liushaowei commited on
Commit
7fc16ac
·
1 Parent(s): a0b9f0f

Upload 18 files

Browse files
added_tokens.json ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<|af|>": 50327,
3
+ "<|am|>": 50334,
4
+ "<|ar|>": 50272,
5
+ "<|as|>": 50350,
6
+ "<|az|>": 50304,
7
+ "<|ba|>": 50355,
8
+ "<|be|>": 50330,
9
+ "<|bg|>": 50292,
10
+ "<|bn|>": 50302,
11
+ "<|bo|>": 50347,
12
+ "<|br|>": 50309,
13
+ "<|bs|>": 50315,
14
+ "<|ca|>": 50270,
15
+ "<|cs|>": 50283,
16
+ "<|cy|>": 50297,
17
+ "<|da|>": 50285,
18
+ "<|de|>": 50261,
19
+ "<|el|>": 50281,
20
+ "<|en|>": 50259,
21
+ "<|es|>": 50262,
22
+ "<|et|>": 50307,
23
+ "<|eu|>": 50310,
24
+ "<|fa|>": 50300,
25
+ "<|fi|>": 50277,
26
+ "<|fo|>": 50338,
27
+ "<|fr|>": 50265,
28
+ "<|gl|>": 50319,
29
+ "<|gu|>": 50333,
30
+ "<|haw|>": 50352,
31
+ "<|ha|>": 50354,
32
+ "<|he|>": 50279,
33
+ "<|hi|>": 50276,
34
+ "<|hr|>": 50291,
35
+ "<|ht|>": 50339,
36
+ "<|hu|>": 50286,
37
+ "<|hy|>": 50312,
38
+ "<|id|>": 50275,
39
+ "<|is|>": 50311,
40
+ "<|it|>": 50274,
41
+ "<|ja|>": 50266,
42
+ "<|jw|>": 50356,
43
+ "<|ka|>": 50329,
44
+ "<|kk|>": 50316,
45
+ "<|km|>": 50323,
46
+ "<|kn|>": 50306,
47
+ "<|ko|>": 50264,
48
+ "<|la|>": 50294,
49
+ "<|lb|>": 50345,
50
+ "<|ln|>": 50353,
51
+ "<|lo|>": 50336,
52
+ "<|lt|>": 50293,
53
+ "<|lv|>": 50301,
54
+ "<|mg|>": 50349,
55
+ "<|mi|>": 50295,
56
+ "<|mk|>": 50308,
57
+ "<|ml|>": 50296,
58
+ "<|mn|>": 50314,
59
+ "<|mr|>": 50320,
60
+ "<|ms|>": 50282,
61
+ "<|mt|>": 50343,
62
+ "<|my|>": 50346,
63
+ "<|ne|>": 50313,
64
+ "<|nl|>": 50271,
65
+ "<|nn|>": 50342,
66
+ "<|nocaptions|>": 50362,
67
+ "<|notimestamps|>": 50363,
68
+ "<|no|>": 50288,
69
+ "<|oc|>": 50328,
70
+ "<|pa|>": 50321,
71
+ "<|pl|>": 50269,
72
+ "<|ps|>": 50340,
73
+ "<|pt|>": 50267,
74
+ "<|ro|>": 50284,
75
+ "<|ru|>": 50263,
76
+ "<|sa|>": 50344,
77
+ "<|sd|>": 50332,
78
+ "<|si|>": 50322,
79
+ "<|sk|>": 50298,
80
+ "<|sl|>": 50305,
81
+ "<|sn|>": 50324,
82
+ "<|so|>": 50326,
83
+ "<|sq|>": 50317,
84
+ "<|sr|>": 50303,
85
+ "<|startoflm|>": 50360,
86
+ "<|startofprev|>": 50361,
87
+ "<|startoftranscript|>": 50258,
88
+ "<|su|>": 50357,
89
+ "<|sv|>": 50273,
90
+ "<|sw|>": 50318,
91
+ "<|ta|>": 50287,
92
+ "<|te|>": 50299,
93
+ "<|tg|>": 50331,
94
+ "<|th|>": 50289,
95
+ "<|tk|>": 50341,
96
+ "<|tl|>": 50348,
97
+ "<|transcribe|>": 50359,
98
+ "<|translate|>": 50358,
99
+ "<|tr|>": 50268,
100
+ "<|tt|>": 50351,
101
+ "<|uk|>": 50280,
102
+ "<|ur|>": 50290,
103
+ "<|uz|>": 50337,
104
+ "<|vi|>": 50278,
105
+ "<|yi|>": 50335,
106
+ "<|yo|>": 50325,
107
+ "<|zh|>": 50260
108
+ }
config.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "openai/whisper-base",
3
+ "activation_dropout": 0.0,
4
+ "activation_function": "gelu",
5
+ "apply_spec_augment": false,
6
+ "architectures": [
7
+ "WhisperForConditionalGeneration"
8
+ ],
9
+ "attention_dropout": 0.0,
10
+ "begin_suppress_tokens": [
11
+ 220,
12
+ 50257
13
+ ],
14
+ "bos_token_id": 50257,
15
+ "classifier_proj_size": 256,
16
+ "d_model": 512,
17
+ "decoder_attention_heads": 8,
18
+ "decoder_ffn_dim": 2048,
19
+ "decoder_layerdrop": 0.0,
20
+ "decoder_layers": 6,
21
+ "decoder_start_token_id": 50258,
22
+ "dropout": 0.0,
23
+ "encoder_attention_heads": 8,
24
+ "encoder_ffn_dim": 2048,
25
+ "encoder_layerdrop": 0.0,
26
+ "encoder_layers": 6,
27
+ "eos_token_id": 50257,
28
+ "forced_decoder_ids": null,
29
+ "init_std": 0.02,
30
+ "is_encoder_decoder": true,
31
+ "mask_feature_length": 10,
32
+ "mask_feature_min_masks": 0,
33
+ "mask_feature_prob": 0.0,
34
+ "mask_time_length": 10,
35
+ "mask_time_min_masks": 2,
36
+ "mask_time_prob": 0.05,
37
+ "max_length": 448,
38
+ "max_source_positions": 1500,
39
+ "max_target_positions": 448,
40
+ "model_type": "whisper",
41
+ "num_hidden_layers": 6,
42
+ "num_mel_bins": 80,
43
+ "pad_token_id": 50257,
44
+ "scale_embedding": false,
45
+ "suppress_tokens": [],
46
+ "torch_dtype": "float32",
47
+ "transformers_version": "4.28.1",
48
+ "use_cache": true,
49
+ "use_weighted_layer_sum": false,
50
+ "vocab_size": 51865
51
+ }
flax_model.msgpack ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f69b3fcc5b0044b1436bc9e4181548709129977871877b875bddfaf1b41fc667
3
+ size 290384497
generation_config.json ADDED
@@ -0,0 +1,221 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "begin_suppress_tokens": [
3
+ 220,
4
+ 50257
5
+ ],
6
+ "bos_token_id": 50257,
7
+ "decoder_start_token_id": 50258,
8
+ "eos_token_id": 50257,
9
+ "forced_decoder_ids": [
10
+ [
11
+ 1,
12
+ null
13
+ ],
14
+ [
15
+ 2,
16
+ 50359
17
+ ]
18
+ ],
19
+ "is_multilingual": true,
20
+ "lang_to_id": {
21
+ "<|af|>": 50327,
22
+ "<|am|>": 50334,
23
+ "<|ar|>": 50272,
24
+ "<|as|>": 50350,
25
+ "<|az|>": 50304,
26
+ "<|ba|>": 50355,
27
+ "<|be|>": 50330,
28
+ "<|bg|>": 50292,
29
+ "<|bn|>": 50302,
30
+ "<|bo|>": 50347,
31
+ "<|br|>": 50309,
32
+ "<|bs|>": 50315,
33
+ "<|ca|>": 50270,
34
+ "<|cs|>": 50283,
35
+ "<|cy|>": 50297,
36
+ "<|da|>": 50285,
37
+ "<|de|>": 50261,
38
+ "<|el|>": 50281,
39
+ "<|en|>": 50259,
40
+ "<|es|>": 50262,
41
+ "<|et|>": 50307,
42
+ "<|eu|>": 50310,
43
+ "<|fa|>": 50300,
44
+ "<|fi|>": 50277,
45
+ "<|fo|>": 50338,
46
+ "<|fr|>": 50265,
47
+ "<|gl|>": 50319,
48
+ "<|gu|>": 50333,
49
+ "<|haw|>": 50352,
50
+ "<|ha|>": 50354,
51
+ "<|he|>": 50279,
52
+ "<|hi|>": 50276,
53
+ "<|hr|>": 50291,
54
+ "<|ht|>": 50339,
55
+ "<|hu|>": 50286,
56
+ "<|hy|>": 50312,
57
+ "<|id|>": 50275,
58
+ "<|is|>": 50311,
59
+ "<|it|>": 50274,
60
+ "<|ja|>": 50266,
61
+ "<|jw|>": 50356,
62
+ "<|ka|>": 50329,
63
+ "<|kk|>": 50316,
64
+ "<|km|>": 50323,
65
+ "<|kn|>": 50306,
66
+ "<|ko|>": 50264,
67
+ "<|la|>": 50294,
68
+ "<|lb|>": 50345,
69
+ "<|ln|>": 50353,
70
+ "<|lo|>": 50336,
71
+ "<|lt|>": 50293,
72
+ "<|lv|>": 50301,
73
+ "<|mg|>": 50349,
74
+ "<|mi|>": 50295,
75
+ "<|mk|>": 50308,
76
+ "<|ml|>": 50296,
77
+ "<|mn|>": 50314,
78
+ "<|mr|>": 50320,
79
+ "<|ms|>": 50282,
80
+ "<|mt|>": 50343,
81
+ "<|my|>": 50346,
82
+ "<|ne|>": 50313,
83
+ "<|nl|>": 50271,
84
+ "<|nn|>": 50342,
85
+ "<|no|>": 50288,
86
+ "<|oc|>": 50328,
87
+ "<|pa|>": 50321,
88
+ "<|pl|>": 50269,
89
+ "<|ps|>": 50340,
90
+ "<|pt|>": 50267,
91
+ "<|ro|>": 50284,
92
+ "<|ru|>": 50263,
93
+ "<|sa|>": 50344,
94
+ "<|sd|>": 50332,
95
+ "<|si|>": 50322,
96
+ "<|sk|>": 50298,
97
+ "<|sl|>": 50305,
98
+ "<|sn|>": 50324,
99
+ "<|so|>": 50326,
100
+ "<|sq|>": 50317,
101
+ "<|sr|>": 50303,
102
+ "<|su|>": 50357,
103
+ "<|sv|>": 50273,
104
+ "<|sw|>": 50318,
105
+ "<|ta|>": 50287,
106
+ "<|te|>": 50299,
107
+ "<|tg|>": 50331,
108
+ "<|th|>": 50289,
109
+ "<|tk|>": 50341,
110
+ "<|tl|>": 50348,
111
+ "<|tr|>": 50268,
112
+ "<|tt|>": 50351,
113
+ "<|uk|>": 50280,
114
+ "<|ur|>": 50290,
115
+ "<|uz|>": 50337,
116
+ "<|vi|>": 50278,
117
+ "<|yi|>": 50335,
118
+ "<|yo|>": 50325,
119
+ "<|zh|>": 50260
120
+ },
121
+ "max_initial_timestamp_index": 1,
122
+ "max_length": 448,
123
+ "no_timestamps_token_id": 50363,
124
+ "pad_token_id": 50257,
125
+ "return_timestamps": false,
126
+ "suppress_tokens": [
127
+ 1,
128
+ 2,
129
+ 7,
130
+ 8,
131
+ 9,
132
+ 10,
133
+ 14,
134
+ 25,
135
+ 26,
136
+ 27,
137
+ 28,
138
+ 29,
139
+ 31,
140
+ 58,
141
+ 59,
142
+ 60,
143
+ 61,
144
+ 62,
145
+ 63,
146
+ 90,
147
+ 91,
148
+ 92,
149
+ 93,
150
+ 359,
151
+ 503,
152
+ 522,
153
+ 542,
154
+ 873,
155
+ 893,
156
+ 902,
157
+ 918,
158
+ 922,
159
+ 931,
160
+ 1350,
161
+ 1853,
162
+ 1982,
163
+ 2460,
164
+ 2627,
165
+ 3246,
166
+ 3253,
167
+ 3268,
168
+ 3536,
169
+ 3846,
170
+ 3961,
171
+ 4183,
172
+ 4667,
173
+ 6585,
174
+ 6647,
175
+ 7273,
176
+ 9061,
177
+ 9383,
178
+ 10428,
179
+ 10929,
180
+ 11938,
181
+ 12033,
182
+ 12331,
183
+ 12562,
184
+ 13793,
185
+ 14157,
186
+ 14635,
187
+ 15265,
188
+ 15618,
189
+ 16553,
190
+ 16604,
191
+ 18362,
192
+ 18956,
193
+ 20075,
194
+ 21675,
195
+ 22520,
196
+ 26130,
197
+ 26161,
198
+ 26435,
199
+ 28279,
200
+ 29464,
201
+ 31650,
202
+ 32302,
203
+ 32470,
204
+ 36865,
205
+ 42863,
206
+ 47425,
207
+ 49870,
208
+ 50254,
209
+ 50258,
210
+ 50358,
211
+ 50359,
212
+ 50360,
213
+ 50361,
214
+ 50362
215
+ ],
216
+ "task_to_id": {
217
+ "transcribe": 50359,
218
+ "translate": 50358
219
+ },
220
+ "transformers_version": "4.28.1"
221
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
normalizer.json ADDED
@@ -0,0 +1,1742 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "accessorise": "accessorize",
3
+ "accessorised": "accessorized",
4
+ "accessorises": "accessorizes",
5
+ "accessorising": "accessorizing",
6
+ "acclimatisation": "acclimatization",
7
+ "acclimatise": "acclimatize",
8
+ "acclimatised": "acclimatized",
9
+ "acclimatises": "acclimatizes",
10
+ "acclimatising": "acclimatizing",
11
+ "accoutrements": "accouterments",
12
+ "aeon": "eon",
13
+ "aeons": "eons",
14
+ "aerogramme": "aerogram",
15
+ "aerogrammes": "aerograms",
16
+ "aeroplane": "airplane",
17
+ "aeroplanes": "airplanes",
18
+ "aesthete": "esthete",
19
+ "aesthetes": "esthetes",
20
+ "aesthetic": "esthetic",
21
+ "aesthetically": "esthetically",
22
+ "aesthetics": "esthetics",
23
+ "aetiology": "etiology",
24
+ "ageing": "aging",
25
+ "aggrandisement": "aggrandizement",
26
+ "agonise": "agonize",
27
+ "agonised": "agonized",
28
+ "agonises": "agonizes",
29
+ "agonising": "agonizing",
30
+ "agonisingly": "agonizingly",
31
+ "almanack": "almanac",
32
+ "almanacks": "almanacs",
33
+ "aluminium": "aluminum",
34
+ "amortisable": "amortizable",
35
+ "amortisation": "amortization",
36
+ "amortisations": "amortizations",
37
+ "amortise": "amortize",
38
+ "amortised": "amortized",
39
+ "amortises": "amortizes",
40
+ "amortising": "amortizing",
41
+ "amphitheatre": "amphitheater",
42
+ "amphitheatres": "amphitheaters",
43
+ "anaemia": "anemia",
44
+ "anaemic": "anemic",
45
+ "anaesthesia": "anesthesia",
46
+ "anaesthetic": "anesthetic",
47
+ "anaesthetics": "anesthetics",
48
+ "anaesthetise": "anesthetize",
49
+ "anaesthetised": "anesthetized",
50
+ "anaesthetises": "anesthetizes",
51
+ "anaesthetising": "anesthetizing",
52
+ "anaesthetist": "anesthetist",
53
+ "anaesthetists": "anesthetists",
54
+ "anaesthetize": "anesthetize",
55
+ "anaesthetized": "anesthetized",
56
+ "anaesthetizes": "anesthetizes",
57
+ "anaesthetizing": "anesthetizing",
58
+ "analogue": "analog",
59
+ "analogues": "analogs",
60
+ "analyse": "analyze",
61
+ "analysed": "analyzed",
62
+ "analyses": "analyzes",
63
+ "analysing": "analyzing",
64
+ "anglicise": "anglicize",
65
+ "anglicised": "anglicized",
66
+ "anglicises": "anglicizes",
67
+ "anglicising": "anglicizing",
68
+ "annualised": "annualized",
69
+ "antagonise": "antagonize",
70
+ "antagonised": "antagonized",
71
+ "antagonises": "antagonizes",
72
+ "antagonising": "antagonizing",
73
+ "apologise": "apologize",
74
+ "apologised": "apologized",
75
+ "apologises": "apologizes",
76
+ "apologising": "apologizing",
77
+ "appal": "appall",
78
+ "appals": "appalls",
79
+ "appetiser": "appetizer",
80
+ "appetisers": "appetizers",
81
+ "appetising": "appetizing",
82
+ "appetisingly": "appetizingly",
83
+ "arbour": "arbor",
84
+ "arbours": "arbors",
85
+ "archaeologically": "archeologically",
86
+ "archaeologist": "archeologist",
87
+ "archaeologists": "archeologists",
88
+ "archaeology": "archeology</span>",
89
+ "archeological": "archaeological",
90
+ "ardour": "ardor",
91
+ "armour": "armor",
92
+ "armoured": "armored",
93
+ "armourer": "armorer",
94
+ "armourers": "armorers",
95
+ "armouries": "armories",
96
+ "armoury": "armory",
97
+ "artefact": "artifact",
98
+ "artefacts": "artifacts",
99
+ "authorise": "authorize",
100
+ "authorised": "authorized",
101
+ "authorises": "authorizes",
102
+ "authorising": "authorizing",
103
+ "axe": "ax",
104
+ "backpedalled": "backpedaled",
105
+ "backpedalling": "backpedaling",
106
+ "bannister": "banister",
107
+ "bannisters": "banisters",
108
+ "baptise": "baptize",
109
+ "baptised": "baptized",
110
+ "baptises": "baptizes",
111
+ "baptising": "baptizing",
112
+ "bastardise": "bastardize",
113
+ "bastardised": "bastardized",
114
+ "bastardises": "bastardizes",
115
+ "bastardising": "bastardizing",
116
+ "battleax": "battleaxe",
117
+ "baulk": "balk",
118
+ "baulked": "balked",
119
+ "baulking": "balking",
120
+ "baulks": "balks",
121
+ "bedevilled": "bedeviled",
122
+ "bedevilling": "bedeviling",
123
+ "behaviour": "behavior",
124
+ "behavioural": "behavioral",
125
+ "behaviourism": "behaviorism",
126
+ "behaviourist": "behaviorist",
127
+ "behaviourists": "behaviorists",
128
+ "behaviours": "behaviors",
129
+ "behove": "behoove",
130
+ "behoved": "behooved",
131
+ "behoves": "behooves",
132
+ "bejewelled": "bejeweled",
133
+ "belabour": "belabor",
134
+ "belaboured": "belabored",
135
+ "belabouring": "belaboring",
136
+ "belabours": "belabors",
137
+ "bevelled": "beveled",
138
+ "bevvies": "bevies",
139
+ "bevvy": "bevy",
140
+ "biassed": "biased",
141
+ "biassing": "biasing",
142
+ "bingeing": "binging",
143
+ "bougainvillaea": "bougainvillea",
144
+ "bougainvillaeas": "bougainvilleas",
145
+ "bowdlerise": "bowdlerize",
146
+ "bowdlerised": "bowdlerized",
147
+ "bowdlerises": "bowdlerizes",
148
+ "bowdlerising": "bowdlerizing",
149
+ "breathalyse": "breathalyze",
150
+ "breathalysed": "breathalyzed",
151
+ "breathalyser": "breathalyzer",
152
+ "breathalysers": "breathalyzers",
153
+ "breathalyses": "breathalyzes",
154
+ "breathalysing": "breathalyzing",
155
+ "brutalise": "brutalize",
156
+ "brutalised": "brutalized",
157
+ "brutalises": "brutalizes",
158
+ "brutalising": "brutalizing",
159
+ "busses": "buses",
160
+ "bussing": "busing",
161
+ "caesarean": "cesarean",
162
+ "caesareans": "cesareans",
163
+ "calibre": "caliber",
164
+ "calibres": "calibers",
165
+ "calliper": "caliper",
166
+ "callipers": "calipers",
167
+ "callisthenics": "calisthenics",
168
+ "canalise": "canalize",
169
+ "canalised": "canalized",
170
+ "canalises": "canalizes",
171
+ "canalising": "canalizing",
172
+ "cancelation": "cancellation",
173
+ "cancelations": "cancellations",
174
+ "cancelled": "canceled",
175
+ "cancelling": "canceling",
176
+ "candour": "candor",
177
+ "cannibalise": "cannibalize",
178
+ "cannibalised": "cannibalized",
179
+ "cannibalises": "cannibalizes",
180
+ "cannibalising": "cannibalizing",
181
+ "canonise": "canonize",
182
+ "canonised": "canonized",
183
+ "canonises": "canonizes",
184
+ "canonising": "canonizing",
185
+ "capitalise": "capitalize",
186
+ "capitalised": "capitalized",
187
+ "capitalises": "capitalizes",
188
+ "capitalising": "capitalizing",
189
+ "caramelise": "caramelize",
190
+ "caramelised": "caramelized",
191
+ "caramelises": "caramelizes",
192
+ "caramelising": "caramelizing",
193
+ "carbonise": "carbonize",
194
+ "carbonised": "carbonized",
195
+ "carbonises": "carbonizes",
196
+ "carbonising": "carbonizing",
197
+ "carolled": "caroled",
198
+ "carolling": "caroling",
199
+ "catalogue": "catalog",
200
+ "catalogued": "cataloged",
201
+ "catalogues": "catalogs",
202
+ "cataloguing": "cataloging",
203
+ "catalyse": "catalyze",
204
+ "catalysed": "catalyzed",
205
+ "catalyses": "catalyzes",
206
+ "catalysing": "catalyzing",
207
+ "categorise": "categorize",
208
+ "categorised": "categorized",
209
+ "categorises": "categorizes",
210
+ "categorising": "categorizing",
211
+ "cauterise": "cauterize",
212
+ "cauterised": "cauterized",
213
+ "cauterises": "cauterizes",
214
+ "cauterising": "cauterizing",
215
+ "cavilled": "caviled",
216
+ "cavilling": "caviling",
217
+ "centigramme": "centigram",
218
+ "centigrammes": "centigrams",
219
+ "centilitre": "centiliter",
220
+ "centilitres": "centiliters",
221
+ "centimetre": "centimeter",
222
+ "centimetres": "centimeters",
223
+ "centralise": "centralize",
224
+ "centralised": "centralized",
225
+ "centralises": "centralizes",
226
+ "centralising": "centralizing",
227
+ "centre": "center",
228
+ "centred": "centered",
229
+ "centrefold": "centerfold",
230
+ "centrefolds": "centerfolds",
231
+ "centrepiece": "centerpiece",
232
+ "centrepieces": "centerpieces",
233
+ "centres": "centers",
234
+ "channelled": "channeled",
235
+ "channelling": "channeling",
236
+ "characterise": "characterize",
237
+ "characterised": "characterized",
238
+ "characterises": "characterizes",
239
+ "characterising": "characterizing",
240
+ "cheque": "check",
241
+ "chequebook": "checkbook",
242
+ "chequebooks": "checkbooks",
243
+ "chequered": "checkered",
244
+ "cheques": "checks",
245
+ "chilli": "chili",
246
+ "chimaera": "chimera",
247
+ "chimaeras": "chimeras",
248
+ "chiselled": "chiseled",
249
+ "chiselling": "chiseling",
250
+ "circularise": "circularize",
251
+ "circularised": "circularized",
252
+ "circularises": "circularizes",
253
+ "circularising": "circularizing",
254
+ "civilise": "civilize",
255
+ "civilised": "civilized",
256
+ "civilises": "civilizes",
257
+ "civilising": "civilizing",
258
+ "clamour": "clamor",
259
+ "clamoured": "clamored",
260
+ "clamouring": "clamoring",
261
+ "clamours": "clamors",
262
+ "clangour": "clangor",
263
+ "clarinettist": "clarinetist",
264
+ "clarinettists": "clarinetists",
265
+ "collectivise": "collectivize",
266
+ "collectivised": "collectivized",
267
+ "collectivises": "collectivizes",
268
+ "collectivising": "collectivizing",
269
+ "colonisation": "colonization",
270
+ "colonise": "colonize",
271
+ "colonised": "colonized",
272
+ "coloniser": "colonizer",
273
+ "colonisers": "colonizers",
274
+ "colonises": "colonizes",
275
+ "colonising": "colonizing",
276
+ "colour": "color",
277
+ "colourant": "colorant",
278
+ "colourants": "colorants",
279
+ "coloured": "colored",
280
+ "coloureds": "coloreds",
281
+ "colourful": "colorful",
282
+ "colourfully": "colorfully",
283
+ "colouring": "coloring",
284
+ "colourize": "colorize",
285
+ "colourized": "colorized",
286
+ "colourizes": "colorizes",
287
+ "colourizing": "colorizing",
288
+ "colourless": "colorless",
289
+ "colours": "colors",
290
+ "commercialise": "commercialize",
291
+ "commercialised": "commercialized",
292
+ "commercialises": "commercializes",
293
+ "commercialising": "commercializing",
294
+ "compartmentalise": "compartmentalize",
295
+ "compartmentalised": "compartmentalized",
296
+ "compartmentalises": "compartmentalizes",
297
+ "compartmentalising": "compartmentalizing",
298
+ "computerise": "computerize",
299
+ "computerised": "computerized",
300
+ "computerises": "computerizes",
301
+ "computerising": "computerizing",
302
+ "conceptualise": "conceptualize",
303
+ "conceptualised": "conceptualized",
