liujch1998 commited on
Commit
2929a1f
·
1 Parent(s): b2d9803

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +32 -119
README.md CHANGED
@@ -73,106 +73,29 @@ Users (both direct and downstream) should be made aware of the risks, biases and
73
 
74
  Use the code below to get started with the model.
75
 
76
- Please refer to <https://huggingface.co/spaces/liujch1998/vera/blob/main/app.py#L27-L98>
77
-
78
- ## Training Details
79
-
80
- ### Training Data
81
-
82
- <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
83
-
84
- See the **Data Construction** section of our paper.
85
-
86
- ### Training Procedure
87
-
88
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
89
-
90
- See the **Model Training** section of our paper.
91
-
92
- #### Preprocessing [optional]
93
-
94
- [More Information Needed]
95
-
96
-
97
- #### Training Hyperparameters
98
-
99
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
100
-
101
- #### Speeds, Sizes, Times [optional]
102
-
103
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
104
-
105
- [More Information Needed]
106
-
107
- ## Evaluation
108
-
109
- <!-- This section describes the evaluation protocols and provides the results. -->
110
-
111
- See the **Evaluation Results** section of our paper.
112
-
113
- ### Testing Data, Factors & Metrics
114
-
115
- #### Testing Data
116
-
117
- <!-- This should link to a Data Card if possible. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Factors
122
-
123
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
124
-
125
- [More Information Needed]
126
-
127
- #### Metrics
128
-
129
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
130
-
131
- [More Information Needed]
132
-
133
- ### Results
134
-
135
- [More Information Needed]
136
-
137
- #### Summary
138
-
139
-
140
-
141
- ## Model Examination [optional]
142
-
143
- <!-- Relevant interpretability work for the model goes here -->
144
-
145
- [More Information Needed]
146
-
147
- ## Environmental Impact
148
-
149
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
150
-
151
- <!-- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). -->
152
-
153
- - **Hardware Type:**
154
- - **Hours used:**
155
- - **Cloud Provider:**
156
- - **Compute Region:**
157
- - **Carbon Emitted:**
158
-
159
- ## Technical Specifications [optional]
160
-
161
- ### Model Architecture and Objective
162
-
163
- [More Information Needed]
164
-
165
- ### Compute Infrastructure
166
-
167
- [More Information Needed]
168
-
169
- #### Hardware
170
-
171
- [More Information Needed]
172
-
173
- #### Software
174
-
175
- [More Information Needed]
176
 
177
  ## Citation [optional]
178
 
@@ -180,25 +103,15 @@ See the **Evaluation Results** section of our paper.
180
 
181
  **BibTeX:**
182
 
183
- [More Information Needed]
184
-
185
- **APA:**
186
-
187
- [More Information Needed]
188
-
189
- ## Glossary [optional]
190
-
191
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
192
-
193
- [More Information Needed]
194
-
195
- ## More Information [optional]
196
-
197
- [More Information Needed]
198
-
199
- ## Model Card Authors [optional]
200
-
201
- [More Information Needed]
202
 
203
  ## Model Card Contact
204
 
 
73
 
74
  Use the code below to get started with the model.
75
 
76
+ ```python
77
+ tokenizer = transformers.AutoTokenizer.from_pretrained('liujch1998/vera')
78
+ model = transformers.T5EncoderModel.from_pretrained('liujch1998/vera')
79
+ model.D = model.shared.embedding_dim
80
+ linear = torch.nn.Linear(model.D, 1, dtype=model.dtype)
81
+ linear.weight = torch.nn.Parameter(model.shared.weight[32099, :].unsqueeze(0))
82
+ linear.bias = torch.nn.Parameter(model.shared.weight[32098, 0].unsqueeze(0))
83
+ model.eval()
84
+ t = model.shared.weight[32097, 0].item() # temperature for calibration
85
+
86
+ statement = 'Please enter a commonsense statement here.'
87
+ input_ids = tokenizer.batch_encode_plus([statement], return_tensors='pt', padding='longest', truncation='longest_first', max_length=128).input_ids
88
+ with torch.no_grad():
89
+ output = model(input_ids)
90
+ last_hidden_state = output.last_hidden_state
91
+ hidden = last_hidden_state[0, -1, :]
92
+ logit = linear(hidden).squeeze(-1)
93
+ logit_calibrated = logit / t
94
+ score_calibrated = logit_calibrated.sigmoid()
95
+ # score_calibrated is Vera's final output plausibility score
96
+ ```
97
+
98
+ You may also refer to <https://huggingface.co/spaces/liujch1998/vera/blob/main/app.py#L27-L98> for implementation.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99
 
100
  ## Citation [optional]
101
 
 
103
 
104
  **BibTeX:**
105
 
106
+ ```
107
+ @article{Liu2023VeraAG,
108
+ title={Vera: A General-Purpose Plausibility Estimation Model for Commonsense Statements},
109
+ author={Jiacheng Liu and Wenya Wang and Dianzhuo Wang and Noah A. Smith and Yejin Choi and Hanna Hajishirzi},
110
+ journal={ArXiv},
111
+ year={2023},
112
+ volume={abs/2305.03695}
113
+ }
114
+ ```
 
 
 
 
 
 
 
 
 
 
115
 
116
  ## Model Card Contact
117