6zjJiQJSGlFKUaBVN6ANoFkdApEDq5f+junV9lChoBmgJaA9DCCCaeXJNbmBAlIaUUpRoFU3oA2gWR0CkREX++/QCdX2UKGgGaAloD0MI8pnsnydxYkCUhpRSlGgVTegDaBZHQKRGbRk3CKt1fZQoaAZoCWgPQwinyYy3FSpmQJSGlFKUaBVN6ANoFkdApEtDwvxpc3V9lChoBmgJaA9DCAOxbOYQMmBAlIaUUpRoFU3oA2gWR0CkTAWyC4BndX2UKGgGaAloD0MIGLMlqyK4YkCUhpRSlGgVTegDaBZHQKROwCfYjB51fZQoaAZoCWgPQwiqYb8n1pJiQJSGlFKUaBVN6ANoFkdApGyes3hn8XV9lChoBmgJaA9DCPyPTIfOuWBAlIaUUpRoFU3oA2gWR0CkbYlsHjZMdX2UKGgGaAloD0MIGAXB41sFZUCUhpRSlGgVTegDaBZHQKRxYQyylep1fZQoaAZoCWgPQwjjN4WVCmpmQJSGlFKUaBVN6ANoFkdApHHRMzuWr3V9lChoBmgJaA9DCGg/UkQG5GBAlIaUUpRoFU3oA2gWR0Ckc/Agow23dX2UKGgGaAloD0MIlL2lnC9lZUCUhpRSlGgVTegDaBZHQKR4+IeHSF51fZQoaAZoCWgPQwjNIamFEgZkQJSGlFKUaBVN6ANoFkdApHrt/J/5L3V9lChoBmgJaA9DCBJosKnzSF1AlIaUUpRoFU3oA2gWR0Ckexc2Jiy6dX2UKGgGaAloD0MICtrk8EkmZECUhpRSlGgVTegDaBZHQKR7qTwDvE11fZQoaAZoCWgPQwjoobYNozVjQJSGlFKUaBVN6ANoFkdApHvTUmUnonV9lChoBmgJaA9DCMcPlUbM7ldAlIaUUpRoFU3oA2gWR0Ckfx3wLE1mdX2UKGgGaAloD0MIL6hvmVPuZUCUhpRSlGgVTegDaBZHQKSCLWKdhAp1fZQoaAZoCWgPQwiQEOULWr9jQJSGlFKUaBVN6ANoFkdApIQZBomG/XV9lChoBmgJaA9DCIKq0auBVmNAlIaUUpRoFU3oA2gWR0CkiHNfoicHdX2UKGgGaAloD0MI/dtlv27oYECUhpRSlGgVTegDaBZHQKSJIJsO5J91fZQoaAZoCWgPQwj52jNLgkNkQJSGlFKUaBVN6ANoFkdApIuc2gnMMnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1113275d40>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1113275dd0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1113275e60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1113275ef0>", "_build": "<function ActorCriticPolicy._build at 0x7f1113275f80>", "forward": "<function ActorCriticPolicy.forward at 0x7f111327d050>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f111327d0e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f111327d170>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f111327d200>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f111327d290>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f111327d320>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f11132bec00>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651917927.8897223, "learning_rate": 