304
+ "conceptualises": "conceptualizes",
305
+ "conceptualising": "conceptualizing",
306
+ "connexion": "connection",
307
+ "connexions": "connections",
308
+ "contextualise": "contextualize",
309
+ "contextualised": "contextualized",
310
+ "contextualises": "contextualizes",
311
+ "contextualising": "contextualizing",
312
+ "cosier": "cozier",
313
+ "cosies": "cozies",
314
+ "cosiest": "coziest",
315
+ "cosily": "cozily",
316
+ "cosiness": "coziness",
317
+ "cosy": "cozy",
318
+ "councillor": "councilor",
319
+ "councillors": "councilors",
320
+ "counselled": "counseled",
321
+ "counselling": "counseling",
322
+ "counsellor": "counselor",
323
+ "counsellors": "counselors",
324
+ "crenelated": "crenellated",
325
+ "criminalise": "criminalize",
326
+ "criminalised": "criminalized",
327
+ "criminalises": "criminalizes",
328
+ "criminalising": "criminalizing",
329
+ "criticise": "criticize",
330
+ "criticised": "criticized",
331
+ "criticises": "criticizes",
332
+ "criticising": "criticizing",
333
+ "crueller": "crueler",
334
+ "cruellest": "cruelest",
335
+ "crystallisation": "crystallization",
336
+ "crystallise": "crystallize",
337
+ "crystallised": "crystallized",
338
+ "crystallises": "crystallizes",
339
+ "crystallising": "crystallizing",
340
+ "cudgelled": "cudgeled",
341
+ "cudgelling": "cudgeling",
342
+ "customise": "customize",
343
+ "customised": "customized",
344
+ "customises": "customizes",
345
+ "customising": "customizing",
346
+ "cypher": "cipher",
347
+ "cyphers": "ciphers",
348
+ "decentralisation": "decentralization",
349
+ "decentralise": "decentralize",
350
+ "decentralised": "decentralized",
351
+ "decentralises": "decentralizes",
352
+ "decentralising": "decentralizing",
353
+ "decriminalisation": "decriminalization",
354
+ "decriminalise": "decriminalize",
355
+ "decriminalised": "decriminalized",
356
+ "decriminalises": "decriminalizes",
357
+ "decriminalising": "decriminalizing",
358
+ "defence": "defense",
359
+ "defenceless": "defenseless",
360
+ "defences": "defenses",
361
+ "dehumanisation": "dehumanization",
362
+ "dehumanise": "dehumanize",
363
+ "dehumanised": "dehumanized",
364
+ "dehumanises": "dehumanizes",
365
+ "dehumanising": "dehumanizing",
366
+ "demeanour": "demeanor",
367
+ "demilitarisation": "demilitarization",
368
+ "demilitarise": "demilitarize",
369
+ "demilitarised": "demilitarized",
370
+ "demilitarises": "demilitarizes",
371
+ "demilitarising": "demilitarizing",
372
+ "demobilisation": "demobilization",
373
+ "demobilise": "demobilize",
374
+ "demobilised": "demobilized",
375
+ "demobilises": "demobilizes",
376
+ "demobilising": "demobilizing",
377
+ "democratisation": "democratization",
378
+ "democratise": "democratize",
379
+ "democratised": "democratized",
380
+ "democratises": "democratizes",
381
+ "democratising": "democratizing",
382
+ "demonise": "demonize",
383
+ "demonised": "demonized",
384
+ "demonises": "demonizes",
385
+ "demonising": "demonizing",
386
+ "demoralisation": "demoralization",
387
+ "demoralise": "demoralize",
388
+ "demoralised": "demoralized",
389
+ "demoralises": "demoralizes",
390
+ "demoralising": "demoralizing",
391
+ "denationalisation": "denationalization",
392
+ "denationalise": "denationalize",
393
+ "denationalised": "denationalized",
394
+ "denationalises": "denationalizes",
395
+ "denationalising": "denationalizing",
396
+ "deodorise": "deodorize",
397
+ "deodorised": "deodorized",
398
+ "deodorises": "deodorizes",
399
+ "deodorising": "deodorizing",
400
+ "depersonalise": "depersonalize",
401
+ "depersonalised": "depersonalized",
402
+ "depersonalises": "depersonalizes",
403
+ "depersonalising": "depersonalizing",
404
+ "deputise": "deputize",
405
+ "deputised": "deputized",
406
+ "deputises": "deputizes",
407
+ "deputising": "deputizing",
408
+ "desensitisation": "desensitization",
409
+ "desensitise": "desensitize",
410
+ "desensitised": "desensitized",
411
+ "desensitises": "desensitizes",
412
+ "desensitising": "desensitizing",
413
+ "destabilisation": "destabilization",
414
+ "destabilise": "destabilize",
415
+ "destabilised": "destabilized",
416
+ "destabilises": "destabilizes",
417
+ "destabilising": "destabilizing",
418
+ "dialled": "dialed",
419
+ "dialling": "dialing",
420
+ "dialogue": "dialog",
421
+ "dialogues": "dialogs",
422
+ "diarrhoea": "diarrhea",
423
+ "digitise": "digitize",
424
+ "digitised": "digitized",
425
+ "digitises": "digitizes",
426
+ "digitising": "digitizing",
427
+ "disc": "disk",
428
+ "discolour": "discolor",
429
+ "discoloured": "discolored",
430
+ "discolouring": "discoloring",
431
+ "discolours": "discolors",
432
+ "discs": "disks",
433
+ "disembowelled": "disemboweled",
434
+ "disembowelling": "disemboweling",
435
+ "disfavour": "disfavor",
436
+ "dishevelled": "disheveled",
437
+ "dishonour": "dishonor",
438
+ "dishonourable": "dishonorable",
439
+ "dishonourably": "dishonorably",
440
+ "dishonoured": "dishonored",
441
+ "dishonouring": "dishonoring",
442
+ "dishonours": "dishonors",
443
+ "disorganisation": "disorganization",
444
+ "disorganised": "disorganized",
445
+ "distil": "distill",
446
+ "distils": "distills",
447
+ "dramatisation": "dramatization",
448
+ "dramatisations": "dramatizations",
449
+ "dramatise": "dramatize",
450
+ "dramatised": "dramatized",
451
+ "dramatises": "dramatizes",
452
+ "dramatising": "dramatizing",
453
+ "draught": "draft",
454
+ "draughtboard": "draftboard",
455
+ "draughtboards": "draftboards",
456
+ "draughtier": "draftier",
457
+ "draughtiest": "draftiest",
458
+ "draughts": "drafts",
459
+ "draughtsman": "draftsman",
460
+ "draughtsmanship": "draftsmanship",
461
+ "draughtsmen": "draftsmen",
462
+ "draughtswoman": "draftswoman",
463
+ "draughtswomen": "draftswomen",
464
+ "draughty": "drafty",
465
+ "drivelled": "driveled",
466
+ "drivelling": "driveling",
467
+ "duelled": "dueled",
468
+ "duelling": "dueling",
469
+ "economise": "economize",
470
+ "economised": "economized",
471
+ "economises": "economizes",
472
+ "economising": "economizing",
473
+ "editorialise": "editorialize",
474
+ "editorialised": "editorialized",
475
+ "editorialises": "editorializes",
476
+ "editorialising": "editorializing",
477
+ "edoema": "edema",
478
+ "empathise": "empathize",
479
+ "empathised": "empathized",
480
+ "empathises": "empathizes",
481
+ "empathising": "empathizing",
482
+ "emphasise": "emphasize",
483
+ "emphasised": "emphasized",
484
+ "emphasises": "emphasizes",
485
+ "emphasising": "emphasizing",
486
+ "enamelled": "enameled",
487
+ "enamelling": "enameling",
488
+ "enamoured": "enamored",
489
+ "encyclopaedia": "encyclopedia",
490
+ "encyclopaedias": "encyclopedias",
491
+ "encyclopaedic": "encyclopedic",
492
+ "endeavour": "endeavor",
493
+ "endeavoured": "endeavored",
494
+ "endeavouring": "endeavoring",
495
+ "endeavours": "endeavors",
496
+ "energise": "energize",
497
+ "energised": "energized",
498
+ "energises": "energizes",
499
+ "energising": "energizing",
500
+ "enrol": "enroll",
501
+ "enrols": "enrolls",
502
+ "enthral": "enthrall",
503
+ "enthrals": "enthralls",
504
+ "epaulette": "epaulet",
505
+ "epaulettes": "epaulets",
506
+ "epicentre": "epicenter",
507
+ "epicentres": "epicenters",
508
+ "epilogue": "epilog",
509
+ "epilogues": "epilogs",
510
+ "epitomise": "epitomize",
511
+ "epitomised": "epitomized",
512
+ "epitomises": "epitomizes",
513
+ "epitomising": "epitomizing",
514
+ "equalisation": "equalization",
515
+ "equalise": "equalize",
516
+ "equalised": "equalized",
517
+ "equaliser": "equalizer",
518
+ "equalisers": "equalizers",
519
+ "equalises": "equalizes",
520
+ "equalising": "equalizing",
521
+ "eulogise": "eulogize",
522
+ "eulogised": "eulogized",
523
+ "eulogises": "eulogizes",
524
+ "eulogising": "eulogizing",
525
+ "evangelise": "evangelize",
526
+ "evangelised": "evangelized",
527
+ "evangelises": "evangelizes",
528
+ "evangelising": "evangelizing",
529
+ "exorcise": "exorcize",
530
+ "exorcised": "exorcized",
531
+ "exorcises": "exorcizes",
532
+ "exorcising": "exorcizing",
533
+ "extemporisation": "extemporization",
534
+ "extemporise": "extemporize",
535
+ "extemporised": "extemporized",
536
+ "extemporises": "extemporizes",
537
+ "extemporising": "extemporizing",
538
+ "externalisation": "externalization",
539
+ "externalisations": "externalizations",
540
+ "externalise": "externalize",
541
+ "externalised": "externalized",
542
+ "externalises": "externalizes",
543
+ "externalising": "externalizing",
544
+ "factorise": "factorize",
545
+ "factorised": "factorized",
546
+ "factorises": "factorizes",
547
+ "factorising": "factorizing",
548
+ "faecal": "fecal",
549
+ "faeces": "feces",
550
+ "familiarisation": "familiarization",
551
+ "familiarise": "familiarize",
552
+ "familiarised": "familiarized",
553
+ "familiarises": "familiarizes",
554
+ "familiarising": "familiarizing",
555
+ "fantasise": "fantasize",
556
+ "fantasised": "fantasized",
557
+ "fantasises": "fantasizes",
558
+ "fantasising": "fantasizing",
559
+ "favour": "favor",
560
+ "favourable": "favorable",
561
+ "favourably": "favorably",
562
+ "favoured": "favored",
563
+ "favouring": "favoring",
564
+ "favourite": "favorite",
565
+ "favourites": "favorites",
566
+ "favouritism": "favoritism",
567
+ "favours": "favors",
568
+ "feminise": "feminize",
569
+ "feminised": "feminized",
570
+ "feminises": "feminizes",
571
+ "feminising": "feminizing",
572
+ "fertilisation": "fertilization",
573
+ "fertilise": "fertilize",
574
+ "fertilised": "fertilized",
575
+ "fertiliser": "fertilizer",
576
+ "fertilisers": "fertilizers",
577
+ "fertilises": "fertilizes",
578
+ "fertilising": "fertilizing",
579
+ "fervour": "fervor",
580
+ "fibre": "fiber",
581
+ "fibreglass": "fiberglass",
582
+ "fibres": "fibers",
583
+ "fictionalisation": "fictionalization",
584
+ "fictionalisations": "fictionalizations",
585
+ "fictionalise": "fictionalize",
586
+ "fictionalised": "fictionalized",
587
+ "fictionalises": "fictionalizes",
588
+ "fictionalising": "fictionalizing",
589
+ "fillet": "filet",
590
+ "filleted": "fileted",
591
+ "filleting": "fileting",
592
+ "fillets": "filets",
593
+ "finalisation": "finalization",
594
+ "finalise": "finalize",
595
+ "finalised": "finalized",
596
+ "finalises": "finalizes",
597
+ "finalising": "finalizing",
598
+ "flautist": "flutist",
599
+ "flautists": "flutists",
600
+ "flavour": "flavor",
601
+ "flavoured": "flavored",
602
+ "flavouring": "flavoring",
603
+ "flavourings": "flavorings",
604
+ "flavourless": "flavorless",
605
+ "flavours": "flavors",
606
+ "flavoursome": "flavorsome",
607
+ "flyer / flier": "flier / flyer",
608
+ "foetal": "fetal",
609
+ "foetid": "fetid",
610
+ "foetus": "fetus",
611
+ "foetuses": "fetuses",
612
+ "formalisation": "formalization",
613
+ "formalise": "formalize",
614
+ "formalised": "formalized",
615
+ "formalises": "formalizes",
616
+ "formalising": "formalizing",
617
+ "fossilisation": "fossilization",
618
+ "fossilise": "fossilize",
619
+ "fossilised": "fossilized",
620
+ "fossilises": "fossilizes",
621
+ "fossilising": "fossilizing",
622
+ "fraternisation": "fraternization",
623
+ "fraternise": "fraternize",
624
+ "fraternised": "fraternized",
625
+ "fraternises": "fraternizes",
626
+ "fraternising": "fraternizing",
627
+ "fulfil": "fulfill",
628
+ "fulfilment": "fulfillment",
629
+ "fulfils": "fulfills",
630
+ "funnelled": "funneled",
631
+ "funnelling": "funneling",
632
+ "gage": "gauge",
633
+ "gaged": "gauged",
634
+ "gages": "gauges",
635
+ "gaging": "gauging",
636
+ "galvanise": "galvanize",
637
+ "galvanised": "galvanized",
638
+ "galvanises": "galvanizes",
639
+ "galvanising": "galvanizing",
640
+ "gambolled": "gamboled",
641
+ "gambolling": "gamboling",
642
+ "gaol": "jail",
643
+ "gaolbird": "jailbird",
644
+ "gaolbirds": "jailbirds",
645
+ "gaolbreak": "jailbreak",
646
+ "gaolbreaks": "jailbreaks",
647
+ "gaoled": "jailed",
648
+ "gaoler": "jailer",
649
+ "gaolers": "jailers",
650
+ "gaoling": "jailing",
651
+ "gaols": "jails",
652
+ "gasses": "gases",
653
+ "generalisation": "generalization",
654
+ "generalisations": "generalizations",
655
+ "generalise": "generalize",
656
+ "generalised": "generalized",
657
+ "generalises": "generalizes",
658
+ "generalising": "generalizing",
659
+ "ghettoise": "ghettoize",
660
+ "ghettoised": "ghettoized",
661
+ "ghettoises": "ghettoizes",
662
+ "ghettoising": "ghettoizing",
663
+ "gipsies": "gypsies",
664
+ "glamor": "glamour",
665
+ "glamorise": "glamorize",
666
+ "glamorised": "glamorized",
667
+ "glamorises": "glamorizes",
668
+ "glamorising": "glamorizing",
669
+ "globalisation": "globalization",
670
+ "globalise": "globalize",
671
+ "globalised": "globalized",
672
+ "globalises": "globalizes",
673
+ "globalising": "globalizing",
674
+ "glueing": "gluing",
675
+ "goitre": "goiter",
676
+ "goitres": "goiters",
677
+ "gonorrhoea": "gonorrhea",
678
+ "gramme": "gram",
679
+ "grammes": "grams",
680
+ "gravelled": "graveled",
681
+ "grey": "gray",
682
+ "greyed": "grayed",
683
+ "greying": "graying",
684
+ "greyish": "grayish",
685
+ "greyness": "grayness",
686
+ "greys": "grays",
687
+ "grovelled": "groveled",
688
+ "grovelling": "groveling",
689
+ "groyne": "groin",
690
+ "groynes": "groins",
691
+ "gruelling": "grueling",
692
+ "gruellingly": "gruelingly",
693
+ "gryphon": "griffin",
694
+ "gryphons": "griffins",
695
+ "gynaecological": "gynecological",
696
+ "gynaecologist": "gynecologist",
697
+ "gynaecologists": "gynecologists",
698
+ "gynaecology": "gynecology",
699
+ "haematological": "hematological",
700
+ "haematologist": "hematologist",
701
+ "haematologists": "hematologists",
702
+ "haematology": "hematology",
703
+ "haemoglobin": "hemoglobin",
704
+ "haemophilia": "hemophilia",
705
+ "haemophiliac": "hemophiliac",
706
+ "haemophiliacs": "hemophiliacs",
707
+ "haemorrhage": "hemorrhage",
708
+ "haemorrhaged": "hemorrhaged",
709
+ "haemorrhages": "hemorrhages",
710
+ "haemorrhaging": "hemorrhaging",
711
+ "haemorrhoids": "hemorrhoids",
712
+ "harbour": "harbor",
713
+ "harboured": "harbored",
714
+ "harbouring": "harboring",
715
+ "harbours": "harbors",
716
+ "harmonisation": "harmonization",
717
+ "harmonise": "harmonize",
718
+ "harmonised": "harmonized",
719
+ "harmonises": "harmonizes",
720
+ "harmonising": "harmonizing",
721
+ "homoeopath": "homeopath",
722
+ "homoeopathic": "homeopathic",
723
+ "homoeopaths": "homeopaths",
724
+ "homoeopathy": "homeopathy",
725
+ "homogenise": "homogenize",
726
+ "homogenised": "homogenized",
727
+ "homogenises": "homogenizes",
728
+ "homogenising": "homogenizing",
729
+ "honour": "honor",
730
+ "honourable": "honorable",
731
+ "honourably": "honorably",
732
+ "honoured": "honored",
733
+ "honouring": "honoring",
734
+ "honours": "honors",
735
+ "hospitalisation": "hospitalization",
736
+ "hospitalise": "hospitalize",
737
+ "hospitalised": "hospitalized",
738
+ "hospitalises": "hospitalizes",
739
+ "hospitalising": "hospitalizing",
740
+ "humanise": "humanize",
741
+ "humanised": "humanized",
742
+ "humanises": "humanizes",
743
+ "humanising": "humanizing",
744
+ "humour": "humor",
745
+ "humoured": "humored",
746
+ "humouring": "humoring",
747
+ "humourless": "humorless",
748
+ "humours": "humors",
749
+ "hybridise": "hybridize",
750
+ "hybridised": "hybridized",
751
+ "hybridises": "hybridizes",
752
+ "hybridising": "hybridizing",
753
+ "hypnotise": "hypnotize",
754
+ "hypnotised": "hypnotized",
755
+ "hypnotises": "hypnotizes",
756
+ "hypnotising": "hypnotizing",
757
+ "hypothesise": "hypothesize",
758
+ "hypothesised": "hypothesized",
759
+ "hypothesises": "hypothesizes",
760
+ "hypothesising": "hypothesizing",
761
+ "idealisation": "idealization",
762
+ "idealise": "idealize",
763
+ "idealised": "idealized",
764
+ "idealises": "idealizes",
765
+ "idealising": "idealizing",
766
+ "idolise": "idolize",
767
+ "idolised": "idolized",
768
+ "idolises": "idolizes",
769
+ "idolising": "idolizing",
770
+ "immobilisation": "immobilization",
771
+ "immobilise": "immobilize",
772
+ "immobilised": "immobilized",
773
+ "immobiliser": "immobilizer",
774
+ "immobilisers": "immobilizers",
775
+ "immobilises": "immobilizes",
776
+ "immobilising": "immobilizing",
777
+ "immortalise": "immortalize",
778
+ "immortalised": "immortalized",
779
+ "immortalises": "immortalizes",
780
+ "immortalising": "immortalizing",
781
+ "immunisation": "immunization",
782
+ "immunise": "immunize",
783
+ "immunised": "immunized",
784
+ "immunises": "immunizes",
785
+ "immunising": "immunizing",
786
+ "impanelled": "impaneled",
787
+ "impanelling": "impaneling",
788
+ "imperilled": "imperiled",
789
+ "imperilling": "imperiling",
790
+ "individualise": "individualize",
791
+ "individualised": "individualized",
792
+ "individualises": "individualizes",
793
+ "individualising": "individualizing",
794
+ "industrialise": "industrialize",
795
+ "industrialised": "industrialized",
796
+ "industrialises": "industrializes",
797
+ "industrialising": "industrializing",
798
+ "inflexion": "inflection",
799
+ "inflexions": "inflections",
800
+ "initialise": "initialize",
801
+ "initialised": "initialized",
802
+ "initialises": "initializes",
803
+ "initialising": "initializing",
804
+ "initialled": "initialed",
805
+ "initialling": "initialing",
806
+ "instal": "install",
807
+ "instalment": "installment",
808
+ "instalments": "installments",
809
+ "instals": "installs",
810
+ "instil": "instill",
811
+ "instils": "instills",
812
+ "institutionalisation": "institutionalization",
813
+ "institutionalise": "institutionalize",
814
+ "institutionalised": "institutionalized",
815
+ "institutionalises": "institutionalizes",
816
+ "institutionalising": "institutionalizing",
817
+ "intellectualise": "intellectualize",
818
+ "intellectualised": "intellectualized",
819
+ "intellectualises": "intellectualizes",
820
+ "intellectualising": "intellectualizing",
821
+ "internalisation": "internalization",
822
+ "internalise": "internalize",
823
+ "internalised": "internalized",
824
+ "internalises": "internalizes",
825
+ "internalising": "internalizing",
826
+ "internationalisation": "internationalization",
827
+ "internationalise": "internationalize",
828
+ "internationalised": "internationalized",
829
+ "internationalises": "internationalizes",
830
+ "internationalising": "internationalizing",
831
+ "ionisation": "ionization",
832
+ "ionise": "ionize",
833
