liuyanchen1015
commited on
Commit
•
b36d131
1
Parent(s):
49b709b
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
model-index:
|
8 |
+
- name: Finetuned_FLAN-T5_VALUE_adapterfusion_lr5e-5_bs64
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# Finetuned_FLAN-T5_VALUE_adapterfusion_lr5e-5_bs64
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [liuyanchen1015/FLAN-T5_GLUE_finetuning_lr3e-4](https://huggingface.co/liuyanchen1015/FLAN-T5_GLUE_finetuning_lr3e-4) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.0879
|
20 |
+
- Accuracy: 0.8776
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 5e-05
|
40 |
+
- train_batch_size: 64
|
41 |
+
- eval_batch_size: 64
|
42 |
+
- seed: 42
|
43 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
+
- lr_scheduler_type: linear
|
45 |
+
- num_epochs: 1.0
|
46 |
+
|
47 |
+
### Training results
|
48 |
+
|
49 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
50 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
51 |
+
| 0.0597 | 0.07 | 1000 | 0.0890 | 0.8752 |
|
52 |
+
| 0.055 | 0.14 | 2000 | 0.0886 | 0.8768 |
|
53 |
+
| 0.0545 | 0.2 | 3000 | 0.0870 | 0.8746 |
|
54 |
+
| 0.0526 | 0.27 | 4000 | 0.0881 | 0.8756 |
|
55 |
+
| 0.0515 | 0.34 | 5000 | 0.0876 | 0.8756 |
|
56 |
+
| 0.0501 | 0.41 | 6000 | 0.0885 | 0.8788 |
|
57 |
+
| 0.0497 | 0.47 | 7000 | 0.0908 | 0.8756 |
|
58 |
+
| 0.0498 | 0.54 | 8000 | 0.0899 | 0.8776 |
|
59 |
+
| 0.0509 | 0.61 | 9000 | 0.0902 | 0.8754 |
|
60 |
+
| 0.0504 | 0.68 | 10000 | 0.0898 | 0.8736 |
|
61 |
+
| 0.049 | 0.74 | 11000 | 0.0879 | 0.8734 |
|
62 |
+
| 0.0494 | 0.81 | 12000 | 0.0878 | 0.8746 |
|
63 |
+
| 0.0477 | 0.88 | 13000 | 0.0883 | 0.8766 |
|
64 |
+
| 0.0498 | 0.95 | 14000 | 0.0879 | 0.8776 |
|
65 |
+
|
66 |
+
|
67 |
+
### Framework versions
|
68 |
+
|
69 |
+
- Transformers 4.26.1
|
70 |
+
- Pytorch 1.13.0+cu117
|
71 |
+
- Datasets 2.10.1
|
72 |
+
- Tokenizers 0.12.1
|