Commit
·
2929a1f
1
Parent(s):
b2d9803
Update README.md
Browse files
README.md
CHANGED
@@ -73,106 +73,29 @@ Users (both direct and downstream) should be made aware of the risks, biases and
|
|
73 |
|
74 |
Use the code below to get started with the model.
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
100 |
-
|
101 |
-
#### Speeds, Sizes, Times [optional]
|
102 |
-
|
103 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
104 |
-
|
105 |
-
[More Information Needed]
|
106 |
-
|
107 |
-
## Evaluation
|
108 |
-
|
109 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
110 |
-
|
111 |
-
See the **Evaluation Results** section of our paper.
|
112 |
-
|
113 |
-
### Testing Data, Factors & Metrics
|
114 |
-
|
115 |
-
#### Testing Data
|
116 |
-
|
117 |
-
<!-- This should link to a Data Card if possible. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Factors
|
122 |
-
|
123 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
#### Metrics
|
128 |
-
|
129 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
130 |
-
|
131 |
-
[More Information Needed]
|
132 |
-
|
133 |
-
### Results
|
134 |
-
|
135 |
-
[More Information Needed]
|
136 |
-
|
137 |
-
#### Summary
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
## Model Examination [optional]
|
142 |
-
|
143 |
-
<!-- Relevant interpretability work for the model goes here -->
|
144 |
-
|
145 |
-
[More Information Needed]
|
146 |
-
|
147 |
-
## Environmental Impact
|
148 |
-
|
149 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
150 |
-
|
151 |
-
<!-- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). -->
|
152 |
-
|
153 |
-
- **Hardware Type:**
|
154 |
-
- **Hours used:**
|
155 |
-
- **Cloud Provider:**
|
156 |
-
- **Compute Region:**
|
157 |
-
- **Carbon Emitted:**
|
158 |
-
|
159 |
-
## Technical Specifications [optional]
|
160 |
-
|
161 |
-
### Model Architecture and Objective
|
162 |
-
|
163 |
-
[More Information Needed]
|
164 |
-
|
165 |
-
### Compute Infrastructure
|
166 |
-
|
167 |
-
[More Information Needed]
|
168 |
-
|
169 |
-
#### Hardware
|
170 |
-
|
171 |
-
[More Information Needed]
|
172 |
-
|
173 |
-
#### Software
|
174 |
-
|
175 |
-
[More Information Needed]
|
176 |
|
177 |
## Citation [optional]
|
178 |
|
@@ -180,25 +103,15 @@ See the **Evaluation Results** section of our paper.
|
|
180 |
|
181 |
**BibTeX:**
|
182 |
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
[More Information Needed]
|
194 |
-
|
195 |
-
## More Information [optional]
|
196 |
-
|
197 |
-
[More Information Needed]
|
198 |
-
|
199 |
-
## Model Card Authors [optional]
|
200 |
-
|
201 |
-
[More Information Needed]
|
202 |
|
203 |
## Model Card Contact
|
204 |
|
|
|
73 |
|
74 |
Use the code below to get started with the model.
|
75 |
|
76 |
+
```python
|
77 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained('liujch1998/vera')
|
78 |
+
model = transformers.T5EncoderModel.from_pretrained('liujch1998/vera')
|
79 |
+
model.D = model.shared.embedding_dim
|
80 |
+
linear = torch.nn.Linear(model.D, 1, dtype=model.dtype)
|
81 |
+
linear.weight = torch.nn.Parameter(model.shared.weight[32099, :].unsqueeze(0))
|
82 |
+
linear.bias = torch.nn.Parameter(model.shared.weight[32098, 0].unsqueeze(0))
|
83 |
+
model.eval()
|
84 |
+
t = model.shared.weight[32097, 0].item() # temperature for calibration
|
85 |
+
|
86 |
+
statement = 'Please enter a commonsense statement here.'
|
87 |
+
input_ids = tokenizer.batch_encode_plus([statement], return_tensors='pt', padding='longest', truncation='longest_first', max_length=128).input_ids
|
88 |
+
with torch.no_grad():
|
89 |
+
output = model(input_ids)
|
90 |
+
last_hidden_state = output.last_hidden_state
|
91 |
+
hidden = last_hidden_state[0, -1, :]
|
92 |
+
logit = linear(hidden).squeeze(-1)
|
93 |
+
logit_calibrated = logit / t
|
94 |
+
score_calibrated = logit_calibrated.sigmoid()
|
95 |
+
# score_calibrated is Vera's final output plausibility score
|
96 |
+
```
|
97 |
+
|
98 |
+
You may also refer to <https://huggingface.co/spaces/liujch1998/vera/blob/main/app.py#L27-L98> for implementation.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
## Citation [optional]
|
101 |
|
|
|
103 |
|
104 |
**BibTeX:**
|
105 |
|
106 |
+
```
|
107 |
+
@article{Liu2023VeraAG,
|
108 |
+
title={Vera: A General-Purpose Plausibility Estimation Model for Commonsense Statements},
|
109 |
+
author={Jiacheng Liu and Wenya Wang and Dianzhuo Wang and Noah A. Smith and Yejin Choi and Hanna Hajishirzi},
|
110 |
+
journal={ArXiv},
|
111 |
+
year={2023},
|
112 |
+
volume={abs/2305.03695}
|
113 |
+
}
|
114 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
|
116 |
## Model Card Contact
|
117 |
|