+ "ionised": "ionized",
834
+ "ioniser": "ionizer",
835
+ "ionisers": "ionizers",
836
+ "ionises": "ionizes",
837
+ "ionising": "ionizing",
838
+ "italicise": "italicize",
839
+ "italicised": "italicized",
840
+ "italicises": "italicizes",
841
+ "italicising": "italicizing",
842
+ "itemise": "itemize",
843
+ "itemised": "itemized",
844
+ "itemises": "itemizes",
845
+ "itemising": "itemizing",
846
+ "jeopardise": "jeopardize",
847
+ "jeopardised": "jeopardized",
848
+ "jeopardises": "jeopardizes",
849
+ "jeopardising": "jeopardizing",
850
+ "jewelled": "jeweled",
851
+ "jeweller": "jeweler",
852
+ "jewellers": "jewelers",
853
+ "jewellery": "jewelry",
854
+ "judgement": "judgment",
855
+ "kilogramme": "kilogram",
856
+ "kilogrammes": "kilograms",
857
+ "kilometre": "kilometer",
858
+ "kilometres": "kilometers",
859
+ "labelled": "labeled",
860
+ "labelling": "labeling",
861
+ "labour": "labor",
862
+ "laboured": "labored",
863
+ "labourer": "laborer",
864
+ "labourers": "laborers",
865
+ "labouring": "laboring",
866
+ "labours": "labors",
867
+ "lacklustre": "lackluster",
868
+ "legalisation": "legalization",
869
+ "legalise": "legalize",
870
+ "legalised": "legalized",
871
+ "legalises": "legalizes",
872
+ "legalising": "legalizing",
873
+ "legitimise": "legitimize",
874
+ "legitimised": "legitimized",
875
+ "legitimises": "legitimizes",
876
+ "legitimising": "legitimizing",
877
+ "leukaemia": "leukemia",
878
+ "levelled": "leveled",
879
+ "leveller": "leveler",
880
+ "levellers": "levelers",
881
+ "levelling": "leveling",
882
+ "libelled": "libeled",
883
+ "libelling": "libeling",
884
+ "libellous": "libelous",
885
+ "liberalisation": "liberalization",
886
+ "liberalise": "liberalize",
887
+ "liberalised": "liberalized",
888
+ "liberalises": "liberalizes",
889
+ "liberalising": "liberalizing",
890
+ "licence": "license",
891
+ "licenced": "licensed",
892
+ "licences": "licenses",
893
+ "licencing": "licensing",
894
+ "likeable": "likable",
895
+ "lionisation": "lionization",
896
+ "lionise": "lionize",
897
+ "lionised": "lionized",
898
+ "lionises": "lionizes",
899
+ "lionising": "lionizing",
900
+ "liquidise": "liquidize",
901
+ "liquidised": "liquidized",
902
+ "liquidiser": "liquidizer",
903
+ "liquidisers": "liquidizers",
904
+ "liquidises": "liquidizes",
905
+ "liquidising": "liquidizing",
906
+ "litre": "liter",
907
+ "litres": "liters",
908
+ "localise": "localize",
909
+ "localised": "localized",
910
+ "localises": "localizes",
911
+ "localising": "localizing",
912
+ "louvre": "louver",
913
+ "louvred": "louvered",
914
+ "louvres": "louvers",
915
+ "lustre": "luster",
916
+ "magnetise": "magnetize",
917
+ "magnetised": "magnetized",
918
+ "magnetises": "magnetizes",
919
+ "magnetising": "magnetizing",
920
+ "manoeuvrability": "maneuverability",
921
+ "manoeuvrable": "maneuverable",
922
+ "manoeuvre": "maneuver",
923
+ "manoeuvred": "maneuvered",
924
+ "manoeuvres": "maneuvers",
925
+ "manoeuvring": "maneuvering",
926
+ "manoeuvrings": "maneuverings",
927
+ "marginalisation": "marginalization",
928
+ "marginalise": "marginalize",
929
+ "marginalised": "marginalized",
930
+ "marginalises": "marginalizes",
931
+ "marginalising": "marginalizing",
932
+ "marshalled": "marshaled",
933
+ "marshalling": "marshaling",
934
+ "marvelled": "marveled",
935
+ "marvelling": "marveling",
936
+ "marvellous": "marvelous",
937
+ "marvellously": "marvelously",
938
+ "materialisation": "materialization",
939
+ "materialise": "materialize",
940
+ "materialised": "materialized",
941
+ "materialises": "materializes",
942
+ "materialising": "materializing",
943
+ "maximisation": "maximization",
944
+ "maximise": "maximize",
945
+ "maximised": "maximized",
946
+ "maximises": "maximizes",
947
+ "maximising": "maximizing",
948
+ "meagre": "meager",
949
+ "mechanisation": "mechanization",
950
+ "mechanise": "mechanize",
951
+ "mechanised": "mechanized",
952
+ "mechanises": "mechanizes",
953
+ "mechanising": "mechanizing",
954
+ "mediaeval": "medieval",
955
+ "memorialise": "memorialize",
956
+ "memorialised": "memorialized",
957
+ "memorialises": "memorializes",
958
+ "memorialising": "memorializing",
959
+ "memorise": "memorize",
960
+ "memorised": "memorized",
961
+ "memorises": "memorizes",
962
+ "memorising": "memorizing",
963
+ "mesmerise": "mesmerize",
964
+ "mesmerised": "mesmerized",
965
+ "mesmerises": "mesmerizes",
966
+ "mesmerising": "mesmerizing",
967
+ "metabolise": "metabolize",
968
+ "metabolised": "metabolized",
969
+ "metabolises": "metabolizes",
970
+ "metabolising": "metabolizing",
971
+ "metre": "meter",
972
+ "metres": "meters",
973
+ "mhm": "hmm",
974
+ "micrometre": "micrometer",
975
+ "micrometres": "micrometers",
976
+ "militarise": "militarize",
977
+ "militarised": "militarized",
978
+ "militarises": "militarizes",
979
+ "militarising": "militarizing",
980
+ "milligramme": "milligram",
981
+ "milligrammes": "milligrams",
982
+ "millilitre": "milliliter",
983
+ "millilitres": "milliliters",
984
+ "millimetre": "millimeter",
985
+ "millimetres": "millimeters",
986
+ "miniaturisation": "miniaturization",
987
+ "miniaturise": "miniaturize",
988
+ "miniaturised": "miniaturized",
989
+ "miniaturises": "miniaturizes",
990
+ "miniaturising": "miniaturizing",
991
+ "minibusses": "minibuses",
992
+ "minimise": "minimize",
993
+ "minimised": "minimized",
994
+ "minimises": "minimizes",
995
+ "minimising": "minimizing",
996
+ "misbehaviour": "misbehavior",
997
+ "misdemeanour": "misdemeanor",
998
+ "misdemeanours": "misdemeanors",
999
+ "misspelt": "misspelled",
1000
+ "mitre": "miter",
1001
+ "mitres": "miters",
1002
+ "mm": "hmm",
1003
+ "mmm": "hmm",
1004
+ "mobilisation": "mobilization",
1005
+ "mobilise": "mobilize",
1006
+ "mobilised": "mobilized",
1007
+ "mobilises": "mobilizes",
1008
+ "mobilising": "mobilizing",
1009
+ "modelled": "modeled",
1010
+ "modeller": "modeler",
1011
+ "modellers": "modelers",
1012
+ "modelling": "modeling",
1013
+ "modernise": "modernize",
1014
+ "modernised": "modernized",
1015
+ "modernises": "modernizes",
1016
+ "modernising": "modernizing",
1017
+ "moisturise": "moisturize",
1018
+ "moisturised": "moisturized",
1019
+ "moisturiser": "moisturizer",
1020
+ "moisturisers": "moisturizers",
1021
+ "moisturises": "moisturizes",
1022
+ "moisturising": "moisturizing",
1023
+ "monologue": "monolog",
1024
+ "monologues": "monologs",
1025
+ "monopolisation": "monopolization",
1026
+ "monopolise": "monopolize",
1027
+ "monopolised": "monopolized",
1028
+ "monopolises": "monopolizes",
1029
+ "monopolising": "monopolizing",
1030
+ "moralise": "moralize",
1031
+ "moralised": "moralized",
1032
+ "moralises": "moralizes",
1033
+ "moralising": "moralizing",
1034
+ "motorised": "motorized",
1035
+ "mould": "mold",
1036
+ "moulded": "molded",
1037
+ "moulder": "molder",
1038
+ "mouldered": "moldered",
1039
+ "mouldering": "moldering",
1040
+ "moulders": "molders",
1041
+ "mouldier": "moldier",
1042
+ "mouldiest": "moldiest",
1043
+ "moulding": "molding",
1044
+ "mouldings": "moldings",
1045
+ "moulds": "molds",
1046
+ "mouldy": "moldy",
1047
+ "moult": "molt",
1048
+ "moulted": "molted",
1049
+ "moulting": "molting",
1050
+ "moults": "molts",
1051
+ "moustache": "mustache",
1052
+ "moustached": "mustached",
1053
+ "moustaches": "mustaches",
1054
+ "moustachioed": "mustachioed",
1055
+ "multicoloured": "multicolored",
1056
+ "nationalisation": "nationalization",
1057
+ "nationalisations": "nationalizations",
1058
+ "nationalise": "nationalize",
1059
+ "nationalised": "nationalized",
1060
+ "nationalises": "nationalizes",
1061
+ "nationalising": "nationalizing",
1062
+ "naturalisation": "naturalization",
1063
+ "naturalise": "naturalize",
1064
+ "naturalised": "naturalized",
1065
+ "naturalises": "naturalizes",
1066
+ "naturalising": "naturalizing",
1067
+ "neighbour": "neighbor",
1068
+ "neighbourhood": "neighborhood",
1069
+ "neighbourhoods": "neighborhoods",
1070
+ "neighbouring": "neighboring",
1071
+ "neighbourliness": "neighborliness",
1072
+ "neighbourly": "neighborly",
1073
+ "neighbours": "neighbors",
1074
+ "neutralisation": "neutralization",
1075
+ "neutralise": "neutralize",
1076
+ "neutralised": "neutralized",
1077
+ "neutralises": "neutralizes",
1078
+ "neutralising": "neutralizing",
1079
+ "normalisation": "normalization",
1080
+ "normalise": "normalize",
1081
+ "normalised": "normalized",
1082
+ "normalises": "normalizes",
1083
+ "normalising": "normalizing",
1084
+ "odour": "odor",
1085
+ "odourless": "odorless",
1086
+ "odours": "odors",
1087
+ "oesophagus": "esophagus",
1088
+ "oesophaguses": "esophaguses",
1089
+ "oestrogen": "estrogen",
1090
+ "offence": "offense",
1091
+ "offences": "offenses",
1092
+ "omelette": "omelet",
1093
+ "omelettes": "omelets",
1094
+ "optimise": "optimize",
1095
+ "optimised": "optimized",
1096
+ "optimises": "optimizes",
1097
+ "optimising": "optimizing",
1098
+ "organisation": "organization",
1099
+ "organisational": "organizational",
1100
+ "organisations": "organizations",
1101
+ "organise": "organize",
1102
+ "organised": "organized",
1103
+ "organiser": "organizer",
1104
+ "organisers": "organizers",
1105
+ "organises": "organizes",
1106
+ "organising": "organizing",
1107
+ "orthopaedic": "orthopedic",
1108
+ "orthopaedics": "orthopedics",
1109
+ "ostracise": "ostracize",
1110
+ "ostracised": "ostracized",
1111
+ "ostracises": "ostracizes",
1112
+ "ostracising": "ostracizing",
1113
+ "outmanoeuvre": "outmaneuver",
1114
+ "outmanoeuvred": "outmaneuvered",
1115
+ "outmanoeuvres": "outmaneuvers",
1116
+ "outmanoeuvring": "outmaneuvering",
1117
+ "overemphasise": "overemphasize",
1118
+ "overemphasised": "overemphasized",
1119
+ "overemphasises": "overemphasizes",
1120
+ "overemphasising": "overemphasizing",
1121
+ "oxidisation": "oxidization",
1122
+ "oxidise": "oxidize",
1123
+ "oxidised": "oxidized",
1124
+ "oxidises": "oxidizes",
1125
+ "oxidising": "oxidizing",
1126
+ "paederast": "pederast",
1127
+ "paederasts": "pederasts",
1128
+ "paediatric": "pediatric",
1129
+ "paediatrician": "pediatrician",
1130
+ "paediatricians": "pediatricians",
1131
+ "paediatrics": "pediatrics",
1132
+ "paedophile": "pedophile",
1133
+ "paedophiles": "pedophiles",
1134
+ "paedophilia": "pedophilia",
1135
+ "palaeolithic": "paleolithic",
1136
+ "palaeontologist": "paleontologist",
1137
+ "palaeontologists": "paleontologists",
1138
+ "palaeontology": "paleontology",
1139
+ "panelled": "paneled",
1140
+ "panelling": "paneling",
1141
+ "panellist": "panelist",
1142
+ "panellists": "panelists",
1143
+ "paralyse": "paralyze",
1144
+ "paralysed": "paralyzed",
1145
+ "paralyses": "paralyzes",
1146
+ "paralysing": "paralyzing",
1147
+ "parcelled": "parceled",
1148
+ "parcelling": "parceling",
1149
+ "parlour": "parlor",
1150
+ "parlours": "parlors",
1151
+ "particularise": "particularize",
1152
+ "particularised": "particularized",
1153
+ "particularises": "particularizes",
1154
+ "particularising": "particularizing",
1155
+ "passivisation": "passivization",
1156
+ "passivise": "passivize",
1157
+ "passivised": "passivized",
1158
+ "passivises": "passivizes",
1159
+ "passivising": "passivizing",
1160
+ "pasteurisation": "pasteurization",
1161
+ "pasteurise": "pasteurize",
1162
+ "pasteurised": "pasteurized",
1163
+ "pasteurises": "pasteurizes",
1164
+ "pasteurising": "pasteurizing",
1165
+ "patronise": "patronize",
1166
+ "patronised": "patronized",
1167
+ "patronises": "patronizes",
1168
+ "patronising": "patronizing",
1169
+ "patronisingly": "patronizingly",
1170
+ "pedalled": "pedaled",
1171
+ "pedalling": "pedaling",
1172
+ "pedestrianisation": "pedestrianization",
1173
+ "pedestrianise": "pedestrianize",
1174
+ "pedestrianised": "pedestrianized",
1175
+ "pedestrianises": "pedestrianizes",
1176
+ "pedestrianising": "pedestrianizing",
1177
+ "penalise": "penalize",
1178
+ "penalised": "penalized",
1179
+ "penalises": "penalizes",
1180
+ "penalising": "penalizing",
1181
+ "pencilled": "penciled",
1182
+ "pencilling": "penciling",
1183
+ "personalise": "personalize",
1184
+ "personalised": "personalized",
1185
+ "personalises": "personalizes",
1186
+ "personalising": "personalizing",
1187
+ "pharmacopoeia": "pharmacopeia",
1188
+ "pharmacopoeias": "pharmacopeias",
1189
+ "philosophise": "philosophize",
1190
+ "philosophised": "philosophized",
1191
+ "philosophises": "philosophizes",
1192
+ "philosophising": "philosophizing",
1193
+ "philtre": "filter",
1194
+ "philtres": "filters",
1195
+ "phoney": "phony",
1196
+ "plagiarise": "plagiarize",
1197
+ "plagiarised": "plagiarized",
1198
+ "plagiarises": "plagiarizes",
1199
+ "plagiarising": "plagiarizing",
1200
+ "plough": "plow",
1201
+ "ploughed": "plowed",
1202
+ "ploughing": "plowing",
1203
+ "ploughman": "plowman",
1204
+ "ploughmen": "plowmen",
1205
+ "ploughs": "plows",
1206
+ "ploughshare": "plowshare",
1207
+ "ploughshares": "plowshares",
1208
+ "polarisation": "polarization",
1209
+ "polarise": "polarize",
1210
+ "polarised": "polarized",
1211
+ "polarises": "polarizes",
1212
+ "polarising": "polarizing",
1213
+ "politicisation": "politicization",
1214
+ "politicise": "politicize",
1215
+ "politicised": "politicized",
1216
+ "politicises": "politicizes",
1217
+ "politicising": "politicizing",
1218
+ "popularisation": "popularization",
1219
+ "popularise": "popularize",
1220
+ "popularised": "popularized",
1221
+ "popularises": "popularizes",
1222
+ "popularising": "popularizing",
1223
+ "pouffe": "pouf",
1224
+ "pouffes": "poufs",
1225
+ "practise": "practice",
1226
+ "practised": "practiced",
1227
+ "practises": "practices",
1228
+ "practising": "practicing",
1229
+ "praesidium": "presidium",
1230
+ "praesidiums": "presidiums",
1231
+ "pressurisation": "pressurization",
1232
+ "pressurise": "pressurize",
1233
+ "pressurised": "pressurized",
1234
+ "pressurises": "pressurizes",
1235
+ "pressurising": "pressurizing",
1236
+ "pretence": "pretense",
1237
+ "pretences": "pretenses",
1238
+ "primaeval": "primeval",
1239
+ "prioritisation": "prioritization",
1240
+ "prioritise": "prioritize",
1241
+ "prioritised": "prioritized",
1242
+ "prioritises": "prioritizes",
1243
+ "prioritising": "prioritizing",
1244
+ "privatisation": "privatization",
1245
+ "privatisations": "privatizations",
1246
+ "privatise": "privatize",
1247
+ "privatised": "privatized",
1248
+ "privatises": "privatizes",
1249
+ "privatising": "privatizing",
1250
+ "professionalisation": "professionalization",
1251
+ "professionalise": "professionalize",
1252
+ "professionalised": "professionalized",
1253
+ "professionalises": "professionalizes",
1254
+ "professionalising": "professionalizing",
1255
+ "programme": "program",
1256
+ "programmes": "programs",
1257
+ "prologue": "prolog",
1258
+ "prologues": "prologs",
1259
+ "propagandise": "propagandize",
1260
+ "propagandised": "propagandized",
1261
+ "propagandises": "propagandizes",
1262
+ "propagandising": "propagandizing",
1263
+ "proselytise": "proselytize",
1264
+ "proselytised": "proselytized",
1265
+ "proselytiser": "proselytizer",
1266
+ "proselytisers": "proselytizers",
1267
+ "proselytises": "proselytizes",
1268
+ "proselytising": "proselytizing",
1269
+ "psychoanalyse": "psychoanalyze",
1270
+ "psychoanalysed": "psychoanalyzed",
1271
+ "psychoanalyses": "psychoanalyzes",
1272
+ "psychoanalysing": "psychoanalyzing",
1273
+ "publicise": "publicize",
1274
+ "publicised": "publicized",
1275
+ "publicises": "publicizes",
1276
+ "publicising": "publicizing",
1277
+ "pulverisation": "pulverization",
1278
+ "pulverise": "pulverize",
1279
+ "pulverised": "pulverized",
1280
+ "pulverises": "pulverizes",
1281
+ "pulverising": "pulverizing",
1282
+ "pummelled": "pummel",
1283
+ "pummelling": "pummeled",
1284
+ "pyjama": "pajama",
1285
+ "pyjamas": "pajamas",
1286
+ "pzazz": "pizzazz",
1287
+ "quarrelled": "quarreled",
1288
+ "quarrelling": "quarreling",
1289
+ "radicalise": "radicalize",
1290
+ "radicalised": "radicalized",
1291
+ "radicalises": "radicalizes",
1292
+ "radicalising": "radicalizing",
1293
+ "rancour": "rancor",
1294
+ "randomise": "randomize",
1295
+ "randomised": "randomized",
1296
+ "randomises": "randomizes",
1297
+ "randomising": "randomizing",
1298
+ "rationalisation": "rationalization",
1299
+ "rationalisations": "rationalizations",
1300
+ "rationalise": "rationalize",
1301
+ "rationalised": "rationalized",
1302
+ "rationalises": "rationalizes",
1303
+ "rationalising": "rationalizing",
1304
+ "ravelled": "raveled",
1305
+ "ravelling": "raveling",
1306
+ "realisable": "realizable",
1307
+ "realisation": "realization",
1308
+ "realisations": "realizations",
1309
+ "realise": "realize",
1310
+ "realised": "realized",
1311
+ "realises": "realizes",
1312
+ "realising": "realizing",
1313
+ "recognisable": "recognizable",
1314
+ "recognisably": "recognizably",
1315
+ "recognisance": "recognizance",
1316
+ "recognise": "recognize",
1317
+ "recognised": "recognized",
1318
+ "recognises": "recognizes",
1319
+ "recognising": "recognizing",
1320
+ "reconnoitre": "reconnoiter",
1321
+ "reconnoitred": "reconnoitered",
1322
+ "reconnoitres": "reconnoiters",
1323
+ "reconnoitring": "reconnoitering",
1324
+ "refuelled": "refueled",
1325
+ "refuelling": "refueling",
1326
+ "regularisation": "regularization",
1327
+ "regularise": "regularize",
1328
+ "regularised": "regularized",
1329
+ "regularises": "regularizes",
1330
+ "regularising": "regularizing",
1331
+ "remodelled": "remodeled",
1332
+ "remodelling": "remodeling",
1333
+ "remould": "remold",
1334
+ "remoulded": "remolded",
1335
+ "remoulding": "remolding",
1336
+ "remoulds": "remolds",
1337
+ "reorganisation": "reorganization",
1338
+ "reorganisations": "reorganizations",
1339
+ "reorganise": "reorganize",
1340
+ "reorganised": "reorganized",
1341
+ "reorganises": "reorganizes",
1342
+ "reorganising": "reorganizing",
1343
+ "revelled": "reveled",
1344
+ "reveller": "reveler",
1345
+ "revellers": "revelers",
1346
+ "revelling": "reveling",
1347
+ "revitalise": "revitalize",
1348
+ "revitalised": "revitalized",
1349
+ "revitalises": "revitalizes",
1350
+ "revitalising": "revitalizing",
1351
+ "revolutionise": "revolutionize",
1352
+ "revolutionised": "revolutionized",
1353
+ "revolutionises": "revolutionizes",
1354
+ "revolutionising": "revolutionizing",
1355
+ "rhapsodise": "rhapsodize",
1356
+ "rhapsodised": "rhapsodized",
1357
+ "rhapsodises": "rhapsodizes",
1358