0.0001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADNn6jyTL6k+TS1SPrAHj77z92w+9WyIvQAAAAAAAAAAWmWYPZt2sz3q5oi+X0dsvgRjXb2EOru9AAAAAAAAAAAzhzC9d8wmP3EYhj6Z8LO+qOsGPupw5T0AAAAAAAAAABqpXr1Ge7w/7u7RvpLapj0lvXi9JkyBvgAAAAAAAAAAzaw/vCmZUj9V48U+8z+vvjvjkT1yr24+AAAAAAAAAACzCgQ9NAiXvPD9oL3+TkG94f+evQjijb4AAIA/AACAP2YQBbwm0cw+Tko9PRp5kr5vFAY+RnsGvgAAAAAAAAAAAGTvO7crMT9L0e899tLMvmmNdT0Wto09AAAAAAAAAACAUMu9OHazuwrNwjtyy+g8urEWPS+gwb0AAIA/AACAP2ZwBD0bIZ8+q+t+OmoNnr68fR0+B2bEvQAAAAAAAAAAFv59vuMpTj/fdYg9gCKPvik6wr6NLAM+AAAAAAAAAAAA0q695sqZPzRSnr4AosK+nesbvqKWOL4AAAAAAAAAAE0AIT1uhqM/OueZPtT1zb6FeUS8v+WhPQAAAAAAAAAA5kNBvfiEnTyb6OU854E0vnlv8Lzaua89AAAAAAAAAADNvHo7z6AXvOmdCL58UuS9H/k2PRavuT4AAIA/AACAP2buxryPamC6oguGNjEVEDK4qzc7l8eftQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVZRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZAeVuA4qcECUhpRSlIwBbJRNIQGMAXSUR0CsoVsNDtw8dX2UKGgGaAloD0MIILWJk/v+b0CUhpRSlGgVTREBaBZHQKyhcEcsDnx1fZQoaAZoCWgPQwhTB3k9GLZzQJSGlFKUaBVNIQFoFkdArKGSXhOxjnV9lChoBmgJaA9DCDuMSX/vnnJAlIaUUpRoFU0NAWgWR0CsocdHc1wYdX2UKGgGaAloD0MIOQoQBbOVckCUhpRSlGgVTSsBaBZHQKyiXgMtsep1fZQoaAZoCWgPQwjQ7SWN0QJuQJSGlFKUaBVNPAFoFkdArKJo80UGmnV9lChoBmgJaA9DCEAwR49fe21AlIaUUpRoFU0xAWgWR0CsovSWRigCdX2UKGgGaAloD0MIzHnGvmTwbkCUhpRSlGgVTTABaBZHQKykNLhaTwF1fZQoaAZoCWgPQwhINIEiFhRxQJSGlFKUaBVNKQFoFkdArKRM2xY7rHV9lChoBmgJaA9DCIaOHVRiYGxAlIaUUpRoFU2TAWgWR0CspGOVHFxXdX2UKGgGaAloD0MIecxAZbw1dECUhpRSlGgVS+RoFkdArKS1r2xptnV9lChoBmgJaA9DCJZ4QNkUEnNAlIaUUpRoFU0KAWgWR0CspK9GRV6vdX2UKGgGaAloD0MIzLbT1gjVcUCUhpRSlGgVTSIBaBZHQKylhgHeJpF1fZQoaAZoCWgPQwiTNlX3SJtxQJSGlFKUaBVNFgFoFkdArKYlZ9uxbHV9lChoBmgJaA9DCGLWi6HcInFAlIaUUpRoFU1CAWgWR0Cspl2tMfzSdX2UKGgGaAloD0MI6fAQxs+wb0CUhpRSlGgVTRQBaBZHQKymuS9ugpV1fZQoaAZoCWgPQwjx8nSuKNFtQJSGlFKUaBVNDAFoFkdArKa5hfBvaXV9lChoBmgJaA9DCOXUzjC1wXFAlIaUUpRoFU0GAWgWR0Cspr7ExZdOdX2UKGgGaAloD0MIYf91btribkCUhpRSlGgVTQIBaBZHQKym2My8BdV1fZQoaAZoCWgPQwjw3lFjwm5tQJSGlFKUaBVNIgFoFkdArKcI2hqTKXV9lChoBmgJaA9DCAk2rn/XJm5AlIaUUpRoFUv2aBZHQKynM8yN4qx1fZQoaAZoCWgPQwjt0/GYQd5yQJSGlFKUaBVNIQFoFkdArKiQBzV+Z3V9lChoBmgJaA9DCL73N2ivdHBAlIaUUpRoFU1NAWgWR0CsqMSVv/BFdX2UKGgGaAloD0MI6pYd4l/XckCUhpRSlGgVS9xoFkdArKjl3fQ8fXV9lChoBmgJaA9DCHbEIRuIXHFAlIaUUpRoFUvxaBZHQKyo/Xg9/z91fZQoaAZoCWgPQwiocW9+Q+tvQJSGlFKUaBVNGgFoFkdArKma53C9AXV9lChoBmgJaA9DCELMJVXbcXBAlIaUUpRoFU0dAWgWR0Csqb5U96kZdX2UKGgGaAloD0MIBwsnaf6dcECUhpRSlGgVTREBaBZHQKyp8EFGG211fZQoaAZoCWgPQwj2su20tYRwQJSGlFKUaBVL9mgWR0Csqre8oQWfdX2UKGgGaAloD0MIKzQQy2bpcECUhpRSlGgVS/VoFkdArKrl76YVqXV9lChoBmgJaA9DCOT09XzNiG9AlIaUUpRoFU0nAWgWR0CsqxkJjUd8dX2UKGgGaAloD0MIW+uLhDa/b0CUhpRSlGgVS/VoFkdArKs2lyimEXV9lChoBmgJaA9DCCqsVFBRyT5AlIaUUpRoFUvbaBZHQKyrQvnr6cl1fZQoaAZoCWgPQwj7zcR04f5yQJSGlFKUaBVL/mgWR0Csq12alUIcdX2UKGgGaAloD0MIznFuE27bcECUhpRSlGgVTQMBaBZHQKyrd4Hooux1fZQoaAZoCWgPQwiqRq8GKLdvQJSGlFKUaBVNGAFoFkdArKvnRgJC0HV9lChoBmgJaA9DCE9ZTdfTzXBAlIaUUpRoFU0QAWgWR0Csq/T5ftx/dX2UKGgGaAloD0MIPlsHB/tPcUCUhpRSlGgVS+hoFkdArK0WLaVUuXV9lChoBmgJaA9DCH3Qs1n1929AlIaUUpRoFU0XAWgWR0CsyJnGKhtcdX2UKGgGaAloD0MIeVvptZkmcUCUhpRSlGgVTSoBaBZHQKzI2HdGiHt1fZQoaAZoCWgPQwhQqKePgBdyQJSGlFKUaBVNAAFoFkdArMjpNdqtYHV9lChoBmgJaA9DCKcHBaXobnFAlIaUUpRoFU0GAWgWR0CsyWFf7aZhdX2UKGgGaAloD0MI1gEQd/XgcECUhpRSlGgVTVIBaBZHQKzJdjc2zfJ1fZQoaAZoCWgPQwirIAa6to9wQJSGlFKUaBVNIwFoFkdArMm/ze40/HV9lChoBmgJaA9DCJyLv+0JOnFAlIaUUpRoFUv5aBZHQKzJ705EMLF1fZQoaAZoCWgPQwiq8dJNom1yQJSGlFKUaBVL9GgWR0CsyjTshPj5dX2UKGgGaAloD0MI9ODurJ02c0CUhpRSlGgVS+VoFkdArMpXOW0JGHV9lChoBmgJaA9DCIoCfSLPJnNAlIaUUpRoFUv5aBZHQKzKmrpaA4J1fZQoaAZoCWgPQwiox7YM+CdxQJSGlFKUaBVNFgFoFkdArMqmmelKsnV9lChoBmgJaA9DCBvYKsGiMHFAlIaUUpRoFU0bAWgWR0Csywa4MF2WdX2UKGgGaAloD0MIFOtU+Z5mcUCUhpRSlGgVTTEBaBZHQKzLc9ECvHN1fZQoaAZoCWgPQwgqjC0E+T9wQJSGlFKUaBVNLwFoFkdArMwnyqdYn3V9lChoBmgJaA9DCOG2tvC8XnBAlIaUUpRoFU03AWgWR0CszD5sCT2WdX2UKGgGaAloD0MIW2H6XoOPcUCUhpRSlGgVTQ8BaBZHQKzMzGhEjPh1fZQoaAZoCWgPQwjyYIvdvoRvQJSGlFKUaBVL62gWR0CszR5Wq95AdX2UKGgGaAloD0MIcAhVajYhcECUhpRSlGgVS+5oFkdArM04Difg8HV9lChoBmgJaA9DCKEt51KcvXFAlIaUUpRoFU0UAWgWR0CszaZpSJj2dX2UKGgGaAloD0MIwJfCg2aMckCUhpRSlGgVS/1oFkdArM4AA0bcXXV9lChoBmgJaA9DCCUgJuHCRm9AlIaUUpRoFU0WAWgWR0CszmtbkfcOdX2UKGgGaAloD0MIKIBiZMkGbkCUhpRSlGgVTSMBaBZHQKzPpwn6VMV1fZQoaAZoCWgPQwgtfH2ty+5wQJSGlFKUaBVNPQFoFkdArM+nsqril3V9lChoBmgJaA9DCJLLf0i/pHJAlIaUUpRoFU0fAWgWR0Csz7dCmdiEdX2UKGgGaAloD0MIVKhuLv5PckCUhpRSlGgVS+JoFkdArM/DdUKiPHV9lChoBmgJaA9DCBU8hVzp6XFAlIaUUpRoFU0RAWgWR0Csz8OLaVUudX2UKGgGaAloD0MIGTkLe9rhcECUhpRSlGgVTTsBaBZHQKzP0oDxLCh1fZQoaAZoCWgPQwggYoOFU6