liuzhenqi77
commited on
Commit
•
51f6e91
1
Parent(s):
f6b5dfe
Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- LunarLander-SB3-PPO-test-1.zip +3 -0
- LunarLander-SB3-PPO-test-1/_stable_baselines3_version +1 -0
- LunarLander-SB3-PPO-test-1/data +94 -0
- LunarLander-SB3-PPO-test-1/policy.optimizer.pth +3 -0
- LunarLander-SB3-PPO-test-1/policy.pth +3 -0
- LunarLander-SB3-PPO-test-1/pytorch_variables.pth +3 -0
- LunarLander-SB3-PPO-test-1/system_info.txt +7 -0
- README.md +28 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
LunarLander-SB3-PPO-test-1.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:64508bb0082353d4a57983f1c67a2679594f64b425f08b49fb1a41727aa6a5c0
|
3 |
+
size 144102
|
LunarLander-SB3-PPO-test-1/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
LunarLander-SB3-PPO-test-1/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fe40e415710>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe40e4157a0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe40e415830>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe40e4158c0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fe40e415950>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fe40e4159e0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe40e415a70>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fe40e415b00>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe40e415b90>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe40e415c20>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe40e415cb0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fe40e46f1e0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 524288,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652222931.6682153,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAK7s0L7XmCW9EUO8uo15ajj/lj+9ZmodOgAAgD8AAIA/AMXuPFz/MLq2cio7gwgZtDhsBbt9EdyyAACAPwAAgD+ze6w9e/yRuo1t8bdet4GxaRj6umL5CDcAAIA/AACAP+omxj5TiAg/Q1X0vXpmO75aWKU9HRTSvQAAAAAAAAAAbakVPmGWsTvC/dC9Yfy8vboJ+bybo0E7AAAAAAAAAAAa13A+rH2tPM6IBL02zpE75fyvPp6xI70AAIA/AACAP80gab3D5UO6FYdiOkR31rSrcQS74aSBuQAAgD8AAIA/2j7+vcOZSrrVJNw7QZbquJb5irsWtM45AACAPwAAgD9NQHG9rrGhui470zYUPEgyR5FDuRAt+rUAAIA/AACAPwA2sT3GW70/ZXwhP8nTlz3JZVw88KIfPgAAAAAAAAAAjTvZvVzzYLobapw6+3gxNp4Pjzvii7O5AACAPwAAgD/qaGG+7CO9u05uCzyPTkA5Uk8PPb1JH7oAAIA/AACAPwAYWb49EDQ8tGoVPr8f1r1P+Y2+k+2bPgAAgD8AAIA/AEoFPSmIH7oC19u7o7AHueEGp7p+x2g5AACAPwAAgD9mfLk8KUB2uvkrsToxv6Q1CWAEugKWyrkAAIA/AACAP3Nryz0UxJG6ruXdOlxSuDWpApQ6GlD/uQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.04857599999999995,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIuwopPylAZECUhpRSlIwBbJRN6AOMAXSUR0CEhGgM+eOGdX2UKGgGaAloD0MINzRlpx9RW0CUhpRSlGgVTegDaBZHQISIQjfNzKd1fZQoaAZoCWgPQwiFeCRenixhQJSGlFKUaBVN6ANoFkdAhIstCRfWtnV9lChoBmgJaA9DCG5qoPmcCWBAlIaUUpRoFU3oA2gWR0CEi9cu8K5TdX2UKGgGaAloD0MI+G7zxkn0X0CUhpRSlGgVTegDaBZHQISRXaYeDFt1fZQoaAZoCWgPQwhKRWPt7/QzQJSGlFKUaBVL0WgWR0CEkrGc4HX3dX2UKGgGaAloD0MIc/ON6J5yYUCUhpRSlGgVTegDaBZHQISe8sUZeiV1fZQoaAZoCWgPQwhJSKRtfJhhQJSGlFKUaBVN6ANoFkdAhLKQT/Q0GnV9lChoBmgJaA9DCBVwz/Onv2NAlIaUUpRoFU3oA2gWR0CEss2lVLi/dX2UKGgGaAloD0MIhWBVvfxyYECUhpRSlGgVTegDaBZHQIS+tNQCSzR1fZQoaAZoCWgPQwgXvOgryK5mQJSGlFKUaBVNegJoFkdAhNNyM1jy4HV9lChoBmgJaA9DCO2d0VYlHlZAlIaUUpRoFU3oA2gWR0CE1uEZBLPEdX2UKGgGaAloD0MIIJvkR3y/YECUhpRSlGgVTegDaBZHQITYzPyCnP51fZQoaAZoCWgPQwh5knTNZPRiQJSGlFKUaBVN6ANoFkdAhNmo7muDBnV9lChoBmgJaA9DCByXcVODwm5AlIaUUpRoFU0TA2gWR0CE21xXnyNGdX2UKGgGaAloD0MIJy8yAb/iZkCUhpRSlGgVTegDaBZHQIToNzIV/MJ1fZQoaAZoCWgPQwgTZW8p5xJgQJSGlFKUaBVN6ANoFkdAhPRF9a2Wp3V9lChoBmgJaA9DCB2taklHNltAlIaUUpRoFU3oA2gWR0CE9KGUwBYFdX2UKGgGaAloD0MIj3Ba8CIaYECUhpRSlGgVTegDaBZHQIT4OiQDFId1fZQoaAZoCWgPQwgAAWvVrhtcQJSGlFKUaBVN6ANoFkdAhPvj7qIJq3V9lChoBmgJaA9DCNlcNc+RVWJAlIaUUpRoFU3oA2gWR0CFAtZezD4ydX2UKGgGaAloD0MII4eIm9MCY0CUhpRSlGgVTegDaBZHQIUEbxsl9jR1fZQoaAZoCWgPQwgMlX8tL2VnQJSGlFKUaBVN6ANoFkdAhRGfIjnmrHV9lChoBmgJaA9DCElkH2TZAmJAlIaUUpRoFU3oA2gWR0CFJXZr56+ndX2UKGgGaAloD0MIMjogCXucYECUhpRSlGgVTegDaBZHQIUlsMCtA9p1fZQoaAZoCWgPQwjt9IO6yFdhQJSGlFKUaBVN6ANoFkdAhTHUxmCiAXV9lChoBmgJaA9DCExr09heMllAlIaUUpRoFU3oA2gWR0CF/aQV9F4LdX2UKGgGaAloD0MIi1HX2nt1YkCUhpRSlGgVTegDaBZHQIYBmee4Cp51fZQoaAZoCWgPQwgbZ9MRQFBgQJSGlFKUaBVN6ANoFkdAhgPX225QQHV9lChoBmgJaA9DCEsDP6ph8V5AlIaUUpRoFU3oA2gWR0CGBOfYjB2wdX2UKGgGaAloD0MIFAX6RB5eYUCUhpRSlGgVTegDaBZHQIYG+FtbcGl1fZQoaAZoCWgPQwixGktYGxNjQJSGlFKUaBVN6ANoFkdAhhXRBmf5DnV9lChoBmgJaA9DCPpCyHn/x0VAlIaUUpRoFU0EAWgWR0CGHXmvnr6ddX2UKGgGaAloD0MISS9q96vyXkCUhpRSlGgVTegDaBZHQIYjVdHDrJN1fZQoaAZoCWgPQwiPboRFxctlQJSGlFKUaBVN6ANoFkdAhiO44p+c6XV9lChoBmgJaA9DCFcJFoczyVVAlIaUUpRoFU3oA2gWR0CGJ2w/PgNxdX2UKGgGaAloD0MIiKHVyRkfYECUhpRSlGgVTegDaBZHQIYrF9YwIt11fZQoaAZoCWgPQwg91/fh4GhwQJSGlFKUaBVNzwNoFkdAhjBY2CNCJHV9lChoBmgJaA9DCHtmSYCatllAlIaUUpRoFU3oA2gWR0CGMYL876pHdX2UKGgGaAloD0MIU8prJXTDOUCUhpRSlGgVS9hoFkdAhjuLCemNznV9lChoBmgJaA9DCHe/CvBdjW5AlIaUUpRoFU3IAmgWR0CGPi9ytFKDdX2UKGgGaAloD0MIhq3ZyktAXUCUhpRSlGgVTegDaBZHQIZAguTRplB1fZQoaAZoCWgPQwjXhopx/kpBQJSGlFKUaBVNJQFoFkdAhk/doWYWtXV9lChoBmgJaA9DCFyTbkvk4GBAlIaUUpRoFU3oA2gWR0CGUhgBtDUmdX2UKGgGaAloD0MIIAw89x53XECUhpRSlGgVTegDaBZHQIZSTwtrbg11fZQoaAZoCWgPQwjlub4PB+RhQJSGlFKUaBVN6ANoFkdAhnUMjNY8uHV9lChoBmgJaA9DCNxnlZlSbGNAlIaUUpRoFU3oA2gWR0CGd0RlpXZHdX2UKGgGaAloD0MIb7n6sUlMYECUhpRSlGgVTegDaBZHQIZ4TohY/3Z1fZQoaAZoCWgPQwhHADeLF/lcQJSGlFKUaBVN6ANoFkdAhnpHeBQN1HV9lChoBmgJaA9DCIL/rWTHrltAlIaUUpRoFU3oA2gWR0CGiOvJRwZPdX2UKGgGaAloD0MItMh2vp9BYkCUhpRSlGgVTegDaBZHQIaQRGKAJ9l1fZQoaAZoCWgPQwih9ls70e9gQJSGlFKUaBVN6ANoFkdAhpXlY+0PYnV9lChoBmgJaA9DCObpXFFKbD5AlIaUUpRoFU0LAWgWR0CGmYpyZKFqdX2UKGgGaAloD0MIowVoW83tYkCUhpRSlGgVTegDaBZHQIaZyews5GV1fZQoaAZoCWgPQwhM3gAz331mQJSGlFKUaBVN6ANoFkdAhp1G8/UvwnV9lChoBmgJaA9DCA4yychZyGZAlIaUUpRoFU3oA2gWR0CGo/FsHjZMdX2UKGgGaAloD0MI4lZBDHQXXECUhpRSlGgVTegDaBZHQIauqkKu0Tl1fZQoaAZoCWgPQwipiNNJtu1fQJSGlFKUaBVN6ANoFkdAhrG8J2MbWHV9lChoBmgJaA9DCLVSCOQSplpAlIaUUpRoFU3oA2gWR0CGtCUJv5xjdX2UKGgGaAloD0MIxQJf0a1NW0CUhpRSlGgVTegDaBZHQIbGncSGrS51fZQoaAZoCWgPQwgTglX18oZdQJSGlFKUaBVN6ANoFkdAhslxqXWvsHV9lChoBmgJaA9DCMcOKnGdvmBAlIaUUpRoFU3oA2gWR0CGybbB42S/dX2UKGgGaAloD0MIW0BoPfzhYUCUhpRSlGgVTegDaBZHQIep7CrLhaV1fZQoaAZoCWgPQwiASSpTzJ1cQJSGlFKUaBVN6ANoFkdAh6xdxyXD33V9lChoBmgJaA9DCNTxmIFK1WFAlIaUUpRoFU3oA2gWR0CHrYkJrtVrdX2UKGgGaAloD0MIM1AZ/z7VZUCUhpRSlGgVTegDaBZHQIfA6hYeT3Z1fZQoaAZoCWgPQwi/Yg0XOQxkQJSGlFKUaBVN6ANoFkdAh8lGahHsknV9lChoBmgJaA9DCF/Rrdf0219AlIaUUpRoFU3oA2gWR0CHzy7pV0cPdX2UKGgGaAloD0MIVKpE2VsAY0CUhpRSlGgVTegDaBZHQIfSnSWqtHR1fZQoaAZoCWgPQwi4PUFiu8pgQJSGlFKUaBVN6ANoFkdAh9LbzTWoWHV9lChoBmgJaA9DCHy5T44CG21AlIaUUpRoFU0zA2gWR0CH0thrFfiQdX2UKGgGaAloD0MIW5TZIJMjYUCUhpRSlGgVTegDaBZHQIfVzLyMDOl1fZQoaAZoCWgPQwh2+kFdJH5gQJSGlFKUaBVN6ANoFkdAh9ryzollb3V9lChoBmgJaA9DCN6ul6YIwBrAlIaUUpRoFUvtaBZHQIfgy+zt1IR1fZQoaAZoCWgPQwgBTBk4oFlkQJSGlFKUaBVN6ANoFkdAh+UaMir1d3V9lChoBmgJaA9DCAoQBTMmo2JAlIaUUpRoFU3oA2gWR0CH5wOQyRCAdX2UKGgGaAloD0MIR4/f2/RaZECUhpRSlGgVTegDaBZHQIf1J0hePaN1fZQoaAZoCWgPQwjBcRk3NehiQJSGlFKUaBVN6ANoFkdAh/cygXdj5XV9lChoBmgJaA9DCPj578HrP2VAlIaUUpRoFU3oA2gWR0CH91zSThYOdX2UKGgGaAloD0MIIgA49mw9cUCUhpRSlGgVTRYCaBZHQIgBpOzposZ1fZQoaAZoCWgPQwi1T8djBiIpQJSGlFKUaBVL5GgWR0CIC0HZbpu/dX2UKGgGaAloD0MIfo0kQTiBYkCUhpRSlGgVTegDaBZHQIgUoXbdrO91fZQoaAZoCWgPQwiI9xxYDjBmQJSGlFKUaBVN6ANoFkdAiBZuUdJaq3V9lChoBmgJaA9DCJUoe0s5qF5AlIaUUpRoFU3oA2gWR0CIF1OJtSAIdX2UKGgGaAloD0MItoXnpeL8bkCUhpRSlGgVTVUDaBZHQIglqFj/dZd1fZQoaAZoCWgPQwiOAkTBjD9iQJSGlFKUaBVN6ANoFkdAiCZRGlQ/HHV9lChoBmgJaA9DCO9yEd+Ji2JAlIaUUpRoFU3oA2gWR0CINL18stkGdX2UKGgGaAloD0MIEd+JWa8QZECUhpRSlGgVTegDaBZHQIg0uVLSNOx1fZQoaAZoCWgPQwiNKO0NvkBmQJSGlFKUaBVN6ANoFkdAiDfZlOGj9HV9lChoBmgJaA9DCCVYHM78hGRAlIaUUpRoFU3oA2gWR0CIPVHbypaSdX2UKGgGaAloD0MImNpSB3kpQECUhpRSlGgVS/xoFkdAiD8s8ox59nV9lChoBmgJaA9DCPTEc7aAxWFAlIaUUpRoFU3oA2gWR0CIQ8sRxtHhdX2UKGgGaAloD0MInDQNiuZEY0CUhpRSlGgVTegDaBZHQIhImxQizLR1fZQoaAZoCWgPQwjm6PF7mz5EQJSGlFKUaBVN6ANoFkdAiEqgnUlRg3V9lChoBmgJaA9DCIV5jzNNWA7AlIaUUpRoFUvxaBZHQIhMGjfvWpZ1fZQoaAZoCWgPQwgIk+LjE2I/QJSGlFKUaBVL8mgWR0CIVxzoUzsQdX2UKGgGaAloD0MIW+ogrwd4YkCUhpRSlGgVTegDaBZHQIhblXT3IuJ1fZQoaAZoCWgPQwieP21UJxljQJSGlFKUaBVN6ANoFkdAiFvDLr5ZbXV9lChoBmgJaA9DCKqaIOo+zlxAlIaUUpRoFU3oA2gWR0CIZwOuq3mWdX2UKGgGaAloD0MIdsQhG0iLXkCUhpRSlGgVTegDaBZHQIhx6ttALRd1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 160,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.99,
|
81 |
+
"gae_lambda": 0.95,