+ "rhapsodising": "rhapsodizing",
1359
+ "rigour": "rigor",
1360
+ "rigours": "rigors",
1361
+ "ritualised": "ritualized",
1362
+ "rivalled": "rivaled",
1363
+ "rivalling": "rivaling",
1364
+ "romanticise": "romanticize",
1365
+ "romanticised": "romanticized",
1366
+ "romanticises": "romanticizes",
1367
+ "romanticising": "romanticizing",
1368
+ "rumour": "rumor",
1369
+ "rumoured": "rumored",
1370
+ "rumours": "rumors",
1371
+ "sabre": "saber",
1372
+ "sabres": "sabers",
1373
+ "saltpetre": "saltpeter",
1374
+ "sanitise": "sanitize",
1375
+ "sanitised": "sanitized",
1376
+ "sanitises": "sanitizes",
1377
+ "sanitising": "sanitizing",
1378
+ "satirise": "satirize",
1379
+ "satirised": "satirized",
1380
+ "satirises": "satirizes",
1381
+ "satirising": "satirizing",
1382
+ "saviour": "savior",
1383
+ "saviours": "saviors",
1384
+ "savour": "savor",
1385
+ "savoured": "savored",
1386
+ "savouries": "savories",
1387
+ "savouring": "savoring",
1388
+ "savours": "savors",
1389
+ "savoury": "savory",
1390
+ "scandalise": "scandalize",
1391
+ "scandalised": "scandalized",
1392
+ "scandalises": "scandalizes",
1393
+ "scandalising": "scandalizing",
1394
+ "sceptic": "skeptic",
1395
+ "sceptical": "skeptical",
1396
+ "sceptically": "skeptically",
1397
+ "scepticism": "skepticism",
1398
+ "sceptics": "skeptics",
1399
+ "sceptre": "scepter",
1400
+ "sceptres": "scepters",
1401
+ "scrutinise": "scrutinize",
1402
+ "scrutinised": "scrutinized",
1403
+ "scrutinises": "scrutinizes",
1404
+ "scrutinising": "scrutinizing",
1405
+ "secularisation": "secularization",
1406
+ "secularise": "secularize",
1407
+ "secularised": "secularized",
1408
+ "secularises": "secularizes",
1409
+ "secularising": "secularizing",
1410
+ "sensationalise": "sensationalize",
1411
+ "sensationalised": "sensationalized",
1412
+ "sensationalises": "sensationalizes",
1413
+ "sensationalising": "sensationalizing",
1414
+ "sensitise": "sensitize",
1415
+ "sensitised": "sensitized",
1416
+ "sensitises": "sensitizes",
1417
+ "sensitising": "sensitizing",
1418
+ "sentimentalise": "sentimentalize",
1419
+ "sentimentalised": "sentimentalized",
1420
+ "sentimentalises": "sentimentalizes",
1421
+ "sentimentalising": "sentimentalizing",
1422
+ "sepulchre": "sepulcher",
1423
+ "sepulchres": "sepulchers",
1424
+ "serialisation": "serialization",
1425
+ "serialisations": "serializations",
1426
+ "serialise": "serialize",
1427
+ "serialised": "serialized",
1428
+ "serialises": "serializes",
1429
+ "serialising": "serializing",
1430
+ "sermonise": "sermonize",
1431
+ "sermonised": "sermonized",
1432
+ "sermonises": "sermonizes",
1433
+ "sermonising": "sermonizing",
1434
+ "sheikh": "sheik",
1435
+ "shovelled": "shoveled",
1436
+ "shovelling": "shoveling",
1437
+ "shrivelled": "shriveled",
1438
+ "shrivelling": "shriveling",
1439
+ "signalise": "signalize",
1440
+ "signalised": "signalized",
1441
+ "signalises": "signalizes",
1442
+ "signalising": "signalizing",
1443
+ "signalled": "signaled",
1444
+ "signalling": "signaling",
1445
+ "smoulder": "smolder",
1446
+ "smouldered": "smoldered",
1447
+ "smouldering": "smoldering",
1448
+ "smoulders": "smolders",
1449
+ "snivelled": "sniveled",
1450
+ "snivelling": "sniveling",
1451
+ "snorkelled": "snorkeled",
1452
+ "snorkelling": "snorkeling",
1453
+ "snowplough": "snowplow",
1454
+ "snowploughs": "snowplow",
1455
+ "socialisation": "socialization",
1456
+ "socialise": "socialize",
1457
+ "socialised": "socialized",
1458
+ "socialises": "socializes",
1459
+ "socialising": "socializing",
1460
+ "sodomise": "sodomize",
1461
+ "sodomised": "sodomized",
1462
+ "sodomises": "sodomizes",
1463
+ "sodomising": "sodomizing",
1464
+ "solemnise": "solemnize",
1465
+ "solemnised": "solemnized",
1466
+ "solemnises": "solemnizes",
1467
+ "solemnising": "solemnizing",
1468
+ "sombre": "somber",
1469
+ "specialisation": "specialization",
1470
+ "specialisations": "specializations",
1471
+ "specialise": "specialize",
1472
+ "specialised": "specialized",
1473
+ "specialises": "specializes",
1474
+ "specialising": "specializing",
1475
+ "spectre": "specter",
1476
+ "spectres": "specters",
1477
+ "spiralled": "spiraled",
1478
+ "spiralling": "spiraling",
1479
+ "splendour": "splendor",
1480
+ "splendours": "splendors",
1481
+ "squirrelled": "squirreled",
1482
+ "squirrelling": "squirreling",
1483
+ "stabilisation": "stabilization",
1484
+ "stabilise": "stabilize",
1485
+ "stabilised": "stabilized",
1486
+ "stabiliser": "stabilizer",
1487
+ "stabilisers": "stabilizers",
1488
+ "stabilises": "stabilizes",
1489
+ "stabilising": "stabilizing",
1490
+ "standardisation": "standardization",
1491
+ "standardise": "standardize",
1492
+ "standardised": "standardized",
1493
+ "standardises": "standardizes",
1494
+ "standardising": "standardizing",
1495
+ "stencilled": "stenciled",
1496
+ "stencilling": "stenciling",
1497
+ "sterilisation": "sterilization",
1498
+ "sterilisations": "sterilizations",
1499
+ "sterilise": "sterilize",
1500
+ "sterilised": "sterilized",
1501
+ "steriliser": "sterilizer",
1502
+ "sterilisers": "sterilizers",
1503
+ "sterilises": "sterilizes",
1504
+ "sterilising": "sterilizing",
1505
+ "stigmatisation": "stigmatization",
1506
+ "stigmatise": "stigmatize",
1507
+ "stigmatised": "stigmatized",
1508
+ "stigmatises": "stigmatizes",
1509
+ "stigmatising": "stigmatizing",
1510
+ "storey": "story",
1511
+ "storeys": "stories",
1512
+ "subsidisation": "subsidization",
1513
+ "subsidise": "subsidize",
1514
+ "subsidised": "subsidized",
1515
+ "subsidiser": "subsidizer",
1516
+ "subsidisers": "subsidizers",
1517
+ "subsidises": "subsidizes",
1518
+ "subsidising": "subsidizing",
1519
+ "succour": "succor",
1520
+ "succoured": "succored",
1521
+ "succouring": "succoring",
1522
+ "succours": "succors",
1523
+ "sulphate": "sulfate",
1524
+ "sulphates": "sulfates",
1525
+ "sulphide": "sulfide",
1526
+ "sulphides": "sulfides",
1527
+ "sulphur": "sulfur",
1528
+ "sulphurous": "sulfurous",
1529
+ "summarise": "summarize",
1530
+ "summarised": "summarized",
1531
+ "summarises": "summarizes",
1532
+ "summarising": "summarizing",
1533
+ "swivelled": "swiveled",
1534
+ "swivelling": "swiveling",
1535
+ "symbolise": "symbolize",
1536
+ "symbolised": "symbolized",
1537
+ "symbolises": "symbolizes",
1538
+ "symbolising": "symbolizing",
1539
+ "sympathise": "sympathize",
1540
+ "sympathised": "sympathized",
1541
+ "sympathiser": "sympathizer",
1542
+ "sympathisers": "sympathizers",
1543
+ "sympathises": "sympathizes",
1544
+ "sympathising": "sympathizing",
1545
+ "synchronisation": "synchronization",
1546
+ "synchronise": "synchronize",
1547
+ "synchronised": "synchronized",
1548
+ "synchronises": "synchronizes",
1549
+ "synchronising": "synchronizing",
1550
+ "synthesise": "synthesize",
1551
+ "synthesised": "synthesized",
1552
+ "synthesiser": "synthesizer",
1553
+ "synthesisers": "synthesizers",
1554
+ "synthesises": "synthesizes",
1555
+ "synthesising": "synthesizing",
1556
+ "syphon": "siphon",
1557
+ "syphoned": "siphoned",
1558
+ "syphoning": "siphoning",
1559
+ "syphons": "siphons",
1560
+ "systematisation": "systematization",
1561
+ "systematise": "systematize",
1562
+ "systematised": "systematized",
1563
+ "systematises": "systematizes",
1564
+ "systematising": "systematizing",
1565
+ "tantalise": "tantalize",
1566
+ "tantalised": "tantalized",
1567
+ "tantalises": "tantalizes",
1568
+ "tantalising": "tantalizing",
1569
+ "tantalisingly": "tantalizingly",
1570
+ "tasselled": "tasseled",
1571
+ "technicolour": "technicolor",
1572
+ "temporise": "temporize",
1573
+ "temporised": "temporized",
1574
+ "temporises": "temporizes",
1575
+ "temporising": "temporizing",
1576
+ "tenderise": "tenderize",
1577
+ "tenderised": "tenderized",
1578
+ "tenderises": "tenderizes",
1579
+ "tenderising": "tenderizing",
1580
+ "terrorise": "terrorize",
1581
+ "terrorised": "terrorized",
1582
+ "terrorises": "terrorizes",
1583
+ "terrorising": "terrorizing",
1584
+ "theatre": "theater",
1585
+ "theatregoer": "theatergoer",
1586
+ "theatregoers": "theatergoers",
1587
+ "theatres": "theaters",
1588
+ "theorise": "theorize",
1589
+ "theorised": "theorized",
1590
+ "theorises": "theorizes",
1591
+ "theorising": "theorizing",
1592
+ "tonne": "ton",
1593
+ "tonnes": "tons",
1594
+ "towelled": "toweled",
1595
+ "towelling": "toweling",
1596
+ "toxaemia": "toxemia",
1597
+ "tranquillise": "tranquilize",
1598
+ "tranquillised": "tranquilized",
1599
+ "tranquilliser": "tranquilizer",
1600
+ "tranquillisers": "tranquilizers",
1601
+ "tranquillises": "tranquilizes",
1602
+ "tranquillising": "tranquilizing",
1603
+ "tranquillity": "tranquility",
1604
+ "tranquillize": "tranquilize",
1605
+ "tranquillized": "tranquilized",
1606
+ "tranquillizer": "tranquilizer",
1607
+ "tranquillizers": "tranquilizers",
1608
+ "tranquillizes": "tranquilizes",
1609
+ "tranquillizing": "tranquilizing",
1610
+ "tranquilly": "tranquility",
1611
+ "transistorised": "transistorized",
1612
+ "traumatise": "traumatize",
1613
+ "traumatised": "traumatized",
1614
+ "traumatises": "traumatizes",
1615
+ "traumatising": "traumatizing",
1616
+ "travelled": "traveled",
1617
+ "traveller": "traveler",
1618
+ "travellers": "travelers",
1619
+ "travelling": "traveling",
1620
+ "travelog": "travelogue",
1621
+ "travelogs": "travelogues",
1622
+ "trialled": "trialed",
1623
+ "trialling": "trialing",
1624
+ "tricolour": "tricolor",
1625
+ "tricolours": "tricolors",
1626
+ "trivialise": "trivialize",
1627
+ "trivialised": "trivialized",
1628
+ "trivialises": "trivializes",
1629
+ "trivialising": "trivializing",
1630
+ "tumour": "tumor",
1631
+ "tumours": "tumors",
1632
+ "tunnelled": "tunneled",
1633
+ "tunnelling": "tunneling",
1634
+ "tyrannise": "tyrannize",
1635
+ "tyrannised": "tyrannized",
1636
+ "tyrannises": "tyrannizes",
1637
+ "tyrannising": "tyrannizing",
1638
+ "tyre": "tire",
1639
+ "tyres": "tires",
1640
+ "unauthorised": "unauthorized",
1641
+ "uncivilised": "uncivilized",
1642
+ "underutilised": "underutilized",
1643
+ "unequalled": "unequaled",
1644
+ "unfavourable": "unfavorable",
1645
+ "unfavourably": "unfavorably",
1646
+ "unionisation": "unionization",
1647
+ "unionise": "unionize",
1648
+ "unionised": "unionized",
1649
+ "unionises": "unionizes",
1650
+ "unionising": "unionizing",
1651
+ "unorganised": "unorganized",
1652
+ "unravelled": "unraveled",
1653
+ "unravelling": "unraveling",
1654
+ "unrecognisable": "unrecognizable",
1655
+ "unrecognised": "unrecognized",
1656
+ "unrivalled": "unrivaled",
1657
+ "unsavoury": "unsavory",
1658
+ "untrammelled": "untrammeled",
1659
+ "urbanisation": "urbanization",
1660
+ "urbanise": "urbanize",
1661
+ "urbanised": "urbanized",
1662
+ "urbanises": "urbanizes",
1663
+ "urbanising": "urbanizing",
1664
+ "utilisable": "utilizable",
1665
+ "utilisation": "utilization",
1666
+ "utilise": "utilize",
1667
+ "utilised": "utilized",
1668
+ "utilises": "utilizes",
1669
+ "utilising": "utilizing",
1670
+ "valour": "valor",
1671
+ "vandalise": "vandalize",
1672
+ "vandalised": "vandalized",
1673
+ "vandalises": "vandalizes",
1674
+ "vandalising": "vandalizing",
1675
+ "vaporisation": "vaporization",
1676
+ "vaporise": "vaporize",
1677
+ "vaporised": "vaporized",
1678
+ "vaporises": "vaporizes",
1679
+ "vaporising": "vaporizing",
1680
+ "vapour": "vapor",
1681
+ "vapours": "vapors",
1682
+ "verbalise": "verbalize",
1683
+ "verbalised": "verbalized",
1684
+ "verbalises": "verbalizes",
1685
+ "verbalising": "verbalizing",
1686
+ "victimisation": "victimization",
1687
+ "victimise": "victimize",
1688
+ "victimised": "victimized",
1689
+ "victimises": "victimizes",
1690
+ "victimising": "victimizing",
1691
+ "videodisc": "videodisk",
1692
+ "videodiscs": "videodisks",
1693
+ "vigour": "vigor",
1694
+ "visualisation": "visualization",
1695
+ "visualisations": "visualizations",
1696
+ "visualise": "visualize",
1697
+ "visualised": "visualized",
1698
+ "visualises": "visualizes",
1699
+ "visualising": "visualizing",
1700
+ "vocalisation": "vocalization",
1701
+ "vocalisations": "vocalizations",
1702
+ "vocalise": "vocalize",
1703
+ "vocalised": "vocalized",
1704
+ "vocalises": "vocalizes",
1705
+ "vocalising": "vocalizing",
1706
+ "vulcanised": "vulcanized",
1707
+ "vulgarisation": "vulgarization",
1708
+ "vulgarise": "vulgarize",
1709
+ "vulgarised": "vulgarized",
1710
+ "vulgarises": "vulgarizes",
1711
+ "vulgarising": "vulgarizing",
1712
+ "waggon": "wagon",
1713
+ "waggons": "wagons",
1714
+ "watercolour": "watercolor",
1715
+ "watercolours": "watercolors",
1716
+ "weaselled": "weaseled",
1717
+ "weaselling": "weaseling",
1718
+ "westernisation": "westernization",
1719
+ "westernise": "westernize",
1720
+ "westernised": "westernized",
1721
+ "westernises": "westernizes",
1722
+ "westernising": "westernizing",
1723
+ "womanise": "womanize",
1724
+ "womanised": "womanized",
1725
+ "womaniser": "womanizer",
1726
+ "womanisers": "womanizers",
1727
+ "womanises": "womanizes",
1728
+ "womanising": "womanizing",
1729
+ "woollen": "woolen",
1730
+ "woollens": "woolens",
1731
+ "woollies": "woolies",
1732
+ "woolly": "wooly",
1733
+ "worshipped": "worshiped",
1734
+ "worshipper": "worshiper",
1735
+ "worshipping": "worshiping",
1736
+ "yodelled": "yodeled",
1737
+ "yodelling": "yodeling",
1738
+ "yoghourt": "yogurt",
1739
+ "yoghourts": "yogurts",
1740
+ "yoghurt": "yogurt",
1741
+ "yoghurts": "yogurts"
1742
+ }
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:789ca5b13bec9c49a47a16c39719053157eda9d7b9896a7ca6f3e06f7c80de14
3
+ size 580895237
preprocessor_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "chunk_length": 30,
3
+ "feature_extractor_type": "WhisperFeatureExtractor",
4
+ "feature_size": 80,
5
+ "hop_length": 160,
6
+ "n_fft": 400,
7
+ "n_samples": 480000,
8
+ "nb_max_frames": 3000,
9
+ "padding_side": "right",
10
+ "padding_value": 0.0,
11
+ "processor_class": "WhisperProcessor",
12
+ "return_attention_mask": false,
13
+ "sampling_rate": 16000
14
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f2b9fbcd8b1d8375c774acc27e5d7d31725a65d6641a5e9daf26e11d23588107
3
+ size 290458721
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a846b8da66c246853e2ebd615c0462a8f499aa341cd3a76c1e8f727834a6e908
3
+ size 14639
scaler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:381a2561f4953cfe020b4bf281e8e26ce97a4482962a6909b6afa4dffd9461f0
3
+ size 557
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3e161945900a650f9a6157d76e9b8eef00fdf4431baf2eaeddb825a9f2ff2465
3
+ size 627
special_tokens_map.json ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|endoftext|>",
4
+ "<|startoftranscript|>",
5
+ "<|en|>",
6
+ "<|zh|>",
7
+ "<|de|>",
8
+ "<|es|>",
9
+ "<|ru|>",
10
+ "<|ko|>",
11
+ "<|fr|>",
12
+ "<|ja|>",
13
+ "<|pt|>",
14
+ "<|tr|>",
15
+ "<|pl|>",
16
+ "<|ca|>",
17
+ "<|nl|>",
18
+ "<|ar|>",
19
+ "<|sv|>",
20
+ "<|it|>",
21
+ "<|id|>",
22
+ "<|hi|>",
23
+ "<|fi|>",
24
+ "<|vi|>",
25
+ "<|he|>",
26
+ "<|uk|>",
27
+ "<|el|>",
28
+ "<|ms|>",
29
+ "<|cs|>",
30
+ "<|ro|>",
31
+ "<|da|>",
32
+ "<|hu|>",
33
+ "<|ta|>",
34
+ "<|no|>",
35
+ "<|th|>",
36
+ "<|ur|>",
37
+ "<|hr|>",
38
+ "<|bg|>",
39
+ "<|lt|>",
40
+ "<|la|>",
41
+ "<|mi|>",
42
+ "<|ml|>",
43
+ "<|cy|>",
44
+ "<|sk|>",
45
+ "<|te|>",
46
+ "<|fa|>",
47
+ "<|lv|>",
48
+ "<|bn|>",
49
+ "<|sr|>",
50
+ "<|az|>",
51
+ "<|sl|>",
52
+ "<|kn|>",
53
+ "<|et|>",
54
+ "<|mk|>",
55
+ "<|br|>",
56
+ "<|eu|>",
57
+ "<|is|>",
58
+ "<|hy|>",
59
+ "<|ne|>",
60
+ "<|mn|>",
61
+ "<|bs|>",
62
+ "<|kk|>",
63
+ "<|sq|>",
64
+ "<|sw|>",
65
+ "<|gl|>",
66
+ "<|mr|>",
67
+ "<|pa|>",
68
+ "<|si|>",
69
+ "<|km|>",
70
+ "<|sn|>",
71
+ "<|yo|>",
72
+ "<|so|>",
73
+ "<|af|>",
74
+ "<|oc|>",
75
+ "<|ka|>",
76
+ "<|be|>",
77
+ "<|tg|>",
78
+ "<|sd|>",
79
+ "<|gu|>",
80
+ "<|am|>",
81
+ "<|yi|>",
82
+ "<|lo|>",
83
+ "<|uz|>",
84
+ "<|fo|>",
85
+ "<|ht|>",
86
+ "<|ps|>",
87
+ "<|tk|>",
88
+ "<|nn|>",
89
+ "<|mt|>",
90
+ "<|sa|>",
91
+ "<|lb|>",
92
+ "<|my|>",
93
+ "<|bo|>",
94
+ "<|tl|>",
95
+ "<|mg|>",
96
+ "<|as|>",
97
+ "<|tt|>",
98
+ "<|haw|>",
99
+ "<|ln|>",
100
+ "<|ha|>",
101
+ "<|ba|>",
102
+ "<|jw|>",
103
+ "<|su|>",
104
+ "<|translate|>",
105
+ "<|transcribe|>",
106
+ "<|startoflm|>",
107
+ "<|startofprev|>",
108
+ "<|nocaptions|>",
109
+ "<|notimestamps|>"
110
+ ],
111
+ "bos_token": {
112
+ "content": "<|endoftext|>",
113
+ "lstrip": false,
114
+ "normalized": true,
115
+ "rstrip": false,
116
+ "single_word": false
117
+ },
118
+ "eos_token": {
119
+ "content": "<|endoftext|>",
120
+ "lstrip": false,
121
+ "normalized": true,
122
+ "rstrip": false,
123
+ "single_word": false
124
+ },
125
+ "pad_token": "<|endoftext|>",
126
+ "unk_token": {
127
+ "content": "<|endoftext|>",
128
+ "lstrip": false,
129
+ "normalized": true,
130
+ "rstrip": false,
131
+ "single_word": false
132
+ }
133
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "bos_token": {
5
+ "__type": "AddedToken",
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": true,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "eos_token": {
13
+ "__type": "AddedToken",
14
+ "content": "<|endoftext|>",
15
+ "lstrip": false,
16
+ "normalized": true,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ },
20
+ "errors": "replace",
21
+ "model_max_length": 448,
22
+ "name_or_path": "openai/whisper-base",
23
+ "pad_token": null,
24
+ "processor_class": "WhisperProcessor",
25
+ "return_attention_mask": false,
26
+ "special_tokens_map_file": null,
27
+ "tokenizer_class": "WhisperTokenizer",
28
+ "unk_token": {
29
+ "__type": "AddedToken",
30
+ "content": "<|endoftext|>",
31
+ "lstrip": false,
32
+ "normalized": true,
33
+ "rstrip": false,
34
+ "single_word": false
35
+ }
36
+ }
trainer_state.json ADDED
@@ -0,0 +1,3439 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 80.77868077868078,
3
+ "best_model_checkpoint": "./whisper-base-Chinese/checkpoint-12000",
4
+ "epoch": 5.649717514124294,
5
+ "global_step": 14000,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 0.01,
12
+ "learning_rate": 2.2e-07,
13
+ "loss": 2.1244,
14
+ "step": 25
15
+ },
16
+ {
17
+ "epoch": 0.02,
18
+ "learning_rate": 4.7000000000000005e-07,
19
+ "loss": 2.0967,
20
+ "step": 50
21
+ },
22
+ {
23
+ "epoch": 0.03,
24
+ "learning_rate": 7.2e-07,
25
+ "loss": 1.7948,
26
+ "step": 75
27
+ },
28
+ {
29
+ "epoch": 0.04,
30
+ "learning_rate": 9.7e-07,
31
+ "loss": 1.2271,
32
+ "step": 100
33
+ },
34
+ {
35
+ "epoch": 0.05,
36