NxQJSGlFKUaBVNOQFoFkdArNBfZM+NcXV9lChoBmgJaA9DCA+0AkPWj3FAlIaUUpRoFU0gAWgWR0Cs0F9joZAIdX2UKGgGaAloD0MIP3CVJ9C+cUCUhpRSlGgVTQABaBZHQKzQ+9jgAIZ1fZQoaAZoCWgPQwgMPWL0HBdwQJSGlFKUaBVL9WgWR0Cs0VWCmMwUdX2UKGgGaAloD0MIaeId4EmmbkCUhpRSlGgVTSMBaBZHQKzRh8jzI3l1fZQoaAZoCWgPQwglXMgjuFtvQJSGlFKUaBVL9WgWR0Cs0agJswcpdX2UKGgGaAloD0MIBfhu80YAcUCUhpRSlGgVTQIBaBZHQKzSyxhUipx1fZQoaAZoCWgPQwhkdavnZJtxQJSGlFKUaBVNMwFoFkdArNLx1FH8THV9lChoBmgJaA9DCN7IPPIH2G9AlIaUUpRoFU0RAWgWR0Cs04mwqy4XdX2UKGgGaAloD0MICwithy/PcUCUhpRSlGgVTUcBaBZHQKzT1SiudPN1fZQoaAZoCWgPQwggCft2kkpzQJSGlFKUaBVL62gWR0Cs1AuxjawmdX2UKGgGaAloD0MIuY5xxUXYckCUhpRSlGgVS/doFkdArNRZIxxku3V9lChoBmgJaA9DCCsWvyls+nJAlIaUUpRoFU0HAWgWR0Cs1JQiaAnVdX2UKGgGaAloD0MIQ1Thz/DBbECUhpRSlGgVTQwBaBZHQKzUk/Zdv891fZQoaAZoCWgPQwgKhJ1iVTJxQJSGlFKUaBVNEgFoFkdArNS8HhS9/XV9lChoBmgJaA9DCEVj7e+s33BAlIaUUpRoFUvsaBZHQKzUxRvWH1x1fZQoaAZoCWgPQwif46PF2QVxQJSGlFKUaBVNPgFoFkdArNVmTRplBnV9lChoBmgJaA9DCJfEWRE1SHFAlIaUUpRoFU0jAWgWR0Cs1agp8WsSdX2UKGgGaAloD0MIKXef42NVcECUhpRSlGgVTQMBaBZHQKzVwn/kvK51fZQoaAZoCWgPQwjk2lAxTiByQJSGlFKUaBVNKAFoFkdArNbJzHS4OXV9lChoBmgJaA9DCCgNNQrJI3FAlIaUUpRoFU0zAWgWR0Cs1zaP8yeqdX2UKGgGaAloD0MINj0oKEUbG0CUhpRSlGgVS9FoFkdArNdVG7SRbXV9lChoBmgJaA9DCEYm4NdIMjRAlIaUUpRoFUvSaBZHQKzXqPluFYd1fZQoaAZoCWgPQwhKDW0AtvNwQJSGlFKUaBVNEAFoFkdArNfgaHbh33V9lChoBmgJaA9DCNQOf03WZW9AlIaUUpRoFU1dAWgWR0Cs2DKur6tUdX2UKGgGaAloD0MIjbYqiSzocECUhpRSlGgVTS0BaBZHQKzYkN0/4Zd1fZQoaAZoCWgPQwipMSHm0stwQJSGlFKUaBVL7GgWR0Cs2KiBf8dgdX2UKGgGaAloD0MI5lsf1ltwckCUhpRSlGgVS+poFkdArNjYd0aIe3V9lChoBmgJaA9DCHh7EAIyOHNAlIaUUpRoFUvzaBZHQKzZLiG34Kx1fZQoaAZoCWgPQwjD81Kx8T5zQJSGlFKUaBVNDQFoFkdArNlzlPrOaHV9lChoBmgJaA9DCMWqQZhbqG9AlIaUUpRoFU0xAWgWR0Cs2Zbr9l3AdX2UKGgGaAloD0MIFVW/0jmVcUCUhpRSlGgVTSsBaBZHQKzaGxrSE151fZQoaAZoCWgPQwifWKfKd4VvQJSGlFKUaBVNIQFoFkdArNr+skpqh3V9lChoBmgJaA9DCP+UKlH2M3FAlIaUUpRoFU0lAWgWR0Cs2zGois4ldX2UKGgGaAloD0MI+YctPRoQcUCUhpRSlGgVTT0BaBZHQKzbPpCa7Vd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b09e50c879be295437f76b962fcccb2ee763873baa6757378cda659263ed0457
|
3 |
+
size 144076
|
ppo-LunarLander-v2/data
CHANGED
@@ -47,8 +47,8 @@
|
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
-
"learning_rate": 0.