|
82 |
+
"ent_coef": 0.0,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 10,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
LunarLander-SB3-PPO-test-1/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5a0fc13e67d948eca5c3ff5cbdffb3fbdbf555a4d94c235f3d706ae2c4a5b331
|
3 |
+
size 84893
|
LunarLander-SB3-PPO-test-1/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5a8161e9da5dd8ec604d2c71fcfe807f7d66e15ae0c3be272568e4ab3c57d5ce
|
3 |
+
size 43201
|
LunarLander-SB3-PPO-test-1/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
LunarLander-SB3-PPO-test-1/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 219.43 +/- 72.12
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe40e415710>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe40e4157a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe40e415830>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe40e4158c0>", "_build": "<function ActorCriticPolicy._build at 0x7fe40e415950>", "forward": "<function ActorCriticPolicy.forward at 0x7fe40e4159e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe40e415a70>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe40e415b00>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe40e415b90>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe40e415c20>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe40e415cb0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe40e46f1e0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 524288, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652222931.6682153, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAK7s0L7XmCW9EUO8uo15ajj/lj+9ZmodOgAAgD8AAIA/AMXuPFz/MLq2cio7gwgZtDhsBbt9EdyyAACAPwAAgD+ze6w9e/yRuo1t8bdet4GxaRj6umL5CDcAAIA/AACAP+omxj5TiAg/Q1X0vXpmO75aWKU9HRTSvQAAAAAAAAAAbakVPmGWsTvC/dC9Yfy8vboJ+bybo0E7AAAAAAAAAAAa13A+rH2tPM6IBL02zpE75fyvPp6xI70AAIA/AACAP80gab3D5UO6FYdiOkR31rSrcQS74aSBuQAAgD8AAIA/2j7+vcOZSrrVJNw7QZbquJb5irsWtM45AACAPwAAgD9NQHG9rrGhui470zYUPEgyR5FDuRAt+rUAAIA/AACAPwA2sT3GW70/ZXwhP8nTlz3JZVw88KIfPgAAAAAAAAAAjTvZvVzzYLobapw6+3gxNp4Pjzvii7O5AACAPwAAgD/qaGG+7CO9u05uCzyPTkA5Uk8PPb1JH7oAAIA/AACAPwAYWb49EDQ8tGoVPr8f1r1P+Y2+k+2bPgAAgD8AAIA/AEoFPSmIH7oC19u7o7AHueEGp7p+x2g5AACAPwAAgD9mfLk8KUB2uvkrsToxv6Q1CWAEugKWyrkAAIA/AACAP3Nryz0UxJG6ruXdOlxSuDWpApQ6GlD/uQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIuwopPylAZECUhpRSlIwBbJRN6AOMAXSUR0CEhGgM+eOGdX2UKGgGaAloD0MINzRlpx9RW0CUhpRSlGgVTegDaBZHQISIQjfNzKd1fZQoaAZoCWgPQwiFeCRenixhQJSGlFKUaBVN6ANoFkdAhIstCRfWtnV9lChoBmgJaA9DCG5qoPmcCWBAlIaUUpRoFU3oA2gWR0CEi9cu8K5TdX2UKGgGaAloD0MI+G7zxkn0X0CUhpRSlGgVTegDaBZHQISRXaYeDFt1fZQoaAZoCWgPQwhKRWPt7/QzQJSGlFKUaBVL0WgWR0CEkrGc4HX3dX2UKGgGaAloD0MIc/ON6J5yYUCUhpRSlGgVTegDaBZHQISe8sUZeiV1fZQoaAZoCWgPQwhJSKRtfJhhQJSGlFKUaBVN6ANoFkdAhLKQT/Q0GnV9lChoBmgJaA9DCBVwz/Onv2NAlIaUUpRoFU3oA2gWR0CEss2lVLi/dX2UKGgGaAloD0MIhWBVvfxyYECUhpRSlGgVTegDaBZHQIS+tNQCSzR1fZQoaAZoCWgPQwgXvOgryK5mQJSGlFKUaBVNegJoFkdAhNNyM1jy4HV9lChoBmgJaA9DCO2d0VYlHlZAlIaUUpRoFU3oA2gWR0CE1uEZBLPEdX2UKGgGaAloD0MIIJvkR3y/YECUhpRSlGgVTegDaBZHQITYzPyCnP51fZQoaAZoCWgPQwh5knTNZPRiQJSGlFKUaBVN6ANoFkdAhNmo7muDBnV9lChoBmgJaA9DCByXcVODwm5AlIaUUpRoFU0TA2gWR0CE21xXnyNGdX2UKGgGaAloD0MIJy8yAb/iZkCUhpRSlGgVTegDaBZHQIToNzIV/MJ1fZQoaAZoCWgPQwgTZW8p5xJgQJSGlFKUaBVN6ANoFkdAhPRF9a2Wp3V9lChoBmgJaA9DCB2taklHNltAlIaUUpRoFU3oA2gWR0CE9KGUwBYFdX2UKGgGaAloD0MIj3Ba8CIaYECUhpRSlGgVTegDaBZHQIT4OiQDFId1fZQoaAZoCWgPQwgAAWvVrhtcQJSGlFKUaBVN6ANoFkdAhPvj7qIJq3V9lChoBmgJaA9DCNlcNc+RVWJAlIaUUpRoFU3oA2gWR0CFAtZezD4ydX2UKGgGaAloD0MII4eIm9MCY0CUhpRSlGgVTegDaBZHQIUEbxsl9jR1fZQoaAZoCWgPQwgMlX8tL2VnQJSGlFKUaBVN6ANoFkdAhRGfIjnmrHV9lChoBmgJaA9DCElkH2TZAmJAlIaUUpRoFU3oA2gWR0CFJXZr56+ndX2UKGgGaAloD0MIMjogCXucYECUhpRSlGgVTegDaBZHQIUlsMCtA9p1fZQoaAZoCWgPQwjt9IO6yFdhQJSGlFKUaBVN6ANoFkdAhTHUxmCiAXV9lChoBmgJaA9DCExr09heMllAlIaUUpRoFU3oA2gWR0CF/aQV9F4LdX2UKGgGaAloD0MIi1HX2nt1YkCUhpRSlGgVTegDaBZHQIYBmee4Cp51fZQoaAZoCWgPQwgbZ9MRQFBgQJSGlFKUaBVN6ANoFkdAhgPX225QQHV9lChoBmgJaA9DCEsDP6ph8V5AlIaUUpRoFU3oA2gWR0CGBOfYjB2wdX2UKGgGaAloD0MIFAX6RB5eYUCUhpRSlGgVTegDaBZHQIYG+FtbcGl1fZQoaAZoCWgPQwixGktYGxNjQJSGlFKUaBVN6ANoFkdAhhXRBmf5DnV9lChoBmgJaA9DCPpCyHn/x0VAlIaUUpRoFU0EAWgWR0CGHXmvnr6ddX2UKGgGaAloD0MISS9q96vyXkCUhpRSlGgVTegDaBZHQIYjVdHDrJN1fZQoaAZoCWgPQwiPboRFxctlQJSGlFKUaBVN6ANoFkdAhiO44p+c6XV9lChoBmgJaA9DCFcJFoczyVVAlIaUUpRoFU3oA2gWR0CGJ2w/PgNxdX2UKGgGaAloD0MIiKHVyRkfYECUhpRSlGgVTegDaBZHQIYrF9YwIt11fZQoaAZoCWgPQwg91/fh4GhwQJSGlFKUaBVNzwNoFkdAhjBY2CNCJHV9lChoBmgJaA9DCHtmSYCatllAlIaUUpRoFU3oA2gWR0CGMYL876pHdX2UKGgGaAloD0MIU8prJXTDOUCUhpRSlGgVS9hoFkdAhjuLCemNznV9lChoBmgJaA9DCHe/CvBdjW5AlIaUUpRoFU3IAmgWR0CGPi9ytFKDdX2UKGgGaAloD0MIhq3ZyktAXUCUhpRSlGgVTegDaBZHQIZAguTRplB1fZQoaAZoCWgPQwjXhopx/kpBQJSGlFKUaBVNJQFoFkdAhk/doWYWtXV9lChoBmgJaA9DCFyTbkvk4GBAlIaUUpRoFU3oA2gWR0CGUhgBtDUmdX2UKGgGaAloD0MIIAw89x53XECUhpRSlGgVTegDaBZHQIZSTwtrbg11fZQoaAZoCWgPQwjlub4PB+RhQJSGlFKUaBVN6ANoFkdAhnUMjNY8uHV9lChoBmgJaA9DCNxnlZlSbGNAlIaUUpRoFU3oA2gWR0CGd0RlpXZHdX2UKGgGaAloD0MIb7n6sUlMYECUhpRSlGgVTegDaBZHQIZ4TohY/3Z1fZQoaAZoCWgPQwhHADeLF/lcQJSGlFKUaBVN6ANoFkdAhnpHeBQN1HV9lChoBmgJaA9DCIL/rWTHrltAlIaUUpRoFU3oA2gWR0CGiOvJRwZPdX2UKGgGaAloD0MItMh2vp9BYkCUhpRSlGgVTegDaBZHQIaQRGKAJ9l1fZQoaAZoCWgPQwih9ls70e9gQJSGlFKUaBVN6ANoFkdAhpXlY+0PYnV9lChoBmgJaA9DCObpXFFKbD5AlIaUUpRoFU0LAWgWR0CGmYpyZKFqdX2UKGgGaAloD0MIowVoW83tYkCUhpRSlGgVTegDaBZHQIaZyews5GV1fZQoaAZoCWgPQwhM3gAz331mQJSGlFKUaBVN6ANoFkdAhp1G8/UvwnV9lChoBmgJaA9DCA4yychZyGZAlIaUUpRoFU3oA2gWR0CGo/FsHjZMdX2UKGgGaAloD0MI4lZBDHQXXECUhpRSlGgVTegDaBZHQIauqkKu0Tl1fZQoaAZoCWgPQwipiNNJtu1fQJSGlFKUaBVN6ANoFkdAhrG8J2MbWHV9lChoBmgJaA9DCLVSCOQSplpAlIaUUpRoFU3oA2gWR0CGtCUJv5xjdX2UKGgGaAloD0MIxQJf0a1NW0CUhpRSlGgVTegDaBZHQIbGncSGrS51fZQoaAZoCWgPQwgTglX18oZdQJSGlFKUaBVN6ANoFkdAhslxqXWvsHV9lChoBmgJaA9DCMcOKnGdvmBAlIaUUpRoFU3oA2gWR0CGybbB42S/dX2UKGgGaAloD0MIW0BoPfzhYUCUhpRSlGgVTegDaBZHQIep7CrLhaV1fZQoaAZoCWgPQwiASSpTzJ1cQJSGlFKUaBVN6ANoFkdAh6xdxyXD33V9lChoBmgJaA9DCNTxmIFK1WFAlIaUUpRoFU3oA2gWR0CHrYkJrtVrdX2UKGgGaAloD0MIM1AZ/z7VZUCUhpRSlGgVTegDaBZHQIfA6hYeT3Z1fZQoaAZoCWgPQwi/Yg0XOQxkQJSGlFKUaBVN6ANoFkdAh8lGahHsknV9lChoBmgJaA9DCF/Rrdf0219AlIaUUpRoFU3oA2gWR0CHzy7pV0cPdX2UKGgGaAloD0MIVKpE2VsAY0CUhpRSlGgVTegDaBZHQIfSnSWqtHR1fZQoaAZoCWgPQwi4PUFiu8pgQJSGlFKUaBVN6ANoFkdAh9LbzTWoWHV9lChoBmgJaA9DCHy5T44CG21AlIaUUpRoFU0zA2gWR0CH0thrFfiQdX2UKGgGaAloD0MIW5TZIJMjYUCUhpRSlGgVTegDaBZHQIfVzLyMDOl1fZQoaAZoCWgPQwh2+kFdJH5gQJSGlFKUaBVN6ANoFkdAh9ryzollb3V9lChoBmgJaA9DCN6ul6YIwBrAlIaUUpRoFUvtaBZHQIfgy+zt1IR1fZQoaAZoCWgPQwgBTBk4oFlkQJSGlFKUaBVN6ANoFkdAh+UaMir1d3V9lChoBmgJaA9DCAoQBTMmo2JAlIaUUpRoFU3oA2gWR0CH5wOQyRCAdX2UKGgGaAloD0MIR4/f2/RaZECUhpRSlGgVTegDaBZHQIf1J0hePaN1fZQoaAZoCWgPQwjBcRk3NehiQJSGlFKUaBVN6ANoFkdAh/cygXdj5XV9lChoBmgJaA9DCPj578HrP2VAlIaUUpRoFU3oA2gWR0CH91zSThYOdX2UKGgGaAloD0MIIgA49mw9cUCUhpRSlGgVTRYCaBZHQIgBpOzposZ1fZQoaAZoCWgPQwi1T8djBiIpQJSGlFKUaBVL5GgWR0CIC0HZbpu/dX2UKGgGaAloD0MIfo0kQTiBYkCUhpRSlGgVTegDaBZHQIgUoXbdrO91fZQoaAZoCWgPQwiI9xxYDjBmQJSGlFKUaBVN6ANoFkdAiBZuUdJaq3V9lChoBmgJaA9DCJUoe0s5qF5AlIaUUpRoFU3oA2gWR0CIF1OJtSAIdX2UKGgGaAloD0MItoXnpeL8bkCUhpRSlGgVTVUDaBZHQIglqFj/dZd1fZQoaAZoCWgPQwiOAkTBjD9iQJSGlFKUaBVN6ANoFkdAiCZRGlQ/HHV9lChoBmgJaA9DCO9yEd+Ji2JAlIaUUpRoFU3oA2gWR0CINL18stkGdX2UKGgGaAloD0MIEd+JWa8QZECUhpRSlGgVTegDaBZHQIg0uVLSNOx1fZQoaAZoCWgPQwiNKO0NvkBmQJSGlFKUaBVN6ANoFkdAiDfZlOGj9HV9lChoBmgJaA9DCCVYHM78hGRAlIaUUpRoFU3oA2gWR0CIPVHbypaSdX2UKGgGaAloD0MImNpSB3kpQECUhpRSlGgVS/xoFkdAiD8s8ox59nV9lChoBmgJaA9DCPTEc7aAxWFAlIaUUpRoFU3oA2gWR0CIQ8sRxtHhdX2UKGgGaAloD0MInDQNiuZEY0CUhpRSlGgVTegDaBZHQIhImxQizLR1fZQoaAZoCWgPQwjm6PF7mz5EQJSGlFKUaBVN6ANoFkdAiEqgnUlRg3V9lChoBmgJaA9DCIV5jzNNWA7AlIaUUpRoFUvxaBZHQIhMGjfvWpZ1fZQoaAZoCWgPQwgIk+LjE2I/QJSGlFKUaBVL8mgWR0CIVxzoUzsQdX2UKGgGaAloD0MIW+ogrwd4YkCUhpRSlGgVTegDaBZHQIhblXT3IuJ1fZQoaAZoCWgPQwieP21UJxljQJSGlFKUaBVN6ANoFkdAiFvDLr5ZbXV9lChoBmgJaA9DCKqaIOo+zlxAlIaUUpRoFU3oA2gWR0CIZwOuq3mWdX2UKGgGaAloD0MIdsQhG0iLXkCUhpRSlGgVTegDaBZHQIhx6ttALRd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 160, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:de9b3d700f7d90589066d4109d8f52bd408ba7948a61dc85523bd4f72eaf582b
|
3 |
+
size 258182
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 219.4250149878059, "std_reward": 72.12017111839646, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-10T23:04:13.112507"}
|