+ "learning_rate": 1.2200000000000002e-06,
37
+ "loss": 0.9593,
38
+ "step": 125
39
+ },
40
+ {
41
+ "epoch": 0.06,
42
+ "learning_rate": 1.4700000000000001e-06,
43
+ "loss": 0.8795,
44
+ "step": 150
45
+ },
46
+ {
47
+ "epoch": 0.07,
48
+ "learning_rate": 1.72e-06,
49
+ "loss": 0.8847,
50
+ "step": 175
51
+ },
52
+ {
53
+ "epoch": 0.08,
54
+ "learning_rate": 1.97e-06,
55
+ "loss": 0.7976,
56
+ "step": 200
57
+ },
58
+ {
59
+ "epoch": 0.09,
60
+ "learning_rate": 2.21e-06,
61
+ "loss": 0.7272,
62
+ "step": 225
63
+ },
64
+ {
65
+ "epoch": 0.1,
66
+ "learning_rate": 2.46e-06,
67
+ "loss": 0.7368,
68
+ "step": 250
69
+ },
70
+ {
71
+ "epoch": 0.11,
72
+ "learning_rate": 2.7100000000000003e-06,
73
+ "loss": 0.7681,
74
+ "step": 275
75
+ },
76
+ {
77
+ "epoch": 0.12,
78
+ "learning_rate": 2.96e-06,
79
+ "loss": 0.7916,
80
+ "step": 300
81
+ },
82
+ {
83
+ "epoch": 0.13,
84
+ "learning_rate": 3.21e-06,
85
+ "loss": 0.8346,
86
+ "step": 325
87
+ },
88
+ {
89
+ "epoch": 0.14,
90
+ "learning_rate": 3.46e-06,
91
+ "loss": 0.7713,
92
+ "step": 350
93
+ },
94
+ {
95
+ "epoch": 0.15,
96
+ "learning_rate": 3.7100000000000005e-06,
97
+ "loss": 0.771,
98
+ "step": 375
99
+ },
100
+ {
101
+ "epoch": 0.16,
102
+ "learning_rate": 3.96e-06,
103
+ "loss": 0.6666,
104
+ "step": 400
105
+ },
106
+ {
107
+ "epoch": 0.17,
108
+ "learning_rate": 4.21e-06,
109
+ "loss": 0.7252,
110
+ "step": 425
111
+ },
112
+ {
113
+ "epoch": 0.18,
114
+ "learning_rate": 4.4600000000000005e-06,
115
+ "loss": 0.6224,
116
+ "step": 450
117
+ },
118
+ {
119
+ "epoch": 0.19,
120
+ "learning_rate": 4.71e-06,
121
+ "loss": 0.6665,
122
+ "step": 475
123
+ },
124
+ {
125
+ "epoch": 0.2,
126
+ "learning_rate": 4.960000000000001e-06,
127
+ "loss": 0.6073,
128
+ "step": 500
129
+ },
130
+ {
131
+ "epoch": 0.21,
132
+ "learning_rate": 5.210000000000001e-06,
133
+ "loss": 0.6667,
134
+ "step": 525
135
+ },
136
+ {
137
+ "epoch": 0.22,
138
+ "learning_rate": 5.460000000000001e-06,
139
+ "loss": 0.6848,
140
+ "step": 550
141
+ },
142
+ {
143
+ "epoch": 0.23,
144
+ "learning_rate": 5.71e-06,
145
+ "loss": 0.7169,
146
+ "step": 575
147
+ },
148
+ {
149
+ "epoch": 0.24,
150
+ "learning_rate": 5.9600000000000005e-06,
151
+ "loss": 0.6162,
152
+ "step": 600
153
+ },
154
+ {
155
+ "epoch": 0.25,
156
+ "learning_rate": 6.210000000000001e-06,
157
+ "loss": 0.6384,
158
+ "step": 625
159
+ },
160
+ {
161
+ "epoch": 0.26,
162
+ "learning_rate": 6.460000000000001e-06,
163
+ "loss": 0.6729,
164
+ "step": 650
165
+ },
166
+ {
167
+ "epoch": 0.27,
168
+ "learning_rate": 6.710000000000001e-06,
169
+ "loss": 0.761,
170
+ "step": 675
171
+ },
172
+ {
173
+ "epoch": 0.28,
174
+ "learning_rate": 6.96e-06,
175
+ "loss": 0.6227,
176
+ "step": 700
177
+ },
178
+ {
179
+ "epoch": 0.29,
180
+ "learning_rate": 7.2100000000000004e-06,
181
+ "loss": 0.6822,
182
+ "step": 725
183
+ },
184
+ {
185
+ "epoch": 0.3,
186
+ "learning_rate": 7.4600000000000006e-06,
187
+ "loss": 0.6466,
188
+ "step": 750
189
+ },
190
+ {
191
+ "epoch": 0.31,
192
+ "learning_rate": 7.71e-06,
193
+ "loss": 0.5998,
194
+ "step": 775
195
+ },
196
+ {
197
+ "epoch": 0.32,
198
+ "learning_rate": 7.960000000000002e-06,
199
+ "loss": 0.648,
200
+ "step": 800
201
+ },
202
+ {
203
+ "epoch": 0.33,
204
+ "learning_rate": 8.210000000000001e-06,
205
+ "loss": 0.5941,
206
+ "step": 825
207
+ },
208
+ {
209
+ "epoch": 0.34,
210
+ "learning_rate": 8.46e-06,
211
+ "loss": 0.6946,
212
+ "step": 850
213
+ },
214
+ {
215
+ "epoch": 0.35,
216
+ "learning_rate": 8.710000000000001e-06,
217
+ "loss": 0.632,
218
+ "step": 875
219
+ },
220
+ {
221
+ "epoch": 0.36,
222
+ "learning_rate": 8.96e-06,
223
+ "loss": 0.617,
224
+ "step": 900
225
+ },
226
+ {
227
+ "epoch": 0.37,
228
+ "learning_rate": 9.210000000000002e-06,
229
+ "loss": 0.5018,
230
+ "step": 925
231
+ },
232
+ {
233
+ "epoch": 0.38,
234
+ "learning_rate": 9.460000000000001e-06,
235
+ "loss": 0.6201,
236
+ "step": 950
237
+ },
238
+ {
239
+ "epoch": 0.39,
240
+ "learning_rate": 9.71e-06,
241
+ "loss": 0.6265,
242
+ "step": 975
243
+ },
244
+ {
245
+ "epoch": 0.4,
246
+ "learning_rate": 9.960000000000001e-06,
247
+ "loss": 0.564,
248
+ "step": 1000
249
+ },
250
+ {
251
+ "epoch": 0.41,
252
+ "learning_rate": 9.988947368421053e-06,
253
+ "loss": 0.6589,
254
+ "step": 1025
255
+ },
256
+ {
257
+ "epoch": 0.42,
258
+ "learning_rate": 9.975789473684211e-06,
259
+ "loss": 0.5549,
260
+ "step": 1050
261
+ },
262
+ {
263
+ "epoch": 0.43,
264
+ "learning_rate": 9.96263157894737e-06,
265
+ "loss": 0.5769,
266
+ "step": 1075
267
+ },
268
+ {
269
+ "epoch": 0.44,
270
+ "learning_rate": 9.949473684210526e-06,
271
+ "loss": 0.6697,
272
+ "step": 1100
273
+ },
274
+ {
275
+ "epoch": 0.45,
276
+ "learning_rate": 9.936315789473685e-06,
277
+ "loss": 0.6405,
278
+ "step": 1125
279
+ },
280
+ {
281
+ "epoch": 0.46,
282
+ "learning_rate": 9.923157894736844e-06,
283
+ "loss": 0.646,
284
+ "step": 1150
285
+ },
286
+ {
287
+ "epoch": 0.47,
288
+ "learning_rate": 9.91e-06,
289
+ "loss": 0.6236,
290
+ "step": 1175
291
+ },
292
+ {
293
+ "epoch": 0.48,
294
+ "learning_rate": 9.89684210526316e-06,
295
+ "loss": 0.6284,
296
+ "step": 1200
297
+ },
298
+ {
299
+ "epoch": 0.49,
300
+ "learning_rate": 9.883684210526317e-06,
301
+ "loss": 0.6444,
302
+ "step": 1225
303
+ },
304
+ {
305
+ "epoch": 0.5,
306
+ "learning_rate": 9.870526315789474e-06,
307
+ "loss": 0.6004,
308
+ "step": 1250
309
+ },
310
+ {
311
+ "epoch": 0.51,
312
+ "learning_rate": 9.857368421052632e-06,
313
+ "loss": 0.5655,
314
+ "step": 1275
315
+ },
316
+ {
317
+ "epoch": 0.52,
318
+ "learning_rate": 9.84421052631579e-06,
319
+ "loss": 0.5671,
320
+ "step": 1300
321
+ },
322
+ {
323
+ "epoch": 0.53,
324
+ "learning_rate": 9.831052631578948e-06,
325
+ "loss": 0.6141,
326
+ "step": 1325
327
+ },
328
+ {
329
+ "epoch": 0.54,
330
+ "learning_rate": 9.817894736842106e-06,
331
+ "loss": 0.5869,
332
+ "step": 1350
333
+ },
334
+ {
335
+ "epoch": 0.55,
336
+ "learning_rate": 9.804736842105263e-06,
337
+ "loss": 0.5613,
338
+ "step": 1375
339
+ },
340
+ {
341
+ "epoch": 0.56,
342
+ "learning_rate": 9.791578947368422e-06,
343
+ "loss": 0.5943,
344
+ "step": 1400
345
+ },
346
+ {
347
+ "epoch": 0.58,
348
+ "learning_rate": 9.77842105263158e-06,
349
+ "loss": 0.5147,
350
+ "step": 1425
351
+ },
352
+ {
353
+ "epoch": 0.59,
354
+ "learning_rate": 9.765263157894737e-06,
355
+ "loss": 0.6198,
356
+ "step": 1450
357
+ },
358
+ {
359
+ "epoch": 0.6,
360
+ "learning_rate": 9.752105263157897e-06,
361
+ "loss": 0.6331,
362
+ "step": 1475
363
+ },
364
+ {
365
+ "epoch": 0.61,
366
+ "learning_rate": 9.738947368421054e-06,
367
+ "loss": 0.5842,
368
+ "step": 1500
369
+ },
370
+ {
371
+ "epoch": 0.62,
372
+ "learning_rate": 9.725789473684212e-06,
373
+ "loss": 0.5856,
374
+ "step": 1525
375
+ },
376
+ {
377
+ "epoch": 0.63,
378
+ "learning_rate": 9.712631578947369e-06,
379
+ "loss": 0.5456,
380
+ "step": 1550
381
+ },
382
+ {
383
+ "epoch": 0.64,
384
+ "learning_rate": 9.699473684210528e-06,
385
+ "loss": 0.5578,
386
+ "step": 1575
387
+ },
388
+ {
389
+ "epoch": 0.65,
390
+ "learning_rate": 9.686315789473684e-06,
391
+ "loss": 0.5631,
392
+ "step": 1600
393
+ },
394
+ {
395
+ "epoch": 0.66,
396
+ "learning_rate": 9.673157894736843e-06,
397
+ "loss": 0.6264,
398
+ "step": 1625
399
+ },
400
+ {
401
+ "epoch": 0.67,
402
+ "learning_rate": 9.66e-06,
403
+ "loss": 0.597,
404
+ "step": 1650
405
+ },
406
+ {
407
+ "epoch": 0.68,
408
+ "learning_rate": 9.646842105263158e-06,
409
+ "loss": 0.5916,
410
+ "step": 1675
411
+ },
412
+ {
413
+ "epoch": 0.69,
414
+ "learning_rate": 9.633684210526316e-06,
415
+ "loss": 0.5901,
416
+ "step": 1700
417
+ },
418
+ {
419
+ "epoch": 0.7,
420
+ "learning_rate": 9.620526315789475e-06,
421
+ "loss": 0.5801,
422
+ "step": 1725
423
+ },
424
+ {
425
+ "epoch": 0.71,
426
+ "learning_rate": 9.607368421052632e-06,
427
+ "loss": 0.5317,
428
+ "step": 1750
429
+ },
430
+ {
431
+ "epoch": 0.72,
432
+ "learning_rate": 9.59421052631579e-06,
433
+ "loss": 0.5592,
434
+ "step": 1775
435
+ },
436
+ {
437
+ "epoch": 0.73,
438
+ "learning_rate": 9.581052631578947e-06,
439
+ "loss": 0.5614,
440
+ "step": 1800
441
+ },
442
+ {
443
+ "epoch": 0.74,
444
+ "learning_rate": 9.567894736842106e-06,
445
+ "loss": 0.6351,
446
+ "step": 1825
447
+ },
448
+ {
449
+ "epoch": 0.75,
450
+ "learning_rate": 9.554736842105264e-06,
451
+ "loss": 0.5655,
452
+ "step": 1850
453
+ },
454
+ {
455
+ "epoch": 0.76,
456
+ "learning_rate": 9.541578947368421e-06,
457
+ "loss": 0.5137,
458
+ "step": 1875
459
+ },
460
+ {
461
+ "epoch": 0.77,
462
+ "learning_rate": 9.52842105263158e-06,
463
+ "loss": 0.5644,
464
+ "step": 1900
465
+ },
466
+ {
467
+ "epoch": 0.78,
468
+ "learning_rate": 9.515263157894738e-06,
469
+ "loss": 0.4815,
470
+ "step": 1925
471
+ },
472
+ {
473
+ "epoch": 0.79,
474
+ "learning_rate": 9.502105263157896e-06,
475
+ "loss": 0.5776,
476
+ "step": 1950
477
+ },
478
+ {
479
+ "epoch": 0.8,
480
+ "learning_rate": 9.488947368421053e-06,
481
+ "loss": 0.575,
482
+ "step": 1975
483
+ },
484
+ {
485
+ "epoch": 0.81,
486
+ "learning_rate": 9.475789473684212e-06,
487
+ "loss": 0.5649,
488
+ "step": 2000
489
+ },
490
+ {
491
+ "epoch": 0.81,
492
+ "eval_loss": 0.4785773754119873,
493
+ "eval_runtime": 2365.5611,
494
+ "eval_samples_per_second": 4.473,
495
+ "eval_steps_per_second": 0.28,
496
+ "eval_wer": 85.7966357966358,
497
+ "step": 2000
498
+ },
499
+ {
500
+ "epoch": 0.82,
501
+ "learning_rate": 9.462631578947368e-06,
502
+ "loss": 0.5274,
503
+ "step": 2025
504
+ },
505
+ {
506
+ "epoch": 0.83,
507
+ "learning_rate": 9.449473684210527e-06,
508
+ "loss": 0.5418,
509
+ "step": 2050
510
+ },
511
+ {
512
+ "epoch": 0.84,
513
+ "learning_rate": 9.436315789473685e-06,
514
+ "loss": 0.5214,
515
+ "step": 2075
516
+ },
517
+ {
518
+ "epoch": 0.85,
519
+ "learning_rate": 9.423157894736842e-06,
520
+ "loss": 0.5318,
521
+ "step": 2100
522
+ },
523
+ {
524
+ "epoch": 0.86,
525
+ "learning_rate": 9.41e-06,
526
+ "loss": 0.5926,
527
+ "step": 2125
528
+ },
529
+ {
530
+ "epoch": 0.87,
531
+ "learning_rate": 9.396842105263159e-06,
532
+ "loss": 0.5911,
533
+ "step": 2150
534
+ },
535
+ {
536
+ "epoch": 0.88,
537
+ "learning_rate": 9.383684210526316e-06,
538
+ "loss": 0.5175,
539
+ "step": 2175
540
+ },
541
+ {
542
+ "epoch": 0.89,
543
+ "learning_rate": 9.370526315789474e-06,
544
+ "loss": 0.5669,
545
+ "step": 2200
546
+ },
547
+ {
548
+ "epoch": 0.9,
549
+ "learning_rate": 9.357368421052633e-06,
550
+ "loss": 0.5104,
551
+ "step": 2225
552
+ },
553
+ {
554
+ "epoch": 0.91,
555
+ "learning_rate": 9.34421052631579e-06,
556
+ "loss": 0.5228,
557
+ "step": 2250
558
+ },
559
+ {
560
+ "epoch": 0.92,
561
+ "learning_rate": 9.331052631578948e-06,
562
+ "loss": 0.5131,
563
+ "step": 2275
564
+ },
565
+ {
566
+ "epoch": 0.93,
567
+ "learning_rate": 9.317894736842105e-06,
568
+ "loss": 0.5767,
569
+ "step": 2300
570
+ },
571
+ {
572
+ "epoch": 0.94,
573
+ "learning_rate": 9.304736842105265e-06,
574
+ "loss": 0.5493,
575
+ "step": 2325
576
+ },
577
+ {
578
+ "epoch": 0.95,
579
+ "learning_rate": 9.291578947368422e-06,
580
+ "loss": 0.5046,
581
+ "step": 2350
582
+ },
583
+ {
584
+ "epoch": 0.96,
585
+ "learning_rate": 9.27842105263158e-06,
586
+ "loss": 0.5923,
587
+ "step": 2375
588
+ },
589
+ {
590
+ "epoch": 0.97,
591
+ "learning_rate": 9.265263157894737e-06,
592
+ "loss": 0.5278,
593
+ "step": 2400
594
+ },
595
+ {
596
+ "epoch": 0.98,
597
+ "learning_rate": 9.252105263157896e-06,
598
+ "loss": 0.5761,
599
+ "step": 2425
600
+ },
601
+ {
602
+ "epoch": 0.99,
603
+ "learning_rate": 9.238947368421052e-06,
604
+ "loss": 0.5782,
605
+ "step": 2450
606
+ },
607
+ {
608
+ "epoch": 1.0,
609
+ "learning_rate": 9.225789473684211e-06,
610
+ "loss": 0.5325,
611
+ "step": 2475
612
+ },
613
+ {
614
+ "epoch": 1.01,
615
+ "learning_rate": 9.21263157894737e-06,
616
+ "loss": 0.4361,
617
+ "step": 2500
618
+ },
619
+ {
620
+ "epoch": 1.02,
621
+ "learning_rate": 9.199473684210526e-06,
622
+ "loss": 0.4985,
623
+ "step": 2525
624
+ },
625
+ {
626
+ "epoch": 1.03,
627
+ "learning_rate": 9.186315789473685e-06,
628
+ "loss": 0.4505,
629
+ "step": 2550
630
+ },
631
+ {
632
+ "epoch": 1.04,
633
+ "learning_rate": 9.173157894736843e-06,
634
+ "loss": 0.459,
635
+ "step": 2575
636
+ },
637
+ {
638
+ "epoch": 1.05,
639
+ "learning_rate": 9.16e-06,
640
+ "loss": 0.4398,
641
+ "step": 2600
642
+ },
643
+ {
644
+ "epoch": 1.06,
645
+ "learning_rate": 9.146842105263158e-06,
646
+ "loss": 0.4314,
647
+ "step": 2625
648
+ },
649
+ {
650
+ "epoch": 1.07,
651
+ "learning_rate": 9.133684210526317e-06,
652
+ "loss": 0.4722,
653
+ "step": 2650
654
+ },
655
+ {
656
+ "epoch": 1.08,
657
+ "learning_rate": 9.120526315789475e-06,
658
+ "loss": 0.4472,
659
+ "step": 2675
660
+ },
661
+ {
662
+ "epoch": 1.09,
663
+ "learning_rate": 9.107368421052632e-06,
664
+ "loss": 0.423,
665
+ "step": 2700
666
+ },
667
+ {
668
+ "epoch": 1.1,
669
+ "learning_rate": 9.09421052631579e-06,
670
+ "loss": 0.4783,
671
+ "step": 2725
672
+ },
673
+ {
674
+ "epoch": 1.11,
675
+ "learning_rate": 9.081052631578949e-06,
676
+ "loss": 0.4566,
677
+ "step": 2750
678
+ },
679
+ {
680
+ "epoch": 1.12,
681
+ "learning_rate": 9.067894736842106e-06,
682
+ "loss": 0.469,
683
+ "step": 2775
684
+ },
685
+ {
686
+ "epoch": 1.13,
687
+ "learning_rate": 9.054736842105264e-06,
688
+ "loss": 0.507,
689
+ "step": 2800
690
+ },
691
+ {
692
+ "epoch": 1.14,
693
+ "learning_rate": 9.041578947368423e-06,
694
+ "loss": 0.4164,
695
+ "step": 2825
696
+ },
697
+ {
698
+ "epoch": 1.15,
699
+ "learning_rate": 9.02842105263158e-06,
700
+ "loss": 0.4619,
701
+ "step": 2850
702
+ },
703
+ {
704
+ "epoch": 1.16,
705
+ "learning_rate": 9.015263157894738e-06,
706
+ "loss": 0.4096,
707
+ "step": 2875
708
+ },
709
+ {
710
+ "epoch": 1.17,
711
+ "learning_rate": 9.002105263157895e-06,
712
+ "loss": 0.4047,
713
+ "step": 2900
714
+ },
715
+ {
716
+ "epoch": 1.18,
717
+ "learning_rate": 8.988947368421054e-06,
718
+ "loss": 0.4122,
719
+ "step": 2925
720
+ },
721
+ {
722
+ "epoch": 1.19,
723
+ "learning_rate": 8.97578947368421e-06,
724
+ "loss": 0.4237,
725
+ "step": 2950
726
+ },
727
+ {
728
+ "epoch": 1.2,
729
+ "learning_rate": 8.96263157894737e-06,
730
+ "loss": 0.4915,
731
+ "step": 2975
732
+ },
733
+ {
734
+ "epoch": 1.21,
735
+ "learning_rate": 8.949473684210527e-06,
736
+ "loss": 0.4522,
737
+ "step": 3000
738
+ },
739
+ {
740
+ "epoch": 1.22,
741
+ "learning_rate": 8.936315789473684e-06,
742
+ "loss": 0.475,
743
+ "step": 3025
744
+ },
745
+ {
746
+ "epoch": 1.23,
747
+ "learning_rate": 8.923157894736842e-06,
748
+ "loss": 0.421,
749
+ "step": 3050
750
+ },
751
+ {
752
+ "epoch": 1.24,
753
+ "learning_rate": 8.910000000000001e-06,
754
+ "loss": 0.4252,
755
+ "step": 3075
756
+ },
757
+ {
758
+ "epoch": 1.25,
759
+ "learning_rate": 8.896842105263159e-06,
760
+ "loss": 0.3984,
761
+ "step": 3100
762
+ },
763
+ {
764
+ "epoch": 1.26,
765
+ "learning_rate": 8.883684210526316e-06,
766
+ "loss": 0.4225,
767
+ "step": 3125
768
+ },
769
+ {
770
+ "epoch": 1.27,
771
+ "learning_rate": 8.870526315789474e-06,
772
+ "loss": 0.4671,
773
+ "step": 3150
774
+ },
775
+ {
776
+ "epoch": 1.28,
777
+ "learning_rate": 8.857368421052633e-06,
778
+ "loss": 0.513,
779
+ "step": 3175
780
+ },
781
+ {
782
+ "epoch": 1.29,
783
+ "learning_rate": 8.84421052631579e-06,
784
+ "loss": 0.4499,
785
+ "step": 3200
786
+ },
787
+ {
788
+ "epoch": 1.3,
789
+ "learning_rate": 8.831052631578948e-06,
790
+ "loss": 0.5166,
791
+ "step": 3225
792
+ },
793
+ {
794
+ "epoch": 1.31,
795
+ "learning_rate": 8.817894736842107e-06,
796
+ "loss": 0.4238,
797
+ "step": 3250
798
+ },
799
+ {
800
+ "epoch": 1.32,
801
+ "learning_rate": 8.804736842105264e-06,
802
+ "loss": 0.4494,
803
+ "step": 3275
804
+ },
805
+ {
806
+ "epoch": 1.33,
807
+ "learning_rate": 8.791578947368422e-06,
808
+ "loss": 0.4708,
809
+ "step": 3300
810
+ },
811
+ {
812
+ "epoch": 1.34,
813
+ "learning_rate": 8.77842105263158e-06,
814
+ "loss": 0.4304,
815
+ "step": 3325
816
+ },
817
+ {
818
+ "epoch": 1.35,
819
+ "learning_rate": 8.765263157894739e-06,
820
+ "loss": 0.441,
821
+ "step": 3350
822
+ },
823
+ {
824
+ "epoch": 1.36,
825
+ "learning_rate": 8.752105263157894e-06,
826
+ "loss": 0.5283,
827
+ "step": 3375
828
+ },
829
+ {
830
+ "epoch": 1.37,
831
+ "learning_rate": 8.738947368421053e-06,
832
+ "loss": 0.4366,
833
+ "step": 3400
834
+ },
835
+ {
836
+ "epoch": 1.38,
837
+ "learning_rate": 8.725789473684211e-06,
838
+ "loss": 0.4281,
839
+ "step": 3425
840
+ },
841
+ {
842
+ "epoch": 1.39,
843
+ "learning_rate": 8.712631578947368e-06,
844
+ "loss": 0.4667,
845
+ "step": 3450
846
+ },
847
+ {
848
+ "epoch": 1.4,
849
+ "learning_rate": 8.699473684210526e-06,
850
+ "loss": 0.4286,
851
+ "step": 3475
852
+ },
853
+ {
854
+ "epoch": 1.41,
855
+ "learning_rate": 8.686315789473685e-06,
856
+ "loss": 0.4623,
857
+ "step": 3500
858
+ },
859
+ {
860
+ "epoch": 1.42,
861
+ "learning_rate": 8.673157894736843e-06,
862
+ "loss": 0.4533,
863
+ "step": 3525
864
+ },
865
+ {
866
+ "epoch": 1.43,
867
+ "learning_rate": 8.66e-06,
868
+ "loss": 0.4646,
869
+ "step": 3550
870
+ },
871
+ {
872
+ "epoch": 1.44,
873
+ "learning_rate": 8.64684210526316e-06,
874
+ "loss": 0.4365,
875
+ "step": 3575
876
+ },
877
+ {
878
+ "epoch": 1.45,
879
+ "learning_rate": 8.633684210526317e-06,
880
+ "loss": 0.4762,
881
+ "step": 3600
882
+ },
883
+ {
884
+ "epoch": 1.46,
885
+ "learning_rate": 8.620526315789474e-06,
886
+ "loss": 0.5173,
887
+ "step": 3625
888
+ },
889
+ {
890
+ "epoch": 1.47,
891
+ "learning_rate": 8.607368421052632e-06,
892
+ "loss": 0.4368,
893
+ "step": 3650
894
+ },
895
+ {
896
+ "epoch": 1.48,
897
+ "learning_rate": 8.594210526315791e-06,
898
+ "loss": 0.4165,
899
+ "step": 3675
900
+ },
901
+ {
902
+ "epoch": 1.49,
903
+ "learning_rate": 8.581052631578948e-06,
904
+ "loss": 0.416,
905
+ "step": 3700
906
+ },
907
+ {
908
+ "epoch": 1.5,
909
+ "learning_rate": 8.567894736842106e-06,
910
+ "loss": 0.4247,
911
+ "step": 3725
912
+ },
913
+ {
914
+ "epoch": 1.51,
915
+ "learning_rate": 8.554736842105263e-06,
916
+ "loss": 0.4047,
917
+ "step": 3750
918
+ },
919
+ {
920
+ "epoch": 1.52,
921
+ "learning_rate": 8.541578947368423e-06,
922
+ "loss": 0.4254,
923
+ "step": 3775
924
+ },
925
+ {
926
+ "epoch": 1.53,
927
+ "learning_rate": 8.528421052631578e-06,
928
+ "loss": 0.4822,
929
+ "step": 3800
930
+ },
931
+ {
932
+ "epoch": 1.54,
933
+ "learning_rate": 8.515263157894738e-06,
934
+ "loss": 0.3774,