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
54 |
":type:": "<class 'function'>",
|
@@ -56,7 +56,7 @@
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
-
":serialized:": "
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -69,13 +69,13 @@
|
|
69 |
"_current_progress_remaining": -0.015808000000000044,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
-
":serialized:": "
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
-
"_n_updates":
|
79 |
"n_steps": 1024,
|
80 |
"gamma": 0.999,
|
81 |
"gae_lambda": 0.98,
|
|
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
+
"start_time": 1651917927.8897223,
|
51 |
+
"learning_rate": 0.0001,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
54 |
":type:": "<class 'function'>",
|
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADNn6jyTL6k+TS1SPrAHj77z92w+9WyIvQAAAAAAAAAAWmWYPZt2sz3q5oi+X0dsvgRjXb2EOru9AAAAAAAAAAAzhzC9d8wmP3EYhj6Z8LO+qOsGPupw5T0AAAAAAAAAABqpXr1Ge7w/7u7RvpLapj0lvXi9JkyBvgAAAAAAAAAAzaw/vCmZUj9V48U+8z+vvjvjkT1yr24+AAAAAAAAAACzCgQ9NAiXvPD9oL3+TkG94f+evQjijb4AAIA/AACAP2YQBbwm0cw+Tko9PRp5kr5vFAY+RnsGvgAAAAAAAAAAAGTvO7crMT9L0e899tLMvmmNdT0Wto09AAAAAAAAAACAUMu9OHazuwrNwjtyy+g8urEWPS+gwb0AAIA/AACAP2ZwBD0bIZ8+q+t+OmoNnr68fR0+B2bEvQAAAAAAAAAAFv59vuMpTj/fdYg9gCKPvik6wr6NLAM+AAAAAAAAAAAA0q695sqZPzRSnr4AosK+nesbvqKWOL4AAAAAAAAAAE0AIT1uhqM/OueZPtT1zb6FeUS8v+WhPQAAAAAAAAAA5kNBvfiEnTyb6OU854E0vnlv8Lzaua89AAAAAAAAAADNvHo7z6AXvOmdCL58UuS9H/k2PRavuT4AAIA/AACAP2buxryPamC6oguGNjEVEDK4qzc7l8eftQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
69 |
"_current_progress_remaining": -0.015808000000000044,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVZRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZAeVuA4qcECUhpRSlIwBbJRNIQGMAXSUR0CsoVsNDtw8dX2UKGgGaAloD0MIILWJk/v+b0CUhpRSlGgVTREBaBZHQKyhcEcsDnx1fZQoaAZoCWgPQwhTB3k9GLZzQJSGlFKUaBVNIQFoFkdArKGSXhOxjnV9lChoBmgJaA9DCDuMSX/vnnJAlIaUUpRoFU0NAWgWR0CsocdHc1wYdX2UKGgGaAloD0MIOQoQBbOVckCUhpRSlGgVTSsBaBZHQKyiXgMtsep1fZQoaAZoCWgPQwjQ7SWN0QJuQJSGlFKUaBVNPAFoFkdArKJo80UGmnV9lChoBmgJaA9DCEAwR49fe21AlIaUUpRoFU0xAWgWR0CsovSWRigCdX2UKGgGaAloD0MIzHnGvmTwbkCUhpRSlGgVTTABaBZHQKykNLhaTwF1fZQoaAZoCWgPQwhINIEiFhRxQJSGlFKUaBVNKQFoFkdArKRM2xY7rHV9lChoBmgJaA9DCIaOHVRiYGxAlIaUUpRoFU2TAWgWR0CspGOVHFxXdX2UKGgGaAloD0MIecxAZbw1dECUhpRSlGgVS+RoFkdArKS1r2xptnV9lChoBmgJaA9DCJZ4QNkUEnNAlIaUUpRoFU0KAWgWR0CspK9GRV6vdX2UKGgGaAloD0MIzLbT1gjVcUCUhpRSlGgVTSIBaBZHQKylhgHeJpF1fZQoaAZoCWgPQwiTNlX3SJtxQJSGlFKUaBVNFgFoFkdArKYlZ9uxbHV9lChoBmgJaA9DCGLWi6HcInFAlIaUUpRoFU1CAWgWR0Cspl2tMfzSdX2UKGgGaAloD0MI6fAQxs+wb0CUhpRSlGgVTRQBaBZHQKymuS9ugpV1fZQoaAZoCWgPQwjx8nSuKNFtQJSGlFKUaBVNDAFoFkdArKa5hfBvaXV9lChoBmgJaA9DCOXUzjC1wXFAlIaUUpRoFU0GAWgWR0Cspr7ExZdOdX2UKGgGaAloD0MIYf91btribkCUhpRSlGgVTQIBaBZHQKym2My8BdV1fZQoaAZoCWgPQwjw3lFjwm5tQJSGlFKUaBVNIgFoFkdArKcI2hqTKXV9lChoBmgJaA9DCAk2rn/XJm5AlIaUUpRoFUv2aBZHQKynM8yN4qx1fZQoaAZoCWgPQwjt0/GYQd5yQJSGlFKUaBVNIQFoFkdArKiQBzV+Z3V9lChoBmgJaA9DCL73N2ivdHBAlIaUUpRoFU1NAWgWR0CsqMSVv/BFdX2UKGgGaAloD0MI6pYd4l/XckCUhpRSlGgVS9xoFkdArKjl3fQ8fXV9lChoBmgJaA9DCHbEIRuIXHFAlIaUUpRoFUvxaBZHQKyo/Xg9/z91fZQoaAZoCWgPQwiocW9+Q+tvQJSGlFKUaBVNGgFoFkdArKma53C9AXV9lChoBmgJaA9DCELMJVXbcXBAlIaUUpRoFU0dAWgWR0Csqb5U96kZdX2UKGgGaAloD0MIBwsnaf6dcECUhpRSlGgVTREBaBZHQKyp8EFGG211fZQoaAZoCWgPQwj2su20tYRwQJSGlFKUaBVL9mgWR0Csqre8oQWfdX2UKGgGaAloD0MIKzQQy2bpcECUhpRSlGgVS/VoFkdArKrl76YVqXV9lChoBmgJaA9DCOT09XzNiG9AlIaUUpRoFU0nAWgWR0CsqxkJjUd8dX2UKGgGaAloD0MIW+uLhDa/b0CUhpRSlGgVS/VoFkdArKs2lyimEXV9lChoBmgJaA9DCCqsVFBRyT5AlIaUUpRoFUvbaBZHQKyrQvnr6cl1fZQoaAZoCWgPQwj7zcR04f5yQJSGlFKUaBVL/mgWR0Csq12alUIcdX2UKGgGaAloD0MIznFuE27bcECUhpRSlGgVTQMBaBZHQKyrd4Hooux1fZQoaAZoCWgPQwiqRq8GKLdvQJSGlFKUaBVNGAFoFkdArKvnRgJC0HV9lChoBmgJaA9DCE9ZTdfTzXBAlIaUUpRoFU0QAWgWR0Csq/T5ftx/dX2UKGgGaAloD0MIPlsHB/tPcUCUhpRSlGgVS+hoFkdArK0WLaVUuXV9lChoBmgJaA9DCH3Qs1n1929AlIaUUpRoFU0XAWgWR0CsyJnGKhtcdX2UKGgGaAloD0MIeVvptZkmcUCUhpRSlGgVTSoBaBZHQKzI2HdGiHt1fZQoaAZoCWgPQwhQqKePgBdyQJSGlFKUaBVNAAFoFkdArMjpNdqtYHV9lChoBmgJaA9DCKcHBaXobnFAlIaUUpRoFU0GAWgWR0CsyWFf7aZhdX2UKGgGaAloD0MI1gEQd/XgcECUhpRSlGgVTVIBaBZHQKzJdjc2zfJ1fZQoaAZoCWgPQwirIAa6to9wQJSGlFKUaBVNIwFoFkdArMm/ze40/HV9lChoBmgJaA9DCJyLv+0JOnFAlIaUUpRoFUv5aBZHQKzJ705EMLF1fZQoaAZoCWgPQwiq8dJNom1yQJSGlFKUaBVL9GgWR0CsyjTshPj5dX2UKGgGaAloD0MI9ODurJ02c0CUhpRSlGgVS+VoFkdArMpXOW0JGHV9lChoBmgJaA9DCIoCfSLPJnNAlIaUUpRoFUv5aBZHQKzKmrpaA4J1fZQoaAZoCWgPQwiox7YM+CdxQJSGlFKUaBVNFgFoFkdArMqmmelKsnV9lChoBmgJaA9DCBvYKsGiMHFAlIaUUpRoFU0bAWgWR0Csywa4MF2WdX2UKGgGaAloD0MIFOtU+Z5mcUCUhpRSlGgVTTEBaBZHQKzLc9ECvHN1fZQoaAZoCWgPQwgqjC0E+T9wQJSGlFKUaBVNLwFoFkdArMwnyqdYn3V9lChoBmgJaA9DCOG2tvC8XnBAlIaUUpRoFU03AWgWR0CszD5sCT2WdX2UKGgGaAloD0MIW2H6XoOPcUCUhpRSlGgVTQ8BaBZHQKzMzGhEjPh1fZQoaAZoCWgPQwjyYIvdvoRvQJSGlFKUaBVL62gWR0CszR5Wq95AdX2UKGgGaAloD0MIcAhVajYhcECUhpRSlGgVS+5oFkdArM04Difg8HV9lChoBmgJaA9DCKEt51KcvXFAlIaUUpRoFU0UAWgWR0CszaZpSJj2dX2UKGgGaAloD0MIwJfCg2aMckCUhpRSlGgVS/1oFkdArM4AA0bcXXV9lChoBmgJaA9DCCUgJuHCRm9AlIaUUpRoFU0WAWgWR0CszmtbkfcOdX2UKGgGaAloD0MIKIBiZMkGbkCUhpRSlGgVTSMBaBZHQKzPpwn6VMV1fZQoaAZoCWgPQwgtfH2ty+5wQJSGlFKUaBVNPQFoFkdArM+nsqril3V9lChoBmgJaA9DCJLLf0i/pHJAlIaUUpRoFU0fAWgWR0Csz7dCmdiEdX2UKGgGaAloD0MIVKhuLv5PckCUhpRSlGgVS+JoFkdArM/DdUKiPHV9lChoBmgJaA9DCBU8hVzp6XFAlIaUUpRoFU0RAWgWR0Csz8OLaVUudX2UKGgGaAloD0MIGTkLe9rhcECUhpRSlGgVTTsBaBZHQKzP0oDxLCh1fZQoaAZoCWgPQwggYoOFU6NxQJSGlFKUaBVNOQFoFkdArNBfZM+NcXV9lChoBmgJaA9DCA+0AkPWj3FAlIaUUpRoFU0gAWgWR0Cs0F9joZAIdX2UKGgGaAloD0MIP3CVJ9C+cUCUhpRSlGgVTQABaBZHQKzQ+9jgAIZ1fZQoaAZoCWgPQwgMPWL0HBdwQJSGlFKUaBVL9WgWR0Cs0VWCmMwUdX2UKGgGaAloD0MIaeId4EmmbkCUhpRSlGgVTSMBaBZHQKzRh8jzI3l1fZQoaAZoCWgPQwglXMgjuFtvQJSGlFKUaBVL9WgWR0Cs0agJswcpdX2UKGgGaAloD0MIBfhu80YAcUCUhpRSlGgVTQIBaBZHQKzSyxhUipx1fZQoaAZoCWgPQwhkdavnZJtxQJSGlFKUaBVNMwFoFkdArNLx1FH8THV9lChoBmgJaA9DCN7IPPIH2G9AlIaUUpRoFU0RAWgWR0Cs04mwqy4XdX2UKGgGaAloD0MICwithy/PcUCUhpRSlGgVTUcBaBZHQKzT1SiudPN1fZQoaAZoCWgPQwggCft2kkpzQJSGlFKUaBVL62gWR0Cs1AuxjawmdX2UKGgGaAloD0MIuY5xxUXYckCUhpRSlGgVS/doFkdArNRZIxxku3V9lChoBmgJaA9DCCsWvyls+nJAlIaUUpRoFU0HAWgWR0Cs1JQiaAnVdX2UKGgGaAloD0MIQ1Thz/