liuyanchen1015 commited on
Commit
b36d131
1 Parent(s): 49b709b

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +72 -0
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ model-index:
8
+ - name: Finetuned_FLAN-T5_VALUE_adapterfusion_lr5e-5_bs64
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # Finetuned_FLAN-T5_VALUE_adapterfusion_lr5e-5_bs64
16
+
17
+ This model is a fine-tuned version of [liuyanchen1015/FLAN-T5_GLUE_finetuning_lr3e-4](https://huggingface.co/liuyanchen1015/FLAN-T5_GLUE_finetuning_lr3e-4) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.0879
20
+ - Accuracy: 0.8776
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 5e-05
40
+ - train_batch_size: 64
41
+ - eval_batch_size: 64
42
+ - seed: 42
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: linear
45
+ - num_epochs: 1.0
46
+
47
+ ### Training results
48
+
49
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
50
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|
51
+ | 0.0597 | 0.07 | 1000 | 0.0890 | 0.8752 |
52
+ | 0.055 | 0.14 | 2000 | 0.0886 | 0.8768 |
53
+ | 0.0545 | 0.2 | 3000 | 0.0870 | 0.8746 |
54
+ | 0.0526 | 0.27 | 4000 | 0.0881 | 0.8756 |
55
+ | 0.0515 | 0.34 | 5000 | 0.0876 | 0.8756 |
56
+ | 0.0501 | 0.41 | 6000 | 0.0885 | 0.8788 |
57
+ | 0.0497 | 0.47 | 7000 | 0.0908 | 0.8756 |
58
+ | 0.0498 | 0.54 | 8000 | 0.0899 | 0.8776 |
59
+ | 0.0509 | 0.61 | 9000 | 0.0902 | 0.8754 |
60
+ | 0.0504 | 0.68 | 10000 | 0.0898 | 0.8736 |
61
+ | 0.049 | 0.74 | 11000 | 0.0879 | 0.8734 |
62
+ | 0.0494 | 0.81 | 12000 | 0.0878 | 0.8746 |
63
+ | 0.0477 | 0.88 | 13000 | 0.0883 | 0.8766 |
64
+ | 0.0498 | 0.95 | 14000 | 0.0879 | 0.8776 |
65
+
66
+
67
+ ### Framework versions
68
+
69
+ - Transformers 4.26.1
70
+ - Pytorch 1.13.0+cu117
71
+ - Datasets 2.10.1
72
+ - Tokenizers 0.12.1