935
+ "step": 3825
936
+ },
937
+ {
938
+ "epoch": 1.55,
939
+ "learning_rate": 8.502105263157897e-06,
940
+ "loss": 0.4308,
941
+ "step": 3850
942
+ },
943
+ {
944
+ "epoch": 1.56,
945
+ "learning_rate": 8.488947368421052e-06,
946
+ "loss": 0.4439,
947
+ "step": 3875
948
+ },
949
+ {
950
+ "epoch": 1.57,
951
+ "learning_rate": 8.475789473684212e-06,
952
+ "loss": 0.5038,
953
+ "step": 3900
954
+ },
955
+ {
956
+ "epoch": 1.58,
957
+ "learning_rate": 8.46263157894737e-06,
958
+ "loss": 0.4451,
959
+ "step": 3925
960
+ },
961
+ {
962
+ "epoch": 1.59,
963
+ "learning_rate": 8.449473684210527e-06,
964
+ "loss": 0.4103,
965
+ "step": 3950
966
+ },
967
+ {
968
+ "epoch": 1.6,
969
+ "learning_rate": 8.436315789473684e-06,
970
+ "loss": 0.3975,
971
+ "step": 3975
972
+ },
973
+ {
974
+ "epoch": 1.61,
975
+ "learning_rate": 8.423157894736843e-06,
976
+ "loss": 0.4097,
977
+ "step": 4000
978
+ },
979
+ {
980
+ "epoch": 1.61,
981
+ "eval_loss": 0.4367630183696747,
982
+ "eval_runtime": 2455.6092,
983
+ "eval_samples_per_second": 4.309,
984
+ "eval_steps_per_second": 0.27,
985
+ "eval_wer": 83.44358344358345,
986
+ "step": 4000
987
+ },
988
+ {
989
+ "epoch": 1.62,
990
+ "learning_rate": 8.41e-06,
991
+ "loss": 0.4376,
992
+ "step": 4025
993
+ },
994
+ {
995
+ "epoch": 1.63,
996
+ "learning_rate": 8.396842105263158e-06,
997
+ "loss": 0.4917,
998
+ "step": 4050
999
+ },
1000
+ {
1001
+ "epoch": 1.64,
1002
+ "learning_rate": 8.383684210526316e-06,
1003
+ "loss": 0.4294,
1004
+ "step": 4075
1005
+ },
1006
+ {
1007
+ "epoch": 1.65,
1008
+ "learning_rate": 8.370526315789475e-06,
1009
+ "loss": 0.5441,
1010
+ "step": 4100
1011
+ },
1012
+ {
1013
+ "epoch": 1.66,
1014
+ "learning_rate": 8.357368421052632e-06,
1015
+ "loss": 0.4649,
1016
+ "step": 4125
1017
+ },
1018
+ {
1019
+ "epoch": 1.67,
1020
+ "learning_rate": 8.34421052631579e-06,
1021
+ "loss": 0.4271,
1022
+ "step": 4150
1023
+ },
1024
+ {
1025
+ "epoch": 1.68,
1026
+ "learning_rate": 8.331052631578947e-06,
1027
+ "loss": 0.4814,
1028
+ "step": 4175
1029
+ },
1030
+ {
1031
+ "epoch": 1.69,
1032
+ "learning_rate": 8.317894736842107e-06,
1033
+ "loss": 0.4261,
1034
+ "step": 4200
1035
+ },
1036
+ {
1037
+ "epoch": 1.71,
1038
+ "learning_rate": 8.304736842105264e-06,
1039
+ "loss": 0.4557,
1040
+ "step": 4225
1041
+ },
1042
+ {
1043
+ "epoch": 1.72,
1044
+ "learning_rate": 8.291578947368422e-06,
1045
+ "loss": 0.4564,
1046
+ "step": 4250
1047
+ },
1048
+ {
1049
+ "epoch": 1.73,
1050
+ "learning_rate": 8.27842105263158e-06,
1051
+ "loss": 0.3951,
1052
+ "step": 4275
1053
+ },
1054
+ {
1055
+ "epoch": 1.74,
1056
+ "learning_rate": 8.265263157894737e-06,
1057
+ "loss": 0.4213,
1058
+ "step": 4300
1059
+ },
1060
+ {
1061
+ "epoch": 1.75,
1062
+ "learning_rate": 8.252105263157896e-06,
1063
+ "loss": 0.4574,
1064
+ "step": 4325
1065
+ },
1066
+ {
1067
+ "epoch": 1.76,
1068
+ "learning_rate": 8.238947368421053e-06,
1069
+ "loss": 0.5026,
1070
+ "step": 4350
1071
+ },
1072
+ {
1073
+ "epoch": 1.77,
1074
+ "learning_rate": 8.22578947368421e-06,
1075
+ "loss": 0.4842,
1076
+ "step": 4375
1077
+ },
1078
+ {
1079
+ "epoch": 1.78,
1080
+ "learning_rate": 8.212631578947368e-06,
1081
+ "loss": 0.4095,
1082
+ "step": 4400
1083
+ },
1084
+ {
1085
+ "epoch": 1.79,
1086
+ "learning_rate": 8.199473684210527e-06,
1087
+ "loss": 0.3993,
1088
+ "step": 4425
1089
+ },
1090
+ {
1091
+ "epoch": 1.8,
1092
+ "learning_rate": 8.186315789473685e-06,
1093
+ "loss": 0.4402,
1094
+ "step": 4450
1095
+ },
1096
+ {
1097
+ "epoch": 1.81,
1098
+ "learning_rate": 8.173157894736842e-06,
1099
+ "loss": 0.3791,
1100
+ "step": 4475
1101
+ },
1102
+ {
1103
+ "epoch": 1.82,
1104
+ "learning_rate": 8.16e-06,
1105
+ "loss": 0.4047,
1106
+ "step": 4500
1107
+ },
1108
+ {
1109
+ "epoch": 1.83,
1110
+ "learning_rate": 8.146842105263159e-06,
1111
+ "loss": 0.4431,
1112
+ "step": 4525
1113
+ },
1114
+ {
1115
+ "epoch": 1.84,
1116
+ "learning_rate": 8.133684210526316e-06,
1117
+ "loss": 0.4196,
1118
+ "step": 4550
1119
+ },
1120
+ {
1121
+ "epoch": 1.85,
1122
+ "learning_rate": 8.120526315789474e-06,
1123
+ "loss": 0.3802,
1124
+ "step": 4575
1125
+ },
1126
+ {
1127
+ "epoch": 1.86,
1128
+ "learning_rate": 8.107368421052633e-06,
1129
+ "loss": 0.4199,
1130
+ "step": 4600
1131
+ },
1132
+ {
1133
+ "epoch": 1.87,
1134
+ "learning_rate": 8.09421052631579e-06,
1135
+ "loss": 0.4356,
1136
+ "step": 4625
1137
+ },
1138
+ {
1139
+ "epoch": 1.88,
1140
+ "learning_rate": 8.081052631578948e-06,
1141
+ "loss": 0.4633,
1142
+ "step": 4650
1143
+ },
1144
+ {
1145
+ "epoch": 1.89,
1146
+ "learning_rate": 8.067894736842106e-06,
1147
+ "loss": 0.4335,
1148
+ "step": 4675
1149
+ },
1150
+ {
1151
+ "epoch": 1.9,
1152
+ "learning_rate": 8.054736842105265e-06,
1153
+ "loss": 0.4721,
1154
+ "step": 4700
1155
+ },
1156
+ {
1157
+ "epoch": 1.91,
1158
+ "learning_rate": 8.042105263157896e-06,
1159
+ "loss": 0.4326,
1160
+ "step": 4725
1161
+ },
1162
+ {
1163
+ "epoch": 1.92,
1164
+ "learning_rate": 8.028947368421054e-06,
1165
+ "loss": 0.4377,
1166
+ "step": 4750
1167
+ },
1168
+ {
1169
+ "epoch": 1.93,
1170
+ "learning_rate": 8.015789473684211e-06,
1171
+ "loss": 0.375,
1172
+ "step": 4775
1173
+ },
1174
+ {
1175
+ "epoch": 1.94,
1176
+ "learning_rate": 8.002631578947368e-06,
1177
+ "loss": 0.4189,
1178
+ "step": 4800
1179
+ },
1180
+ {
1181
+ "epoch": 1.95,
1182
+ "learning_rate": 7.989473684210528e-06,
1183
+ "loss": 0.4016,
1184
+ "step": 4825
1185
+ },
1186
+ {
1187
+ "epoch": 1.96,
1188
+ "learning_rate": 7.976315789473685e-06,
1189
+ "loss": 0.4372,
1190
+ "step": 4850
1191
+ },
1192
+ {
1193
+ "epoch": 1.97,
1194
+ "learning_rate": 7.963157894736843e-06,
1195
+ "loss": 0.4668,
1196
+ "step": 4875
1197
+ },
1198
+ {
1199
+ "epoch": 1.98,
1200
+ "learning_rate": 7.950000000000002e-06,
1201
+ "loss": 0.414,
1202
+ "step": 4900
1203
+ },
1204
+ {
1205
+ "epoch": 1.99,
1206
+ "learning_rate": 7.936842105263158e-06,
1207
+ "loss": 0.4023,
1208
+ "step": 4925
1209
+ },
1210
+ {
1211
+ "epoch": 2.0,
1212
+ "learning_rate": 7.923684210526317e-06,
1213
+ "loss": 0.4011,
1214
+ "step": 4950
1215
+ },
1216
+ {
1217
+ "epoch": 2.01,
1218
+ "learning_rate": 7.910526315789474e-06,
1219
+ "loss": 0.3677,
1220
+ "step": 4975
1221
+ },
1222
+ {
1223
+ "epoch": 2.02,
1224
+ "learning_rate": 7.897368421052632e-06,
1225
+ "loss": 0.3262,
1226
+ "step": 5000
1227
+ },
1228
+ {
1229
+ "epoch": 2.03,
1230
+ "learning_rate": 7.88421052631579e-06,
1231
+ "loss": 0.3211,
1232
+ "step": 5025
1233
+ },
1234
+ {
1235
+ "epoch": 2.04,
1236
+ "learning_rate": 7.871052631578948e-06,
1237
+ "loss": 0.3237,
1238
+ "step": 5050
1239
+ },
1240
+ {
1241
+ "epoch": 2.05,
1242
+ "learning_rate": 7.857894736842106e-06,
1243
+ "loss": 0.3344,
1244
+ "step": 5075
1245
+ },
1246
+ {
1247
+ "epoch": 2.06,
1248
+ "learning_rate": 7.844736842105263e-06,
1249
+ "loss": 0.304,
1250
+ "step": 5100
1251
+ },
1252
+ {
1253
+ "epoch": 2.07,
1254
+ "learning_rate": 7.831578947368421e-06,
1255
+ "loss": 0.3276,
1256
+ "step": 5125
1257
+ },
1258
+ {
1259
+ "epoch": 2.08,
1260
+ "learning_rate": 7.81842105263158e-06,
1261
+ "loss": 0.3361,
1262
+ "step": 5150
1263
+ },
1264
+ {
1265
+ "epoch": 2.09,
1266
+ "learning_rate": 7.805263157894738e-06,
1267
+ "loss": 0.3259,
1268
+ "step": 5175
1269
+ },
1270
+ {
1271
+ "epoch": 2.1,
1272
+ "learning_rate": 7.792105263157895e-06,
1273
+ "loss": 0.373,
1274
+ "step": 5200
1275
+ },
1276
+ {
1277
+ "epoch": 2.11,
1278
+ "learning_rate": 7.778947368421054e-06,
1279
+ "loss": 0.3513,
1280
+ "step": 5225
1281
+ },
1282
+ {
1283
+ "epoch": 2.12,
1284
+ "learning_rate": 7.765789473684212e-06,
1285
+ "loss": 0.3154,
1286
+ "step": 5250
1287
+ },
1288
+ {
1289
+ "epoch": 2.13,
1290
+ "learning_rate": 7.75263157894737e-06,
1291
+ "loss": 0.3178,
1292
+ "step": 5275
1293
+ },
1294
+ {
1295
+ "epoch": 2.14,
1296
+ "learning_rate": 7.739473684210527e-06,
1297
+ "loss": 0.3195,
1298
+ "step": 5300
1299
+ },
1300
+ {
1301
+ "epoch": 2.15,
1302
+ "learning_rate": 7.726315789473686e-06,
1303
+ "loss": 0.4051,
1304
+ "step": 5325
1305
+ },
1306
+ {
1307
+ "epoch": 2.16,
1308
+ "learning_rate": 7.713157894736842e-06,
1309
+ "loss": 0.3527,
1310
+ "step": 5350
1311
+ },
1312
+ {
1313
+ "epoch": 2.17,
1314
+ "learning_rate": 7.7e-06,
1315
+ "loss": 0.2731,
1316
+ "step": 5375
1317
+ },
1318
+ {
1319
+ "epoch": 2.18,
1320
+ "learning_rate": 7.686842105263158e-06,
1321
+ "loss": 0.3218,
1322
+ "step": 5400
1323
+ },
1324
+ {
1325
+ "epoch": 2.19,
1326
+ "learning_rate": 7.673684210526316e-06,
1327
+ "loss": 0.3277,
1328
+ "step": 5425
1329
+ },
1330
+ {
1331
+ "epoch": 2.2,
1332
+ "learning_rate": 7.660526315789473e-06,
1333
+ "loss": 0.3669,
1334
+ "step": 5450
1335
+ },
1336
+ {
1337
+ "epoch": 2.21,
1338
+ "learning_rate": 7.647368421052632e-06,
1339
+ "loss": 0.3595,
1340
+ "step": 5475
1341
+ },
1342
+ {
1343
+ "epoch": 2.22,
1344
+ "learning_rate": 7.63421052631579e-06,
1345
+ "loss": 0.3525,
1346
+ "step": 5500
1347
+ },
1348
+ {
1349
+ "epoch": 2.23,
1350
+ "learning_rate": 7.621052631578948e-06,
1351
+ "loss": 0.3428,
1352
+ "step": 5525
1353
+ },
1354
+ {
1355
+ "epoch": 2.24,
1356
+ "learning_rate": 7.607894736842107e-06,
1357
+ "loss": 0.361,
1358
+ "step": 5550
1359
+ },
1360
+ {
1361
+ "epoch": 2.25,
1362
+ "learning_rate": 7.594736842105263e-06,
1363
+ "loss": 0.3812,
1364
+ "step": 5575
1365
+ },
1366
+ {
1367
+ "epoch": 2.26,
1368
+ "learning_rate": 7.581578947368422e-06,
1369
+ "loss": 0.3576,
1370
+ "step": 5600
1371
+ },
1372
+ {
1373
+ "epoch": 2.27,
1374
+ "learning_rate": 7.568421052631579e-06,
1375
+ "loss": 0.3477,
1376
+ "step": 5625
1377
+ },
1378
+ {
1379
+ "epoch": 2.28,
1380
+ "learning_rate": 7.555263157894737e-06,
1381
+ "loss": 0.3456,
1382
+ "step": 5650
1383
+ },
1384
+ {
1385
+ "epoch": 2.29,
1386
+ "learning_rate": 7.542105263157895e-06,
1387
+ "loss": 0.407,
1388
+ "step": 5675
1389
+ },
1390
+ {
1391
+ "epoch": 2.3,
1392
+ "learning_rate": 7.528947368421053e-06,
1393
+ "loss": 0.3203,
1394
+ "step": 5700
1395
+ },
1396
+ {
1397
+ "epoch": 2.31,
1398
+ "learning_rate": 7.515789473684211e-06,
1399
+ "loss": 0.3543,
1400
+ "step": 5725
1401
+ },
1402
+ {
1403
+ "epoch": 2.32,
1404
+ "learning_rate": 7.502631578947369e-06,
1405
+ "loss": 0.3663,
1406
+ "step": 5750
1407
+ },
1408
+ {
1409
+ "epoch": 2.33,
1410
+ "learning_rate": 7.4894736842105265e-06,
1411
+ "loss": 0.3229,
1412
+ "step": 5775
1413
+ },
1414
+ {
1415
+ "epoch": 2.34,
1416
+ "learning_rate": 7.476315789473685e-06,
1417
+ "loss": 0.3527,
1418
+ "step": 5800
1419
+ },
1420
+ {
1421
+ "epoch": 2.35,
1422
+ "learning_rate": 7.463157894736843e-06,
1423
+ "loss": 0.3663,
1424
+ "step": 5825
1425
+ },
1426
+ {
1427
+ "epoch": 2.36,
1428
+ "learning_rate": 7.450000000000001e-06,
1429
+ "loss": 0.3202,
1430
+ "step": 5850
1431
+ },
1432
+ {
1433
+ "epoch": 2.37,
1434
+ "learning_rate": 7.436842105263159e-06,
1435
+ "loss": 0.3239,
1436
+ "step": 5875
1437
+ },
1438
+ {
1439
+ "epoch": 2.38,
1440
+ "learning_rate": 7.4236842105263165e-06,
1441
+ "loss": 0.3481,
1442
+ "step": 5900
1443
+ },
1444
+ {
1445
+ "epoch": 2.39,
1446
+ "learning_rate": 7.410526315789475e-06,
1447
+ "loss": 0.4125,
1448
+ "step": 5925
1449
+ },
1450
+ {
1451
+ "epoch": 2.4,
1452
+ "learning_rate": 7.397368421052632e-06,
1453
+ "loss": 0.3412,
1454
+ "step": 5950
1455
+ },
1456
+ {
1457
+ "epoch": 2.41,
1458
+ "learning_rate": 7.384210526315791e-06,
1459
+ "loss": 0.3212,
1460
+ "step": 5975
1461
+ },
1462
+ {
1463
+ "epoch": 2.42,
1464
+ "learning_rate": 7.371052631578947e-06,
1465
+ "loss": 0.4217,
1466
+ "step": 6000
1467
+ },
1468
+ {
1469
+ "epoch": 2.42,
1470
+ "eval_loss": 0.4236811399459839,
1471
+ "eval_runtime": 2468.8217,
1472
+ "eval_samples_per_second": 4.286,
1473
+ "eval_steps_per_second": 0.268,
1474
+ "eval_wer": 81.98828198828198,
1475
+ "step": 6000
1476
+ },
1477
+ {
1478
+ "epoch": 2.43,
1479
+ "learning_rate": 7.3578947368421065e-06,
1480
+ "loss": 0.3245,
1481
+ "step": 6025
1482
+ },
1483
+ {
1484
+ "epoch": 2.44,
1485
+ "learning_rate": 7.344736842105263e-06,
1486
+ "loss": 0.3201,
1487
+ "step": 6050
1488
+ },
1489
+ {
1490
+ "epoch": 2.45,
1491
+ "learning_rate": 7.3315789473684214e-06,
1492
+ "loss": 0.3448,
1493
+ "step": 6075
1494
+ },
1495
+ {
1496
+ "epoch": 2.46,
1497
+ "learning_rate": 7.318421052631579e-06,
1498
+ "loss": 0.3403,
1499
+ "step": 6100
1500
+ },
1501
+ {
1502
+ "epoch": 2.47,
1503
+ "learning_rate": 7.305263157894737e-06,
1504
+ "loss": 0.3708,
1505
+ "step": 6125
1506
+ },
1507
+ {
1508
+ "epoch": 2.48,
1509
+ "learning_rate": 7.292105263157895e-06,
1510
+ "loss": 0.325,
1511
+ "step": 6150
1512
+ },
1513
+ {
1514
+ "epoch": 2.49,
1515
+ "learning_rate": 7.278947368421053e-06,
1516
+ "loss": 0.3329,
1517
+ "step": 6175
1518
+ },
1519
+ {
1520
+ "epoch": 2.5,
1521
+ "learning_rate": 7.265789473684211e-06,
1522
+ "loss": 0.3146,
1523
+ "step": 6200
1524
+ },
1525
+ {
1526
+ "epoch": 2.51,
1527
+ "learning_rate": 7.252631578947369e-06,
1528
+ "loss": 0.3314,
1529
+ "step": 6225
1530
+ },
1531
+ {
1532
+ "epoch": 2.52,
1533
+ "learning_rate": 7.239473684210527e-06,
1534
+ "loss": 0.3497,
1535
+ "step": 6250
1536
+ },
1537
+ {
1538
+ "epoch": 2.53,
1539
+ "learning_rate": 7.226315789473685e-06,
1540
+ "loss": 0.3507,
1541
+ "step": 6275
1542
+ },
1543
+ {
1544
+ "epoch": 2.54,
1545
+ "learning_rate": 7.213157894736843e-06,
1546
+ "loss": 0.3504,
1547
+ "step": 6300
1548
+ },
1549
+ {
1550
+ "epoch": 2.55,
1551
+ "learning_rate": 7.2000000000000005e-06,
1552
+ "loss": 0.3633,
1553
+ "step": 6325
1554
+ },
1555
+ {
1556
+ "epoch": 2.56,
1557
+ "learning_rate": 7.186842105263159e-06,
1558
+ "loss": 0.3498,
1559
+ "step": 6350
1560
+ },
1561
+ {
1562
+ "epoch": 2.57,
1563
+ "learning_rate": 7.17421052631579e-06,
1564
+ "loss": 0.33,
1565
+ "step": 6375
1566
+ },
1567
+ {
1568
+ "epoch": 2.58,
1569
+ "learning_rate": 7.161052631578948e-06,
1570
+ "loss": 0.2975,
1571
+ "step": 6400
1572
+ },
1573
+ {
1574
+ "epoch": 2.59,
1575
+ "learning_rate": 7.147894736842106e-06,
1576
+ "loss": 0.3353,
1577
+ "step": 6425
1578
+ },
1579
+ {
1580
+ "epoch": 2.6,
1581
+ "learning_rate": 7.134736842105264e-06,
1582
+ "loss": 0.3518,
1583
+ "step": 6450
1584
+ },
1585
+ {
1586
+ "epoch": 2.61,
1587
+ "learning_rate": 7.121578947368422e-06,
1588
+ "loss": 0.3593,
1589
+ "step": 6475
1590
+ },
1591
+ {
1592
+ "epoch": 2.62,
1593
+ "learning_rate": 7.10842105263158e-06,
1594
+ "loss": 0.345,
1595
+ "step": 6500
1596
+ },
1597
+ {
1598
+ "epoch": 2.63,
1599
+ "learning_rate": 7.0952631578947376e-06,
1600
+ "loss": 0.303,
1601
+ "step": 6525
1602
+ },
1603
+ {
1604
+ "epoch": 2.64,
1605
+ "learning_rate": 7.082105263157896e-06,
1606
+ "loss": 0.3235,
1607
+ "step": 6550
1608
+ },
1609
+ {
1610
+ "epoch": 2.65,
1611
+ "learning_rate": 7.068947368421053e-06,
1612
+ "loss": 0.312,
1613
+ "step": 6575
1614
+ },
1615
+ {
1616
+ "epoch": 2.66,
1617
+ "learning_rate": 7.055789473684212e-06,
1618
+ "loss": 0.3263,
1619
+ "step": 6600
1620
+ },
1621
+ {
1622
+ "epoch": 2.67,
1623
+ "learning_rate": 7.042631578947368e-06,
1624
+ "loss": 0.3387,
1625
+ "step": 6625
1626
+ },
1627
+ {
1628
+ "epoch": 2.68,
1629
+ "learning_rate": 7.0294736842105275e-06,
1630
+ "loss": 0.3045,
1631
+ "step": 6650
1632
+ },
1633
+ {
1634
+ "epoch": 2.69,
1635
+ "learning_rate": 7.016315789473684e-06,
1636
+ "loss": 0.3826,
1637
+ "step": 6675
1638
+ },
1639
+ {
1640
+ "epoch": 2.7,
1641
+ "learning_rate": 7.0031578947368425e-06,
1642
+ "loss": 0.3605,
1643
+ "step": 6700
1644
+ },
1645
+ {
1646
+ "epoch": 2.71,
1647
+ "learning_rate": 6.99e-06,
1648
+ "loss": 0.3156,
1649
+ "step": 6725
1650
+ },
1651
+ {
1652
+ "epoch": 2.72,
1653
+ "learning_rate": 6.976842105263158e-06,
1654
+ "loss": 0.3727,
1655
+ "step": 6750
1656
+ },
1657
+ {
1658
+ "epoch": 2.73,
1659
+ "learning_rate": 6.963684210526316e-06,
1660
+ "loss": 0.3281,
1661
+ "step": 6775
1662
+ },
1663
+ {
1664
+ "epoch": 2.74,
1665
+ "learning_rate": 6.950526315789474e-06,
1666
+ "loss": 0.3222,
1667
+ "step": 6800
1668
+ },
1669
+ {
1670
+ "epoch": 2.75,
1671
+ "learning_rate": 6.9373684210526325e-06,
1672
+ "loss": 0.4355,
1673
+ "step": 6825
1674
+ },
1675
+ {
1676
+ "epoch": 2.76,
1677
+ "learning_rate": 6.92421052631579e-06,
1678
+ "loss": 0.3451,
1679
+ "step": 6850
1680
+ },
1681
+ {
1682
+ "epoch": 2.77,
1683
+ "learning_rate": 6.911052631578948e-06,
1684
+ "loss": 0.3344,
1685
+ "step": 6875
1686
+ },
1687
+ {
1688
+ "epoch": 2.78,
1689
+ "learning_rate": 6.897894736842106e-06,
1690
+ "loss": 0.3711,
1691
+ "step": 6900
1692
+ },
1693
+ {
1694
+ "epoch": 2.79,
1695
+ "learning_rate": 6.884736842105264e-06,
1696
+ "loss": 0.3621,
1697
+ "step": 6925
1698
+ },
1699
+ {
1700
+ "epoch": 2.8,
1701
+ "learning_rate": 6.871578947368422e-06,
1702
+ "loss": 0.3344,
1703
+ "step": 6950
1704
+ },
1705
+ {
1706
+ "epoch": 2.81,
1707
+ "learning_rate": 6.85842105263158e-06,
1708
+ "loss": 0.2669,
1709
+ "step": 6975
1710
+ },
1711
+ {
1712
+ "epoch": 2.82,
1713
+ "learning_rate": 6.845263157894737e-06,
1714
+ "loss": 0.3905,
1715
+ "step": 7000
1716
+ },
1717
+ {
1718
+ "epoch": 2.83,
1719
+ "learning_rate": 6.832105263157896e-06,
1720
+ "loss": 0.3882,
1721
+ "step": 7025
1722
+ },
1723
+ {
1724
+ "epoch": 2.85,
1725
+ "learning_rate": 6.818947368421052e-06,
1726
+ "loss": 0.3703,
1727
+ "step": 7050
1728
+ },
1729
+ {
1730
+ "epoch": 2.86,
1731
+ "learning_rate": 6.8057894736842116e-06,
1732
+ "loss": 0.3917,
1733
+ "step": 7075
1734
+ },
1735
+ {
1736
+ "epoch": 2.87,
1737
+ "learning_rate": 6.792631578947368e-06,
1738
+ "loss": 0.3513,
1739
+ "step": 7100
1740
+ },
1741
+ {
1742
+ "epoch": 2.88,
1743
+ "learning_rate": 6.7794736842105265e-06,
1744
+ "loss": 0.3085,
1745
+ "step": 7125
1746
+ },
1747
+ {
1748
+ "epoch": 2.89,
1749
+ "learning_rate": 6.766315789473685e-06,
1750
+ "loss": 0.401,
1751
+ "step": 7150
1752
+ },
1753
+ {
1754
+ "epoch": 2.9,
1755
+ "learning_rate": 6.753157894736842e-06,
1756
+ "loss": 0.3057,
1757
+ "step": 7175
1758
+ },
1759
+ {
1760
+ "epoch": 2.91,
1761
+ "learning_rate": 6.740000000000001e-06,
1762
+ "loss": 0.3422,
1763
+ "step": 7200
1764
+ },
1765
+ {
1766
+ "epoch": 2.92,
1767
+ "learning_rate": 6.726842105263158e-06,
1768
+ "loss": 0.2756,
1769
+ "step": 7225
1770
+ },
1771
+ {
1772
+ "epoch": 2.93,
1773
+ "learning_rate": 6.7136842105263165e-06,
1774
+ "loss": 0.3096,
1775
+ "step": 7250
1776
+ },
1777
+ {
1778
+ "epoch": 2.94,
1779