DBbECUhpRSlGgVTQwBaBZHQKzUk/Zdv891fZQoaAZoCWgPQwgKhJ1iVTJxQJSGlFKUaBVNEgFoFkdArNS8HhS9/XV9lChoBmgJaA9DCEVj7e+s33BAlIaUUpRoFUvsaBZHQKzUxRvWH1x1fZQoaAZoCWgPQwif46PF2QVxQJSGlFKUaBVNPgFoFkdArNVmTRplBnV9lChoBmgJaA9DCJfEWRE1SHFAlIaUUpRoFU0jAWgWR0Cs1agp8WsSdX2UKGgGaAloD0MIKXef42NVcECUhpRSlGgVTQMBaBZHQKzVwn/kvK51fZQoaAZoCWgPQwjk2lAxTiByQJSGlFKUaBVNKAFoFkdArNbJzHS4OXV9lChoBmgJaA9DCCgNNQrJI3FAlIaUUpRoFU0zAWgWR0Cs1zaP8yeqdX2UKGgGaAloD0MINj0oKEUbG0CUhpRSlGgVS9FoFkdArNdVG7SRbXV9lChoBmgJaA9DCEYm4NdIMjRAlIaUUpRoFUvSaBZHQKzXqPluFYd1fZQoaAZoCWgPQwhKDW0AtvNwQJSGlFKUaBVNEAFoFkdArNfgaHbh33V9lChoBmgJaA9DCNQOf03WZW9AlIaUUpRoFU1dAWgWR0Cs2DKur6tUdX2UKGgGaAloD0MIjbYqiSzocECUhpRSlGgVTS0BaBZHQKzYkN0/4Zd1fZQoaAZoCWgPQwipMSHm0stwQJSGlFKUaBVL7GgWR0Cs2KiBf8dgdX2UKGgGaAloD0MI5lsf1ltwckCUhpRSlGgVS+poFkdArNjYd0aIe3V9lChoBmgJaA9DCHh7EAIyOHNAlIaUUpRoFUvzaBZHQKzZLiG34Kx1fZQoaAZoCWgPQwjD81Kx8T5zQJSGlFKUaBVNDQFoFkdArNlzlPrOaHV9lChoBmgJaA9DCMWqQZhbqG9AlIaUUpRoFU0xAWgWR0Cs2Zbr9l3AdX2UKGgGaAloD0MIFVW/0jmVcUCUhpRSlGgVTSsBaBZHQKzaGxrSE151fZQoaAZoCWgPQwifWKfKd4VvQJSGlFKUaBVNIQFoFkdArNr+skpqh3V9lChoBmgJaA9DCP+UKlH2M3FAlIaUUpRoFU0lAWgWR0Cs2zGois4ldX2UKGgGaAloD0MI+YctPRoQcUCUhpRSlGgVTT0BaBZHQKzbPpCa7Vd1ZS4="
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
+
"_n_updates": 248,
|
79 |
"n_steps": 1024,
|
80 |
"gamma": 0.999,
|
81 |
"gae_lambda": 0.98,
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:67947c5f6f837a87537d3925e25c69d3a632de7b7da44a67d1e4e2d60f0222fc
|
3 |
+
size 84893
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43201
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:35bb1ac3e44cdea282535d1636300b9a992f8bed51063f2f52ad25d88c4fa69e
|
3 |
size 43201
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b23899b7d639256a59516f7820f6328ae695ccb6381b20c15f31fae349aeb331
|
3 |
+
size 211441
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 262.22189617210404, "std_reward": 15.094380679738288, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-07T10:20:16.054461"}
|