+ "learning_rate": 6.700526315789474e-06,
1780
+ "loss": 0.316,
1781
+ "step": 7275
1782
+ },
1783
+ {
1784
+ "epoch": 2.95,
1785
+ "learning_rate": 6.687368421052632e-06,
1786
+ "loss": 0.3057,
1787
+ "step": 7300
1788
+ },
1789
+ {
1790
+ "epoch": 2.96,
1791
+ "learning_rate": 6.67421052631579e-06,
1792
+ "loss": 0.3559,
1793
+ "step": 7325
1794
+ },
1795
+ {
1796
+ "epoch": 2.97,
1797
+ "learning_rate": 6.661052631578948e-06,
1798
+ "loss": 0.3157,
1799
+ "step": 7350
1800
+ },
1801
+ {
1802
+ "epoch": 2.98,
1803
+ "learning_rate": 6.647894736842106e-06,
1804
+ "loss": 0.3663,
1805
+ "step": 7375
1806
+ },
1807
+ {
1808
+ "epoch": 2.99,
1809
+ "learning_rate": 6.634736842105264e-06,
1810
+ "loss": 0.3204,
1811
+ "step": 7400
1812
+ },
1813
+ {
1814
+ "epoch": 3.0,
1815
+ "learning_rate": 6.6215789473684215e-06,
1816
+ "loss": 0.329,
1817
+ "step": 7425
1818
+ },
1819
+ {
1820
+ "epoch": 3.01,
1821
+ "learning_rate": 6.60842105263158e-06,
1822
+ "loss": 0.2707,
1823
+ "step": 7450
1824
+ },
1825
+ {
1826
+ "epoch": 3.02,
1827
+ "learning_rate": 6.595263157894738e-06,
1828
+ "loss": 0.2595,
1829
+ "step": 7475
1830
+ },
1831
+ {
1832
+ "epoch": 3.03,
1833
+ "learning_rate": 6.582105263157896e-06,
1834
+ "loss": 0.2542,
1835
+ "step": 7500
1836
+ },
1837
+ {
1838
+ "epoch": 3.04,
1839
+ "learning_rate": 6.568947368421054e-06,
1840
+ "loss": 0.3032,
1841
+ "step": 7525
1842
+ },
1843
+ {
1844
+ "epoch": 3.05,
1845
+ "learning_rate": 6.5557894736842106e-06,
1846
+ "loss": 0.2394,
1847
+ "step": 7550
1848
+ },
1849
+ {
1850
+ "epoch": 3.06,
1851
+ "learning_rate": 6.54263157894737e-06,
1852
+ "loss": 0.2639,
1853
+ "step": 7575
1854
+ },
1855
+ {
1856
+ "epoch": 3.07,
1857
+ "learning_rate": 6.529473684210526e-06,
1858
+ "loss": 0.267,
1859
+ "step": 7600
1860
+ },
1861
+ {
1862
+ "epoch": 3.08,
1863
+ "learning_rate": 6.516315789473685e-06,
1864
+ "loss": 0.2483,
1865
+ "step": 7625
1866
+ },
1867
+ {
1868
+ "epoch": 3.09,
1869
+ "learning_rate": 6.503157894736842e-06,
1870
+ "loss": 0.2586,
1871
+ "step": 7650
1872
+ },
1873
+ {
1874
+ "epoch": 3.1,
1875
+ "learning_rate": 6.4900000000000005e-06,
1876
+ "loss": 0.2974,
1877
+ "step": 7675
1878
+ },
1879
+ {
1880
+ "epoch": 3.11,
1881
+ "learning_rate": 6.476842105263158e-06,
1882
+ "loss": 0.2334,
1883
+ "step": 7700
1884
+ },
1885
+ {
1886
+ "epoch": 3.12,
1887
+ "learning_rate": 6.463684210526316e-06,
1888
+ "loss": 0.2346,
1889
+ "step": 7725
1890
+ },
1891
+ {
1892
+ "epoch": 3.13,
1893
+ "learning_rate": 6.450526315789474e-06,
1894
+ "loss": 0.2362,
1895
+ "step": 7750
1896
+ },
1897
+ {
1898
+ "epoch": 3.14,
1899
+ "learning_rate": 6.437368421052632e-06,
1900
+ "loss": 0.2634,
1901
+ "step": 7775
1902
+ },
1903
+ {
1904
+ "epoch": 3.15,
1905
+ "learning_rate": 6.42421052631579e-06,
1906
+ "loss": 0.2799,
1907
+ "step": 7800
1908
+ },
1909
+ {
1910
+ "epoch": 3.16,
1911
+ "learning_rate": 6.411052631578948e-06,
1912
+ "loss": 0.2796,
1913
+ "step": 7825
1914
+ },
1915
+ {
1916
+ "epoch": 3.17,
1917
+ "learning_rate": 6.397894736842106e-06,
1918
+ "loss": 0.2421,
1919
+ "step": 7850
1920
+ },
1921
+ {
1922
+ "epoch": 3.18,
1923
+ "learning_rate": 6.384736842105264e-06,
1924
+ "loss": 0.2624,
1925
+ "step": 7875
1926
+ },
1927
+ {
1928
+ "epoch": 3.19,
1929
+ "learning_rate": 6.371578947368422e-06,
1930
+ "loss": 0.2594,
1931
+ "step": 7900
1932
+ },
1933
+ {
1934
+ "epoch": 3.2,
1935
+ "learning_rate": 6.35842105263158e-06,
1936
+ "loss": 0.234,
1937
+ "step": 7925
1938
+ },
1939
+ {
1940
+ "epoch": 3.21,
1941
+ "learning_rate": 6.345263157894738e-06,
1942
+ "loss": 0.3122,
1943
+ "step": 7950
1944
+ },
1945
+ {
1946
+ "epoch": 3.22,
1947
+ "learning_rate": 6.332105263157895e-06,
1948
+ "loss": 0.3375,
1949
+ "step": 7975
1950
+ },
1951
+ {
1952
+ "epoch": 3.23,
1953
+ "learning_rate": 6.318947368421054e-06,
1954
+ "loss": 0.3233,
1955
+ "step": 8000
1956
+ },
1957
+ {
1958
+ "epoch": 3.23,
1959
+ "eval_loss": 0.4236887991428375,
1960
+ "eval_runtime": 2462.9792,
1961
+ "eval_samples_per_second": 4.296,
1962
+ "eval_steps_per_second": 0.269,
1963
+ "eval_wer": 81.42128142128142,
1964
+ "step": 8000
1965
+ },
1966
+ {
1967
+ "epoch": 3.24,
1968
+ "learning_rate": 6.3057894736842104e-06,
1969
+ "loss": 0.3036,
1970
+ "step": 8025
1971
+ },
1972
+ {
1973
+ "epoch": 3.25,
1974
+ "learning_rate": 6.292631578947369e-06,
1975
+ "loss": 0.2769,
1976
+ "step": 8050
1977
+ },
1978
+ {
1979
+ "epoch": 3.26,
1980
+ "learning_rate": 6.279473684210526e-06,
1981
+ "loss": 0.2669,
1982
+ "step": 8075
1983
+ },
1984
+ {
1985
+ "epoch": 3.27,
1986
+ "learning_rate": 6.266315789473685e-06,
1987
+ "loss": 0.2534,
1988
+ "step": 8100
1989
+ },
1990
+ {
1991
+ "epoch": 3.28,
1992
+ "learning_rate": 6.253157894736842e-06,
1993
+ "loss": 0.2368,
1994
+ "step": 8125
1995
+ },
1996
+ {
1997
+ "epoch": 3.29,
1998
+ "learning_rate": 6.24e-06,
1999
+ "loss": 0.2883,
2000
+ "step": 8150
2001
+ },
2002
+ {
2003
+ "epoch": 3.3,
2004
+ "learning_rate": 6.226842105263159e-06,
2005
+ "loss": 0.2737,
2006
+ "step": 8175
2007
+ },
2008
+ {
2009
+ "epoch": 3.31,
2010
+ "learning_rate": 6.213684210526316e-06,
2011
+ "loss": 0.2353,
2012
+ "step": 8200
2013
+ },
2014
+ {
2015
+ "epoch": 3.32,
2016
+ "learning_rate": 6.2005263157894745e-06,
2017
+ "loss": 0.3043,
2018
+ "step": 8225
2019
+ },
2020
+ {
2021
+ "epoch": 3.33,
2022
+ "learning_rate": 6.187368421052632e-06,
2023
+ "loss": 0.2836,
2024
+ "step": 8250
2025
+ },
2026
+ {
2027
+ "epoch": 3.34,
2028
+ "learning_rate": 6.17421052631579e-06,
2029
+ "loss": 0.2994,
2030
+ "step": 8275
2031
+ },
2032
+ {
2033
+ "epoch": 3.35,
2034
+ "learning_rate": 6.161052631578948e-06,
2035
+ "loss": 0.242,
2036
+ "step": 8300
2037
+ },
2038
+ {
2039
+ "epoch": 3.36,
2040
+ "learning_rate": 6.147894736842106e-06,
2041
+ "loss": 0.2759,
2042
+ "step": 8325
2043
+ },
2044
+ {
2045
+ "epoch": 3.37,
2046
+ "learning_rate": 6.134736842105264e-06,
2047
+ "loss": 0.2133,
2048
+ "step": 8350
2049
+ },
2050
+ {
2051
+ "epoch": 3.38,
2052
+ "learning_rate": 6.121578947368422e-06,
2053
+ "loss": 0.2784,
2054
+ "step": 8375
2055
+ },
2056
+ {
2057
+ "epoch": 3.39,
2058
+ "learning_rate": 6.108421052631579e-06,
2059
+ "loss": 0.2288,
2060
+ "step": 8400
2061
+ },
2062
+ {
2063
+ "epoch": 3.4,
2064
+ "learning_rate": 6.095263157894738e-06,
2065
+ "loss": 0.2712,
2066
+ "step": 8425
2067
+ },
2068
+ {
2069
+ "epoch": 3.41,
2070
+ "learning_rate": 6.0821052631578945e-06,
2071
+ "loss": 0.2372,
2072
+ "step": 8450
2073
+ },
2074
+ {
2075
+ "epoch": 3.42,
2076
+ "learning_rate": 6.068947368421053e-06,
2077
+ "loss": 0.2514,
2078
+ "step": 8475
2079
+ },
2080
+ {
2081
+ "epoch": 3.43,
2082
+ "learning_rate": 6.055789473684212e-06,
2083
+ "loss": 0.2825,
2084
+ "step": 8500
2085
+ },
2086
+ {
2087
+ "epoch": 3.44,
2088
+ "learning_rate": 6.042631578947369e-06,
2089
+ "loss": 0.2537,
2090
+ "step": 8525
2091
+ },
2092
+ {
2093
+ "epoch": 3.45,
2094
+ "learning_rate": 6.029473684210527e-06,
2095
+ "loss": 0.2464,
2096
+ "step": 8550
2097
+ },
2098
+ {
2099
+ "epoch": 3.46,
2100
+ "learning_rate": 6.0163157894736844e-06,
2101
+ "loss": 0.2583,
2102
+ "step": 8575
2103
+ },
2104
+ {
2105
+ "epoch": 3.47,
2106
+ "learning_rate": 6.003157894736843e-06,
2107
+ "loss": 0.2925,
2108
+ "step": 8600
2109
+ },
2110
+ {
2111
+ "epoch": 3.48,
2112
+ "learning_rate": 5.99e-06,
2113
+ "loss": 0.2858,
2114
+ "step": 8625
2115
+ },
2116
+ {
2117
+ "epoch": 3.49,
2118
+ "learning_rate": 5.976842105263159e-06,
2119
+ "loss": 0.2566,
2120
+ "step": 8650
2121
+ },
2122
+ {
2123
+ "epoch": 3.5,
2124
+ "learning_rate": 5.963684210526316e-06,
2125
+ "loss": 0.2389,
2126
+ "step": 8675
2127
+ },
2128
+ {
2129
+ "epoch": 3.51,
2130
+ "learning_rate": 5.950526315789474e-06,
2131
+ "loss": 0.3029,
2132
+ "step": 8700
2133
+ },
2134
+ {
2135
+ "epoch": 3.52,
2136
+ "learning_rate": 5.937368421052632e-06,
2137
+ "loss": 0.2667,
2138
+ "step": 8725
2139
+ },
2140
+ {
2141
+ "epoch": 3.53,
2142
+ "learning_rate": 5.92421052631579e-06,
2143
+ "loss": 0.2945,
2144
+ "step": 8750
2145
+ },
2146
+ {
2147
+ "epoch": 3.54,
2148
+ "learning_rate": 5.911052631578948e-06,
2149
+ "loss": 0.2727,
2150
+ "step": 8775
2151
+ },
2152
+ {
2153
+ "epoch": 3.55,
2154
+ "learning_rate": 5.897894736842106e-06,
2155
+ "loss": 0.2834,
2156
+ "step": 8800
2157
+ },
2158
+ {
2159
+ "epoch": 3.56,
2160
+ "learning_rate": 5.884736842105264e-06,
2161
+ "loss": 0.3156,
2162
+ "step": 8825
2163
+ },
2164
+ {
2165
+ "epoch": 3.57,
2166
+ "learning_rate": 5.871578947368422e-06,
2167
+ "loss": 0.2616,
2168
+ "step": 8850
2169
+ },
2170
+ {
2171
+ "epoch": 3.58,
2172
+ "learning_rate": 5.85842105263158e-06,
2173
+ "loss": 0.3207,
2174
+ "step": 8875
2175
+ },
2176
+ {
2177
+ "epoch": 3.59,
2178
+ "learning_rate": 5.845263157894737e-06,
2179
+ "loss": 0.2761,
2180
+ "step": 8900
2181
+ },
2182
+ {
2183
+ "epoch": 3.6,
2184
+ "learning_rate": 5.832105263157896e-06,
2185
+ "loss": 0.2306,
2186
+ "step": 8925
2187
+ },
2188
+ {
2189
+ "epoch": 3.61,
2190
+ "learning_rate": 5.818947368421053e-06,
2191
+ "loss": 0.2425,
2192
+ "step": 8950
2193
+ },
2194
+ {
2195
+ "epoch": 3.62,
2196
+ "learning_rate": 5.805789473684211e-06,
2197
+ "loss": 0.2644,
2198
+ "step": 8975
2199
+ },
2200
+ {
2201
+ "epoch": 3.63,
2202
+ "learning_rate": 5.7926315789473685e-06,
2203
+ "loss": 0.2573,
2204
+ "step": 9000
2205
+ },
2206
+ {
2207
+ "epoch": 3.64,
2208
+ "learning_rate": 5.779473684210527e-06,
2209
+ "loss": 0.3367,
2210
+ "step": 9025
2211
+ },
2212
+ {
2213
+ "epoch": 3.65,
2214
+ "learning_rate": 5.766315789473684e-06,
2215
+ "loss": 0.2718,
2216
+ "step": 9050
2217
+ },
2218
+ {
2219
+ "epoch": 3.66,
2220
+ "learning_rate": 5.753157894736843e-06,
2221
+ "loss": 0.2629,
2222
+ "step": 9075
2223
+ },
2224
+ {
2225
+ "epoch": 3.67,
2226
+ "learning_rate": 5.74e-06,
2227
+ "loss": 0.2871,
2228
+ "step": 9100
2229
+ },
2230
+ {
2231
+ "epoch": 3.68,
2232
+ "learning_rate": 5.7268421052631584e-06,
2233
+ "loss": 0.2655,
2234
+ "step": 9125
2235
+ },
2236
+ {
2237
+ "epoch": 3.69,
2238
+ "learning_rate": 5.713684210526316e-06,
2239
+ "loss": 0.2442,
2240
+ "step": 9150
2241
+ },
2242
+ {
2243
+ "epoch": 3.7,
2244
+ "learning_rate": 5.700526315789474e-06,
2245
+ "loss": 0.3244,
2246
+ "step": 9175
2247
+ },
2248
+ {
2249
+ "epoch": 3.71,
2250
+ "learning_rate": 5.687368421052633e-06,
2251
+ "loss": 0.2898,
2252
+ "step": 9200
2253
+ },
2254
+ {
2255
+ "epoch": 3.72,
2256
+ "learning_rate": 5.67421052631579e-06,
2257
+ "loss": 0.3365,
2258
+ "step": 9225
2259
+ },
2260
+ {
2261
+ "epoch": 3.73,
2262
+ "learning_rate": 5.661052631578948e-06,
2263
+ "loss": 0.2929,
2264
+ "step": 9250
2265
+ },
2266
+ {
2267
+ "epoch": 3.74,
2268
+ "learning_rate": 5.64842105263158e-06,
2269
+ "loss": 0.2152,
2270
+ "step": 9275
2271
+ },
2272
+ {
2273
+ "epoch": 3.75,
2274
+ "learning_rate": 5.635263157894737e-06,
2275
+ "loss": 0.3137,
2276
+ "step": 9300
2277
+ },
2278
+ {
2279
+ "epoch": 3.76,
2280
+ "learning_rate": 5.6221052631578955e-06,
2281
+ "loss": 0.2491,
2282
+ "step": 9325
2283
+ },
2284
+ {
2285
+ "epoch": 3.77,
2286
+ "learning_rate": 5.608947368421053e-06,
2287
+ "loss": 0.2962,
2288
+ "step": 9350
2289
+ },
2290
+ {
2291
+ "epoch": 3.78,
2292
+ "learning_rate": 5.595789473684211e-06,
2293
+ "loss": 0.2777,
2294
+ "step": 9375
2295
+ },
2296
+ {
2297
+ "epoch": 3.79,
2298
+ "learning_rate": 5.582631578947369e-06,
2299
+ "loss": 0.2967,
2300
+ "step": 9400
2301
+ },
2302
+ {
2303
+ "epoch": 3.8,
2304
+ "learning_rate": 5.569473684210527e-06,
2305
+ "loss": 0.2816,
2306
+ "step": 9425
2307
+ },
2308
+ {
2309
+ "epoch": 3.81,
2310
+ "learning_rate": 5.5563157894736854e-06,
2311
+ "loss": 0.2792,
2312
+ "step": 9450
2313
+ },
2314
+ {
2315
+ "epoch": 3.82,
2316
+ "learning_rate": 5.543157894736843e-06,
2317
+ "loss": 0.3122,
2318
+ "step": 9475
2319
+ },
2320
+ {
2321
+ "epoch": 3.83,
2322
+ "learning_rate": 5.530000000000001e-06,
2323
+ "loss": 0.2693,
2324
+ "step": 9500
2325
+ },
2326
+ {
2327
+ "epoch": 3.84,
2328
+ "learning_rate": 5.516842105263158e-06,
2329
+ "loss": 0.2775,
2330
+ "step": 9525
2331
+ },
2332
+ {
2333
+ "epoch": 3.85,
2334
+ "learning_rate": 5.503684210526316e-06,
2335
+ "loss": 0.2548,
2336
+ "step": 9550
2337
+ },
2338
+ {
2339
+ "epoch": 3.86,
2340
+ "learning_rate": 5.490526315789474e-06,
2341
+ "loss": 0.2586,
2342
+ "step": 9575
2343
+ },
2344
+ {
2345
+ "epoch": 3.87,
2346
+ "learning_rate": 5.477368421052632e-06,
2347
+ "loss": 0.2463,
2348
+ "step": 9600
2349
+ },
2350
+ {
2351
+ "epoch": 3.88,
2352
+ "learning_rate": 5.4642105263157895e-06,
2353
+ "loss": 0.2656,
2354
+ "step": 9625
2355
+ },
2356
+ {
2357
+ "epoch": 3.89,
2358
+ "learning_rate": 5.451052631578948e-06,
2359
+ "loss": 0.2784,
2360
+ "step": 9650
2361
+ },
2362
+ {
2363
+ "epoch": 3.9,
2364
+ "learning_rate": 5.437894736842105e-06,
2365
+ "loss": 0.2934,
2366
+ "step": 9675
2367
+ },
2368
+ {
2369
+ "epoch": 3.91,
2370
+ "learning_rate": 5.424736842105264e-06,
2371
+ "loss": 0.2493,
2372
+ "step": 9700
2373
+ },
2374
+ {
2375
+ "epoch": 3.92,
2376
+ "learning_rate": 5.411578947368421e-06,
2377
+ "loss": 0.2646,
2378
+ "step": 9725
2379
+ },
2380
+ {
2381
+ "epoch": 3.93,
2382
+ "learning_rate": 5.3984210526315795e-06,
2383
+ "loss": 0.2225,
2384
+ "step": 9750
2385
+ },
2386
+ {
2387
+ "epoch": 3.94,
2388
+ "learning_rate": 5.385263157894737e-06,
2389
+ "loss": 0.2899,
2390
+ "step": 9775
2391
+ },
2392
+ {
2393
+ "epoch": 3.95,
2394
+ "learning_rate": 5.372105263157895e-06,
2395
+ "loss": 0.2976,
2396
+ "step": 9800
2397
+ },
2398
+ {
2399
+ "epoch": 3.96,
2400
+ "learning_rate": 5.358947368421054e-06,
2401
+ "loss": 0.2258,
2402
+ "step": 9825
2403
+ },
2404
+ {
2405
+ "epoch": 3.97,
2406
+ "learning_rate": 5.345789473684211e-06,
2407
+ "loss": 0.268,
2408
+ "step": 9850
2409
+ },
2410
+ {
2411
+ "epoch": 3.99,
2412
+ "learning_rate": 5.3326315789473695e-06,
2413
+ "loss": 0.293,
2414
+ "step": 9875
2415
+ },
2416
+ {
2417
+ "epoch": 4.0,
2418
+ "learning_rate": 5.319473684210527e-06,
2419
+ "loss": 0.2605,
2420
+ "step": 9900
2421
+ },
2422
+ {
2423
+ "epoch": 4.01,
2424
+ "learning_rate": 5.306315789473685e-06,
2425
+ "loss": 0.2278,
2426
+ "step": 9925
2427
+ },
2428
+ {
2429
+ "epoch": 4.02,
2430
+ "learning_rate": 5.293157894736842e-06,
2431
+ "loss": 0.1947,
2432
+ "step": 9950
2433
+ },
2434
+ {
2435
+ "epoch": 4.03,
2436
+ "learning_rate": 5.28e-06,
2437
+ "loss": 0.2423,
2438
+ "step": 9975
2439
+ },
2440
+ {
2441
+ "epoch": 4.04,
2442
+ "learning_rate": 5.266842105263158e-06,
2443
+ "loss": 0.2427,
2444
+ "step": 10000
2445
+ },
2446
+ {
2447
+ "epoch": 4.04,
2448
+ "eval_loss": 0.4252447485923767,
2449
+ "eval_runtime": 2509.0387,
2450
+ "eval_samples_per_second": 4.217,
2451
+ "eval_steps_per_second": 0.264,
2452
+ "eval_wer": 81.2039312039312,
2453
+ "step": 10000
2454
+ },
2455
+ {
2456
+ "epoch": 4.05,
2457
+ "learning_rate": 5.253684210526316e-06,
2458
+ "loss": 0.2614,
2459
+ "step": 10025
2460
+ },
2461
+ {
2462
+ "epoch": 4.06,
2463
+ "learning_rate": 5.2405263157894736e-06,
2464
+ "loss": 0.1787,
2465
+ "step": 10050
2466
+ },
2467
+ {
2468
+ "epoch": 4.07,
2469
+ "learning_rate": 5.227368421052632e-06,
2470
+ "loss": 0.1866,
2471
+ "step": 10075
2472
+ },
2473
+ {
2474
+ "epoch": 4.08,
2475
+ "learning_rate": 5.214210526315789e-06,
2476
+ "loss": 0.1783,
2477
+ "step": 10100
2478
+ },
2479
+ {
2480
+ "epoch": 4.09,
2481
+ "learning_rate": 5.201052631578948e-06,
2482
+ "loss": 0.2145,
2483
+ "step": 10125
2484
+ },
2485
+ {
2486
+ "epoch": 4.1,
2487
+ "learning_rate": 5.187894736842106e-06,
2488
+ "loss": 0.1948,
2489
+ "step": 10150
2490
+ },
2491
+ {
2492
+ "epoch": 4.11,
2493
+ "learning_rate": 5.1747368421052635e-06,
2494
+ "loss": 0.2457,
2495
+ "step": 10175
2496
+ },
2497
+ {
2498
+ "epoch": 4.12,
2499
+ "learning_rate": 5.161578947368422e-06,
2500
+ "loss": 0.2081,
2501
+ "step": 10200
2502
+ },
2503
+ {
2504
+ "epoch": 4.13,
2505
+ "learning_rate": 5.148421052631579e-06,
2506
+ "loss": 0.2211,
2507
+ "step": 10225
2508
+ },
2509
+ {
2510
+ "epoch": 4.14,
2511
+ "learning_rate": 5.135263157894738e-06,
2512
+ "loss": 0.2095,
2513
+ "step": 10250
2514
+ },
2515
+ {
2516
+ "epoch": 4.15,
2517
+ "learning_rate": 5.122105263157895e-06,
2518
+ "loss": 0.2311,
2519
+ "step": 10275
2520
+ },
2521
+ {
2522
+ "epoch": 4.16,
2523
+ "learning_rate": 5.1089473684210535e-06,
2524
+ "loss": 0.2148,
2525
+ "step": 10300
2526
+ },
2527
+ {
2528
+ "epoch": 4.17,
2529
+ "learning_rate": 5.095789473684211e-06,
2530
+ "loss": 0.1881,
2531
+ "step": 10325
2532
+ },
2533
+ {
2534
+ "epoch": 4.18,
2535
+ "learning_rate": 5.082631578947369e-06,
2536
+ "loss": 0.1991,
2537
+ "step": 10350
2538
+ },
2539
+ {
2540
+ "epoch": 4.19,
2541
+ "learning_rate": 5.069473684210526e-06,
2542
+ "loss": 0.2676,
2543
+ "step": 10375
2544
+ },
2545
+ {
2546
+ "epoch": 4.2,
2547
+ "learning_rate": 5.056315789473685e-06,
2548
+ "loss": 0.1964,
2549
+ "step": 10400
2550
+ },
2551
+ {
2552
+ "epoch": 4.21,
2553
+ "learning_rate": 5.043157894736842e-06,
2554
+ "loss": 0.2195,
2555
+ "step": 10425
2556
+ },
2557
+ {
2558
+ "epoch": 4.22,
2559
+ "learning_rate": 5.03e-06,
2560
+ "loss": 0.1729,
2561
+ "step": 10450
2562
+ },
2563
+ {
2564
+ "epoch": 4.23,
2565
+ "learning_rate": 5.0168421052631585e-06,
2566
+ "loss": 0.22,
2567
+ "step": 10475
2568
+ },
2569
+ {
2570
+ "epoch": 4.24,
2571
+ "learning_rate": 5.003684210526316e-06,
2572
+ "loss": 0.1634,
2573
+ "step": 10500
2574
+ },
2575
+ {
2576
+ "epoch": 4.25,
2577
+ "learning_rate": 4.990526315789474e-06,
2578
+ "loss": 0.2266,
2579
+ "step": 10525
2580
+ },
2581
+ {
2582
+ "epoch": 4.26,
2583
+ "learning_rate": 4.977368421052632e-06,
2584
+ "loss": 0.2059,
2585
+ "step": 10550
2586
+ },
2587
+ {
2588
+ "epoch": 4.27,
2589
+ "learning_rate": 4.96421052631579e-06,
2590
+ "loss": 0.1848,
2591
+ "step": 10575
2592
+ },
2593
+ {
2594
+ "epoch": 4.28,
2595
+ "learning_rate": 4.951052631578948e-06,
2596
+ "loss": 0.2126,
2597
+ "step": 10600
2598
+ },
2599
+ {
2600
+ "epoch": 4.29,
2601
+ "learning_rate": 4.937894736842105e-06,
2602
+ "loss": 0.2196,
2603
+ "step": 10625
2604
+ },
2605
+ {
2606
+ "epoch": 4.3,
2607
+ "learning_rate": 4.924736842105263e-06,
2608
+ "loss": 0.2757,
2609
+ "step": 10650
2610
+ },
2611
+ {
2612
+ "epoch": 4.31,
2613
+ "learning_rate": 4.911578947368422e-06,
2614
+ "loss": 0.2349,
2615
+ "step": 10675
2616
+ },
2617
+ {
2618
+ "epoch": 4.32,
2619
+ "learning_rate": 4.898421052631579e-06,
2620
+ "loss": 0.1847,
2621
+ "step": 10700
2622
+ },
2623
+ {
2624
+ "epoch": 4.33,
2625
+ "learning_rate": 4.8852631578947375e-06,
2626
+ "loss": 0.1931,
2627
+ "step": 10725
2628
+ },
2629
+ {
2630
+ "epoch": 4.34,
2631
+ "learning_rate": 4.872105263157895e-06,
2632
+ "loss": 0.2502,
2633
+ "step": 10750
2634
+ },
2635
+ {
2636
+ "epoch": 4.35,
2637
+ "learning_rate": 4.858947368421053e-06,
2638
+ "loss": 0.2491,
2639
+ "step": 10775
2640
+ },
2641
+ {
2642
+ "epoch": 4.36,
2643
+ "learning_rate": 4.845789473684211e-06,
2644
+ "loss": 0.2052,
2645
+ "step": 10800
2646
+ },
2647
+ {
2648
+ "epoch": 4.37,
2649
+ "learning_rate": 4.832631578947369e-06,
2650
+ "loss": 0.2249,
2651
+ "step": 10825
2652
+ },
2653
+ {
2654
+ "epoch": 4.38,
2655
+ "learning_rate": 4.819473684210527e-06,
2656
+ "loss": 0.2375,
2657
+ "step": 10850
2658
+ },
2659
+ {
2660
+ "epoch": 4.39,
2661
+ "learning_rate": 4.806315789473684e-06,
2662
+ "loss": 0.1814,
2663
+ "step": 10875
2664
+ },
2665
+ {
2666
+ "epoch": 4.4,
2667
+ "learning_rate": 4.7931578947368425e-06,
2668
+ "loss": 0.1998,
2669
+ "step": 10900
2670
+ },
2671
+ {
2672
+ "epoch": 4.41,
2673
+ "learning_rate": 4.78e-06,
2674
+ "loss": 0.2292,
2675
+ "step": 10925
2676
+ },
2677
+ {
2678
+ "epoch": 4.42,
2679
+ "learning_rate": 4.766842105263158e-06,
2680
+ "loss": 0.1699,
2681
+ "step": 10950
2682
+ },
2683
+ {
2684
+ "epoch": 4.43,
2685
+ "learning_rate": 4.753684210526316e-06,
2686
+ "loss": 0.2363,
2687
+ "step": 10975
2688
+ },
2689
+ {
2690
+ "epoch": 4.44,
2691
+ "learning_rate": 4.740526315789474e-06,
2692
+ "loss": 0.2432,
2693
+ "step": 11000
2694
+ },
2695
+ {
2696
+ "epoch": 4.45,
2697
+ "learning_rate": 4.7273684210526325e-06,
2698
+ "loss": 0.2329,
2699
+ "step": 11025
2700
+ },
2701
+ {
2702
+ "epoch": 4.46,
2703
+ "learning_rate": 4.71421052631579e-06,
2704
+ "loss": 0.2425,
2705
+ "step": 11050
2706
+ },
2707
+ {
2708
+ "epoch": 4.47,
2709
+ "learning_rate": 4.701052631578948e-06,
2710
+ "loss": 0.2366,
2711
+ "step": 11075
2712
+ },
2713
+ {
2714
+ "epoch": 4.48,
2715
+ "learning_rate": 4.687894736842106e-06,
2716
+ "loss": 0.1882,
2717
+ "step": 11100
2718
+ },
2719
+ {
2720
+ "epoch": 4.49,
2721
+ "learning_rate": 4.674736842105263e-06,
2722
+ "loss": 0.2082,
2723
+ "step": 11125
2724
+ },
2725
+ {
2726
+ "epoch": 4.5,
2727
+ "learning_rate": 4.661578947368422e-06,
2728
+ "loss": 0.1908,
2729
+ "step": 11150
2730
+ },
2731
+ {
2732
+ "epoch": 4.51,
2733
+ "learning_rate": 4.648421052631579e-06,
2734
+ "loss": 0.2407,
2735
+ "step": 11175
2736
+ },
2737
+ {
2738
+ "epoch": 4.52,
2739
+ "learning_rate": 4.635263157894737e-06,
2740
+ "loss": 0.2344,
2741
+ "step": 11200
2742
+ },
2743
+ {
2744
+ "epoch": 4.53,
2745
+ "learning_rate": 4.622105263157895e-06,
2746
+ "loss": 0.2027,
2747
+ "step": 11225
2748
+ },
2749
+ {
2750
+ "epoch": 4.54,
2751
+ "learning_rate": 4.608947368421053e-06,
2752
+ "loss": 0.2054,
2753
+ "step": 11250
2754
+ },
2755
+ {
2756
+ "epoch": 4.55,
2757
+ "learning_rate": 4.595789473684211e-06,
2758
+ "loss": 0.2328,
2759
+ "step": 11275
2760
+ },
2761
+ {
2762
+ "epoch": 4.56,
2763
+ "learning_rate": 4.582631578947368e-06,
2764
+ "loss": 0.1991,
2765
+ "step": 11300
2766
+ },
2767
+ {
2768
+ "epoch": 4.57,
2769
+ "learning_rate": 4.569473684210527e-06,
2770
+ "loss": 0.2174,
2771
+ "step": 11325
2772
+ },
2773
+ {
2774
+ "epoch": 4.58,
2775
+ "learning_rate": 4.556315789473685e-06,
2776
+ "loss": 0.2299,
2777
+ "step": 11350
2778
+ },
2779
+ {
2780
+ "epoch": 4.59,
2781
+ "learning_rate": 4.543157894736842e-06,
2782
+ "loss": 0.2337,
2783
+ "step": 11375
2784
+ },
2785
+ {
2786
+ "epoch": 4.6,
2787
+ "learning_rate": 4.530000000000001e-06,
2788
+ "loss": 0.2049,
2789
+ "step": 11400
2790
+ },
2791
+ {
2792
+ "epoch": 4.61,
2793
+ "learning_rate": 4.516842105263158e-06,
2794
+ "loss": 0.1766,
2795
+ "step": 11425
2796
+ },
2797
+ {
2798
+ "epoch": 4.62,
2799
+ "learning_rate": 4.5036842105263165e-06,
2800
+ "loss": 0.2309,
2801
+ "step": 11450
2802
+ },
2803
+ {
2804
+ "epoch": 4.63,
2805
+ "learning_rate": 4.490526315789474e-06,
2806
+ "loss": 0.2206,
2807
+ "step": 11475
2808
+ },
2809
+ {
2810
+ "epoch": 4.64,
2811
+ "learning_rate": 4.477368421052632e-06,
2812
+ "loss": 0.2116,
2813
+ "step": 11500
2814
+ },
2815
+ {
2816
+ "epoch": 4.65,
2817
+ "learning_rate": 4.46421052631579e-06,
2818
+ "loss": 0.1833,
2819
+ "step": 11525
2820
+ },
2821
+ {
2822
+ "epoch": 4.66,
2823
+ "learning_rate": 4.451052631578947e-06,
2824
+ "loss": 0.204,
2825
+ "step": 11550
2826
+ },
2827
+ {
2828
+ "epoch": 4.67,
2829
+ "learning_rate": 4.437894736842106e-06,
2830
+ "loss": 0.203,
2831
+ "step": 11575
2832
+ },
2833
+ {
2834
+ "epoch": 4.68,
2835
+ "learning_rate": 4.424736842105263e-06,
2836
+ "loss": 0.2191,
2837
+ "step": 11600
2838
+ },
2839
+ {
2840
+ "epoch": 4.69,
2841
+ "learning_rate": 4.4115789473684214e-06,
2842
+ "loss": 0.238,
2843
+ "step": 11625
2844
+ },
2845
+ {
2846
+ "epoch": 4.7,
2847
+ "learning_rate": 4.398421052631579e-06,
2848
+ "loss": 0.2561,
2849
+ "step": 11650
2850
+ },
2851
+ {
2852
+ "epoch": 4.71,
2853
+ "learning_rate": 4.385263157894737e-06,
2854
+ "loss": 0.2249,
2855
+ "step": 11675
2856
+ },
2857
+ {
2858
+ "epoch": 4.72,
2859
+ "learning_rate": 4.372105263157896e-06,
2860
+ "loss": 0.2355,
2861
+ "step": 11700
2862
+ },
2863
+ {
2864
+ "epoch": 4.73,
2865
+ "learning_rate": 4.358947368421053e-06,
2866
+ "loss": 0.2124,
2867
+ "step": 11725
2868
+ },
2869
+ {
2870
+ "epoch": 4.74,
2871
+ "learning_rate": 4.345789473684211e-06,
2872
+ "loss": 0.2428,
2873
+ "step": 11750
2874
+ },
2875
+ {
2876
+ "epoch": 4.75,
2877
+ "learning_rate": 4.332631578947369e-06,
2878
+ "loss": 0.2097,
2879
+ "step": 11775
2880
+ },
2881
+ {
2882
+ "epoch": 4.76,
2883
+ "learning_rate": 4.319473684210526e-06,
2884
+ "loss": 0.2173,
2885
+ "step": 11800
2886
+ },
2887
+ {
2888
+ "epoch": 4.77,
2889
+ "learning_rate": 4.306315789473685e-06,
2890
+ "loss": 0.1947,
2891
+ "step": 11825
2892
+ },
2893
+ {
2894
+ "epoch": 4.78,
2895
+ "learning_rate": 4.293157894736842e-06,
2896
+ "loss": 0.1949,
2897
+ "step": 11850
2898
+ },
2899
+ {
2900
+ "epoch": 4.79,
2901
+ "learning_rate": 4.2805263157894734e-06,
2902
+ "loss": 0.2461,
2903
+ "step": 11875
2904
+ },
2905
+ {
2906
+ "epoch": 4.8,
2907
+ "learning_rate": 4.267368421052632e-06,
2908
+ "loss": 0.2219,
2909
+ "step": 11900
2910
+ },
2911
+ {
2912
+ "epoch": 4.81,
2913
+ "learning_rate": 4.254210526315789e-06,
2914
+ "loss": 0.2434,
2915
+ "step": 11925
2916
+ },
2917
+ {
2918
+ "epoch": 4.82,
2919
+ "learning_rate": 4.241052631578948e-06,
2920
+ "loss": 0.2148,
2921
+ "step": 11950
2922
+ },
2923
+ {
2924
+ "epoch": 4.83,
2925
+ "learning_rate": 4.227894736842106e-06,
2926
+ "loss": 0.2691,
2927
+ "step": 11975
2928
+ },
2929
+ {
2930
+ "epoch": 4.84,
2931
+ "learning_rate": 4.214736842105263e-06,
2932
+ "loss": 0.2354,
2933
+ "step": 12000
2934
+ },
2935
+ {
2936
+ "epoch": 4.84,
2937
+ "eval_loss": 0.428153395652771,
2938
+ "eval_runtime": 2466.9052,
2939
+ "eval_samples_per_second": 4.289,
2940
+ "eval_steps_per_second": 0.268,
2941
+ "eval_wer": 80.77868077868078,
2942
+ "step": 12000
2943
+ },
2944
+ {
2945
+ "epoch": 4.85,
2946
+ "learning_rate": 4.201578947368422e-06,
2947
+ "loss": 0.2402,
2948
+ "step": 12025
2949
+ },
2950
+ {
2951
+ "epoch": 4.86,
2952
+ "learning_rate": 4.188421052631579e-06,
2953
+ "loss": 0.2179,
2954
+ "step": 12050
2955
+ },
2956
+ {
2957
+ "epoch": 4.87,
2958
+ "learning_rate": 4.1752631578947376e-06,
2959
+ "loss": 0.2082,
2960
+ "step": 12075
2961
+ },
2962
+ {
2963
+ "epoch": 4.88,
2964
+ "learning_rate": 4.162105263157895e-06,
2965
+ "loss": 0.2015,
2966
+ "step": 12100
2967
+ },
2968
+ {
2969
+ "epoch": 4.89,
2970
+ "learning_rate": 4.1489473684210525e-06,
2971
+ "loss": 0.2152,
2972
+ "step": 12125
2973
+ },
2974
+ {
2975
+ "epoch": 4.9,
2976
+ "learning_rate": 4.135789473684211e-06,
2977
+ "loss": 0.2462,
2978
+ "step": 12150
2979
+ },
2980
+ {
2981
+ "epoch": 4.91,
2982
+ "learning_rate": 4.122631578947368e-06,
2983
+ "loss": 0.2099,
2984
+ "step": 12175
2985
+ },
2986
+ {
2987
+ "epoch": 4.92,
2988
+ "learning_rate": 4.109473684210527e-06,
2989
+ "loss": 0.2106,
2990
+ "step": 12200
2991
+ },
2992
+ {
2993
+ "epoch": 4.93,
2994
+ "learning_rate": 4.096315789473684e-06,
2995
+ "loss": 0.1814,
2996
+ "step": 12225
2997
+ },
2998
+ {
2999
+ "epoch": 4.94,
3000
+ "learning_rate": 4.0831578947368425e-06,
3001
+ "loss": 0.2406,
3002
+ "step": 12250
3003
+ },
3004
+ {
3005
+ "epoch": 4.95,
3006
+ "learning_rate": 4.07e-06,
3007
+ "loss": 0.187,
3008
+ "step": 12275
3009
+ },
3010
+ {
3011
+ "epoch": 4.96,
3012
+ "learning_rate": 4.056842105263158e-06,
3013
+ "loss": 0.2205,
3014
+ "step": 12300
3015
+ },
3016
+ {
3017
+ "epoch": 4.97,
3018
+ "learning_rate": 4.043684210526317e-06,
3019
+ "loss": 0.1837,
3020
+ "step": 12325
3021
+ },
3022
+ {
3023
+ "epoch": 4.98,
3024
+ "learning_rate": 4.030526315789474e-06,
3025
+ "loss": 0.2276,
3026
+ "step": 12350
3027
+ },
3028
+ {
3029
+ "epoch": 4.99,
3030
+ "learning_rate": 4.017368421052632e-06,
3031
+ "loss": 0.2214,
3032
+ "step": 12375
3033
+ },
3034
+ {
3035
+ "epoch": 5.0,
3036
+ "learning_rate": 4.00421052631579e-06,
3037
+ "loss": 0.2049,
3038
+ "step": 12400
3039
+ },
3040
+ {
3041
+ "epoch": 5.01,
3042
+ "learning_rate": 3.9910526315789475e-06,
3043
+ "loss": 0.1361,
3044
+ "step": 12425
3045
+ },
3046
+ {
3047
+ "epoch": 5.02,
3048
+ "learning_rate": 3.977894736842106e-06,
3049
+ "loss": 0.1333,
3050
+ "step": 12450
3051
+ },
3052
+ {
3053
+ "epoch": 5.03,
3054
+ "learning_rate": 3.964736842105263e-06,
3055
+ "loss": 0.1165,
3056
+ "step": 12475
3057
+ },
3058
+ {
3059
+ "epoch": 5.04,
3060
+ "learning_rate": 3.951578947368422e-06,
3061
+ "loss": 0.1938,
3062
+ "step": 12500
3063
+ },
3064
+ {
3065
+ "epoch": 5.05,
3066
+ "learning_rate": 3.938421052631579e-06,
3067
+ "loss": 0.1865,
3068
+ "step": 12525
3069
+ },
3070
+ {
3071
+ "epoch": 5.06,
3072
+ "learning_rate": 3.9252631578947366e-06,
3073
+ "loss": 0.1818,
3074
+ "step": 12550
3075
+ },
3076
+ {
3077
+ "epoch": 5.07,
3078
+ "learning_rate": 3.912105263157895e-06,
3079
+ "loss": 0.1339,
3080
+ "step": 12575
3081
+ },
3082
+ {
3083
+ "epoch": 5.08,
3084
+ "learning_rate": 3.898947368421052e-06,
3085
+ "loss": 0.1774,
3086
+ "step": 12600
3087
+ },
3088
+ {
3089
+ "epoch": 5.09,
3090
+ "learning_rate": 3.885789473684211e-06,
3091
+ "loss": 0.1914,
3092
+ "step": 12625
3093
+ },
3094
+ {
3095
+ "epoch": 5.1,
3096
+ "learning_rate": 3.872631578947369e-06,
3097
+ "loss": 0.145,
3098
+ "step": 12650
3099
+ },
3100
+ {
3101
+ "epoch": 5.12,
3102
+ "learning_rate": 3.8594736842105265e-06,
3103
+ "loss": 0.1834,
3104
+ "step": 12675
3105
+ },
3106
+ {
3107
+ "epoch": 5.13,
3108
+ "learning_rate": 3.846315789473685e-06,
3109
+ "loss": 0.192,
3110
+ "step": 12700
3111
+ },
3112
+ {
3113
+ "epoch": 5.14,
3114
+ "learning_rate": 3.833157894736842e-06,
3115
+ "loss": 0.1634,
3116
+ "step": 12725
3117
+ },
3118
+ {
3119
+ "epoch": 5.15,
3120
+ "learning_rate": 3.820000000000001e-06,
3121
+ "loss": 0.1492,
3122
+ "step": 12750
3123
+ },
3124
+ {
3125
+ "epoch": 5.16,
3126
+ "learning_rate": 3.806842105263158e-06,
3127
+ "loss": 0.1767,
3128
+ "step": 12775
3129
+ },
3130
+ {
3131
+ "epoch": 5.17,
3132
+ "learning_rate": 3.793684210526316e-06,
3133
+ "loss": 0.1718,
3134
+ "step": 12800
3135
+ },
3136
+ {
3137
+ "epoch": 5.18,
3138
+ "learning_rate": 3.780526315789474e-06,
3139
+ "loss": 0.1809,
3140
+ "step": 12825
3141
+ },
3142
+ {
3143
+ "epoch": 5.19,
3144
+ "learning_rate": 3.767368421052632e-06,
3145
+ "loss": 0.1596,
3146
+ "step": 12850
3147
+ },
3148
+ {
3149
+ "epoch": 5.2,
3150
+ "learning_rate": 3.75421052631579e-06,
3151
+ "loss": 0.2012,
3152
+ "step": 12875
3153
+ },
3154
+ {
3155
+ "epoch": 5.21,
3156
+ "learning_rate": 3.7410526315789473e-06,
3157
+ "loss": 0.1775,
3158
+ "step": 12900
3159
+ },
3160
+ {
3161
+ "epoch": 5.22,
3162
+ "learning_rate": 3.7278947368421052e-06,
3163
+ "loss": 0.1629,
3164
+ "step": 12925
3165
+ },
3166
+ {
3167
+ "epoch": 5.23,
3168
+ "learning_rate": 3.714736842105263e-06,
3169
+ "loss": 0.1666,
3170
+ "step": 12950
3171
+ },
3172
+ {
3173
+ "epoch": 5.24,
3174
+ "learning_rate": 3.7015789473684215e-06,
3175
+ "loss": 0.1658,
3176
+ "step": 12975
3177
+ },
3178
+ {
3179
+ "epoch": 5.25,
3180
+ "learning_rate": 3.6884210526315794e-06,
3181
+ "loss": 0.1775,
3182
+ "step": 13000
3183
+ },
3184
+ {
3185
+ "epoch": 5.26,
3186
+ "learning_rate": 3.6752631578947373e-06,
3187
+ "loss": 0.165,
3188
+ "step": 13025
3189
+ },
3190
+ {
3191
+ "epoch": 5.27,
3192
+ "learning_rate": 3.662105263157895e-06,
3193
+ "loss": 0.2025,
3194
+ "step": 13050
3195
+ },
3196
+ {
3197
+ "epoch": 5.28,
3198
+ "learning_rate": 3.648947368421053e-06,
3199
+ "loss": 0.1429,
3200
+ "step": 13075
3201
+ },
3202
+ {
3203
+ "epoch": 5.29,
3204
+ "learning_rate": 3.635789473684211e-06,
3205
+ "loss": 0.1881,
3206
+ "step": 13100
3207
+ },
3208
+ {
3209
+ "epoch": 5.3,
3210
+ "learning_rate": 3.622631578947369e-06,
3211
+ "loss": 0.1547,
3212
+ "step": 13125
3213
+ },
3214
+ {
3215
+ "epoch": 5.31,
3216
+ "learning_rate": 3.6094736842105264e-06,
3217
+ "loss": 0.1598,
3218
+ "step": 13150
3219
+ },
3220
+ {
3221
+ "epoch": 5.32,
3222
+ "learning_rate": 3.5963157894736843e-06,
3223
+ "loss": 0.1785,
3224
+ "step": 13175
3225
+ },
3226
+ {
3227
+ "epoch": 5.33,
3228
+ "learning_rate": 3.5831578947368422e-06,
3229
+ "loss": 0.1553,
3230
+ "step": 13200
3231
+ },
3232
+ {
3233
+ "epoch": 5.34,
3234
+ "learning_rate": 3.57e-06,
3235
+ "loss": 0.1592,
3236
+ "step": 13225
3237
+ },
3238
+ {
3239
+ "epoch": 5.35,
3240
+ "learning_rate": 3.556842105263158e-06,
3241
+ "loss": 0.1806,
3242
+ "step": 13250
3243
+ },
3244
+ {
3245
+ "epoch": 5.36,
3246
+ "learning_rate": 3.543684210526316e-06,
3247
+ "loss": 0.1694,
3248
+ "step": 13275
3249
+ },
3250
+ {
3251
+ "epoch": 5.37,
3252
+ "learning_rate": 3.5305263157894743e-06,
3253
+ "loss": 0.195,
3254
+ "step": 13300
3255
+ },
3256
+ {
3257
+ "epoch": 5.38,
3258
+ "learning_rate": 3.517368421052632e-06,
3259
+ "loss": 0.1885,
3260
+ "step": 13325
3261
+ },
3262
+ {
3263
+ "epoch": 5.39,
3264
+ "learning_rate": 3.50421052631579e-06,
3265
+ "loss": 0.1745,
3266
+ "step": 13350
3267
+ },
3268
+ {
3269
+ "epoch": 5.4,
3270
+ "learning_rate": 3.491052631578948e-06,
3271
+ "loss": 0.1266,
3272
+ "step": 13375
3273
+ },
3274
+ {
3275
+ "epoch": 5.41,
3276
+ "learning_rate": 3.4778947368421055e-06,
3277
+ "loss": 0.1676,
3278
+ "step": 13400
3279
+ },
3280
+ {
3281
+ "epoch": 5.42,
3282
+ "learning_rate": 3.4647368421052634e-06,
3283
+ "loss": 0.2647,
3284
+ "step": 13425
3285
+ },
3286
+ {
3287
+ "epoch": 5.43,
3288
+ "learning_rate": 3.4515789473684213e-06,
3289
+ "loss": 0.1765,
3290
+ "step": 13450
3291
+ },
3292
+ {
3293
+ "epoch": 5.44,
3294
+ "learning_rate": 3.4384210526315792e-06,
3295
+ "loss": 0.2035,
3296
+ "step": 13475
3297
+ },
3298
+ {
3299
+ "epoch": 5.45,
3300
+ "learning_rate": 3.425263157894737e-06,
3301
+ "loss": 0.1631,
3302
+ "step": 13500
3303
+ },
3304
+ {
3305
+ "epoch": 5.46,
3306
+ "learning_rate": 3.412105263157895e-06,
3307
+ "loss": 0.1818,
3308
+ "step": 13525
3309
+ },
3310
+ {
3311
+ "epoch": 5.47,
3312
+ "learning_rate": 3.398947368421053e-06,
3313
+ "loss": 0.1654,
3314
+ "step": 13550
3315
+ },
3316
+ {
3317
+ "epoch": 5.48,
3318
+ "learning_rate": 3.3857894736842104e-06,
3319
+ "loss": 0.1794,
3320
+ "step": 13575
3321
+ },
3322
+ {
3323
+ "epoch": 5.49,
3324
+ "learning_rate": 3.3726315789473683e-06,
3325
+ "loss": 0.2104,
3326
+ "step": 13600
3327
+ },
3328
+ {
3329
+ "epoch": 5.5,
3330
+ "learning_rate": 3.3594736842105262e-06,
3331
+ "loss": 0.1636,
3332
+ "step": 13625
3333
+ },
3334
+ {
3335
+ "epoch": 5.51,
3336
+ "learning_rate": 3.3463157894736846e-06,
3337
+ "loss": 0.1844,
3338
+ "step": 13650
3339
+ },
3340
+ {
3341
+ "epoch": 5.52,
3342
+ "learning_rate": 3.3331578947368425e-06,
3343
+ "loss": 0.2168,
3344
+ "step": 13675
3345
+ },
3346
+ {
3347
+ "epoch": 5.53,
3348
+ "learning_rate": 3.3200000000000004e-06,
3349
+ "loss": 0.156,
3350
+ "step": 13700
3351
+ },
3352
+ {
3353
+ "epoch": 5.54,
3354
+ "learning_rate": 3.3068421052631583e-06,
3355
+ "loss": 0.1995,
3356
+ "step": 13725
3357
+ },
3358
+ {
3359
+ "epoch": 5.55,
3360
+ "learning_rate": 3.2936842105263162e-06,
3361
+ "loss": 0.1682,
3362
+ "step": 13750
3363
+ },
3364
+ {
3365
+ "epoch": 5.56,
3366
+ "learning_rate": 3.280526315789474e-06,
3367
+ "loss": 0.1614,
3368
+ "step": 13775
3369
+ },
3370
+ {
3371
+ "epoch": 5.57,
3372
+ "learning_rate": 3.267368421052632e-06,
3373
+ "loss": 0.1796,
3374
+ "step": 13800
3375
+ },
3376
+ {
3377
+ "epoch": 5.58,
3378
+ "learning_rate": 3.2542105263157895e-06,
3379
+ "loss": 0.1699,
3380
+ "step": 13825
3381
+ },
3382
+ {
3383
+ "epoch": 5.59,
3384
+ "learning_rate": 3.2410526315789474e-06,
3385
+ "loss": 0.179,
3386
+ "step": 13850
3387
+ },
3388
+ {
3389
+ "epoch": 5.6,
3390
+ "learning_rate": 3.2278947368421053e-06,
3391
+ "loss": 0.163,
3392
+ "step": 13875
3393
+ },
3394
+ {
3395
+ "epoch": 5.61,
3396
+ "learning_rate": 3.2147368421052633e-06,
3397
+ "loss": 0.1874,
3398
+ "step": 13900
3399
+ },
3400
+ {
3401
+ "epoch": 5.62,
3402
+ "learning_rate": 3.201578947368421e-06,
3403
+ "loss": 0.1712,
3404
+ "step": 13925
3405
+ },
3406
+ {
3407
+ "epoch": 5.63,
3408
+ "learning_rate": 3.188421052631579e-06,
3409
+ "loss": 0.1586,
3410
+ "step": 13950
3411
+ },
3412
+ {
3413
+ "epoch": 5.64,
3414
+ "learning_rate": 3.175263157894737e-06,
3415
+ "loss": 0.1495,
3416
+ "step": 13975
3417
+ },
3418
+ {
3419
+ "epoch": 5.65,
3420
+ "learning_rate": 3.1621052631578953e-06,
3421
+ "loss": 0.2202,
3422
+ "step": 14000
3423
+ },
3424
+ {
3425
+ "epoch": 5.65,
3426
+ "eval_loss": 0.4407210648059845,
3427
+ "eval_runtime": 2507.3297,
3428
+ "eval_samples_per_second": 4.22,
3429
+ "eval_steps_per_second": 0.264,
3430
+ "eval_wer": 81.43073143073143,
3431
+ "step": 14000
3432
+ }
3433
+ ],
3434
+ "max_steps": 20000,
3435
+ "num_train_epochs": 9,
3436
+ "total_flos": 1.45250718400512e+19,
3437
+ "trial_name": null,
3438
+ "trial_params": null
3439
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dd044b4a417eb82733127780e3b340b741f8444eefc8e5bd28e75860610fe16e
3
+ size 3771
vocab.json ADDED
The diff for this file is too large to render. See raw diff