linker81 commited on
Commit
9408fbf
1 Parent(s): 49a6977

Update of hyperparameters PPO

Browse files
PPO_LunarLander-v2_linker.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:828599ec3eea1322cc9c6b5357bcb5039c33ee7d555d46bc101d1e67a77db124
3
+ size 144439
PPO_LunarLander-v2_linker/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
PPO_LunarLander-v2_linker/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7699e03680>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7699e03710>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7699e037a0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7699e03830>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f7699e038c0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f7699e03950>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7699e039e0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f7699e03a70>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7699e03b00>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7699e03b90>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7699e03c20>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f7699e57240>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 32,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1652294061.3504024,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": "runs/3oqb7f7p",
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAADOcjLxkLi4+h6jMvXXmnL7E8Zu8YM83PQAAAAAAAAAAzfGSvMMpRbqDSEY5I4qjNDWlLrpIm2S4AACAPwAAgD9AfYq94xtTPUalET7GJ22+96lVPUZ0B70AAAAAAAAAAM1vUz5H5G8/HnAePsrcr778ccQ+4AghPQAAAAAAAAAAmvKXPHvWkLp/WQq3e8cZsvTDjjohyCA2AACAPwAAgD+aWWc8SIeiutYUETjm1wgzkE69OjDqJrcAAIA/AACAP2ZlBr1cr026VjeJOzx+PDhoAfC6A31YuAAAgD8AAIA/DcqaPV7WMD+evxQ9H7elvlBpKT3CTZO9AAAAAAAAAAANlZG9haPyuZChYbhVxdaw7oSZuuSpgjcAAIA/AACAP2Y8PL2FY+G5Rlagu4r7OjhpM4W6hFpMOgAAgD8AAIA/2jPFvamIdT7vVAM9Lk9fvphZibzXWTc7AAAAAAAAAADG4yE+LofFO/Q8Bb6L/Fi+rVh2PGk3mLoAAAAAAAAAAJqOSz0uQ6Y9xnokvl5VTr4dVOe9EKfhvAAAAAAAAAAAptkMPqSjQLurQlQ4JBJYtfZ/W7woCXy3AACAPwAAgD8at3g9e6KvuspTdDqtyAe2BxGYt5eai7kAAIA/AACAPwBsnLwU+ou67raMPMr+XLaD0i074Rw+tQAAgD8AAIA/mjlfO+HyhboPlkq7nJBzNo05Nbtj0mc6AACAPwAAgD/Nxqq8ewCRuko48Dp9jDu2+GIDu0E+KLUAAIA/AACAP5rZOLxcQ0S6xOybu5OIUDjjAqs73EkWOQAAgD8AAIA/wHYwvqU7AT+68KQ+qdmzvkisIbyJWMA9AAAAAAAAAABmyhG8e1SmuOqBNLpe+ua6wb2Zu5JgyjsAAIA/AAAAAJpHn7zhfLm6oouXNpoonzGOfKq4nzixtQAAgD8AAIA/MwMCPXEtJbnGFTs703CINk+ruDrNnF+6AACAPwAAgD/NhV294aCVukVgLjmA+h406sbYugbUSbgAAIA/AACAP4AQUb0pgHW6drOJuqlnk7WuegU6WMegOQAAgD8AAIA/M2s2PK7tgLroWUg7mtmss0wHXrs2A2W6AACAPwAAgD/NqAy9KRhNuue4NTjEP4wzRDAEusJPVLcAAIA/AACAPyAaIT58M/g+wV0+vgTTib5iHj69VeH9vQAAAAAAAAAAgPdvPVJA8bkalYc7ZQKJNg87gDqIsJ26AACAPwAAgD8zFqW9dmEBvKjMAT4eMvQ8H3dNvd6eyD0AAAAAAACAP2Yecz0UnpO6sXYvuMvpd7M5rgA7v59JNwAAgD8AAIA/Ztg1PHFNEblhkzA4BxWMMzagSjv6dk+3AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIpmCNs+mIY0CUhpRSlIwBbJRN6AOMAXSUR0CaD20qH447dX2UKGgGaAloD0MIraOqCSKSYUCUhpRSlGgVTegDaBZHQJoQLAJswcp1fZQoaAZoCWgPQwiwdhTnKOFlQJSGlFKUaBVN6ANoFkdAmhFfNVzZH3V9lChoBmgJaA9DCITyPo7m2GdAlIaUUpRoFU3oA2gWR0CaF1Fr2xptdX2UKGgGaAloD0MI3LdaJy5JRUCUhpRSlGgVS5VoFkdAmhoZHRTjvXV9lChoBmgJaA9DCJrrNNLSvmNAlIaUUpRoFU3oA2gWR0CaHhYGdI5HdX2UKGgGaAloD0MIPWGJBxR6YkCUhpRSlGgVTegDaBZHQJohV54W1tx1fZQoaAZoCWgPQwhrgNJQI3pgQJSGlFKUaBVN6ANoFkdAmiP/9UCJXXV9lChoBmgJaA9DCBSy8zY29GJAlIaUUpRoFU3oA2gWR0CaJPB42S+ydX2UKGgGaAloD0MIrwrUYvAmUUCUhpRSlGgVS7ZoFkdAmiaPrGBFu3V9lChoBmgJaA9DCEPFOH8TmGVAlIaUUpRoFU3oA2gWR0CaK+HLidaudX2UKGgGaAloD0MIPiDQmbQFZkCUhpRSlGgVTegDaBZHQJouahN/OMV1fZQoaAZoCWgPQwj5ZwbxgTxiQJSGlFKUaBVN6ANoFkdAmjUz8DSw4nV9lChoBmgJaA9DCGPQCaGD62lAlIaUUpRoFU3oA2gWR0CaOdfCAMDwdX2UKGgGaAloD0MIukkMAquMZECUhpRSlGgVTegDaBZHQJpA1F9a2Wp1fZQoaAZoCWgPQwiOyk3U0n9bQJSGlFKUaBVN6ANoFkdAmkHihSLqEHV9lChoBmgJaA9DCI178xumTGJAlIaUUpRoFU3oA2gWR0CaUHnVG0/odX2UKGgGaAloD0MI203wTdM8YECUhpRSlGgVTegDaBZHQJpQwTIvJzV1fZQoaAZoCWgPQwiQFJFhFb5kQJSGlFKUaBVN6ANoFkdAmlhtRR/EwXV9lChoBmgJaA9DCIuKOJ1kwmVAlIaUUpRoFU3oA2gWR0CaXDJbMX7+dX2UKGgGaAloD0MIt/C8VOxlaECUhpRSlGgVTegDaBZHQJpdR1zQu291fZQoaAZoCWgPQwh1r5P6sophQJSGlFKUaBVN6ANoFkdAmmBsc6vJR3V9lChoBmgJaA9DCGUXDK456GBAlIaUUpRoFU3oA2gWR0CaYwaV2Rq5dX2UKGgGaAloD0MI6PUn8TmJY0CUhpRSlGgVTegDaBZHQJpk5PuXu3N1fZQoaAZoCWgPQwh5dCMsqnxlQJSGlFKUaBVN6ANoFkdAmmnLQTmGNHV9lChoBmgJaA9DCDScMjdfEWRAlIaUUpRoFU3oA2gWR0CaafKNyYG/dX2UKGgGaAloD0MILsVVZd+sYUCUhpRSlGgVTegDaBZHQJpr1kGzKLd1fZQoaAZoCWgPQwgQejarvr5jQJSGlFKUaBVN6ANoFkdAmm2aTSsr/nV9lChoBmgJaA9DCBHjNa/qc2bAlIaUUpRoFU2/AWgWR0CabrmpVCHAdX2UKGgGaAloD0MIgnSxaSVjaECUhpRSlGgVTegDaBZHQJpv3zUZvUB1fZQoaAZoCWgPQwgLCRhd3mlnQJSGlFKUaBVN6ANoFkdAmnSe5J9RaXV9lChoBmgJaA9DCLotkQvOvWRAlIaUUpRoFU3oA2gWR0CadP+0PYnOdX2UKGgGaAloD0MI97GC34YZYkCUhpRSlGgVTegDaBZHQJp4NxQzk6t1fZQoaAZoCWgPQwgzwXCu4ShlQJSGlFKUaBVN6ANoFkdAmnvZle4TbnV9lChoBmgJaA9DCNqM0xDVYmZAlIaUUpRoFU3oA2gWR0Ca96vg3tKJdX2UKGgGaAloD0MIuRluwGdJY0CUhpRSlGgVTegDaBZHQJr4db4agmJ1fZQoaAZoCWgPQwgG2h1SDG1dQJSGlFKUaBVN6ANoFkdAmwAz4593KXV9lChoBmgJaA9DCLIPsiwYU2VAlIaUUpRoFU3oA2gWR0CbAzB9kSVXdX2UKGgGaAloD0MIE0TdB6BbYUCUhpRSlGgVTegDaBZHQJsHTs8gZCR1fZQoaAZoCWgPQwifymlPSUFkQJSGlFKUaBVN6ANoFkdAmwqz/ZM+NnV9lChoBmgJaA9DCIaPiCkRt2ZAlIaUUpRoFU3oA2gWR0CbDYEm6XjVdX2UKGgGaAloD0MIDmjpCjZzZ0CUhpRSlGgVTegDaBZHQJsOdk/bCaZ1fZQoaAZoCWgPQwg/i6VIvjRhQJSGlFKUaBVN6ANoFkdAmxAlFc6eXnV9lChoBmgJaA9DCNeFH5zP72JAlIaUUpRoFU3oA2gWR0CbFWguyu6mdX2UKGgGaAloD0MI8aFES54aYUCUhpRSlGgVTegDaBZHQJsYB31SOzZ1fZQoaAZoCWgPQwiWeEDZlLRwQJSGlFKUaBVNLAJoFkdAmx1327FsHnV9lChoBmgJaA9DCNZYwtqYc2NAlIaUUpRoFU3oA2gWR0CbHfqvvBrOdX2UKGgGaAloD0MIVft0PGarYUCUhpRSlGgVTegDaBZHQJspIIkZ75V1fZQoaAZoCWgPQwhAoDNpU01fQJSGlFKUaBVN6ANoFkdAmyo2vfTCtXV9lChoBmgJaA9DCMcRa/Ep22JAlIaUUpRoFU3oA2gWR0CbORCu2Zy/dX2UKGgGaAloD0MIEJaxoRsmZ0CUhpRSlGgVTegDaBZHQJs5U5OrQw91fZQoaAZoCWgPQwgt7GmHPyRiQJSGlFKUaBVN6ANoFkdAm0DzZYgaFXV9lChoBmgJaA9DCONTAIxn719AlIaUUpRoFU3oA2gWR0CbRNg/C66KdX2UKGgGaAloD0MIyF7v/niAY0CUhpRSlGgVTegDaBZHQJtF+8oQWep1fZQoaAZoCWgPQwgY0At3LtNmQJSGlFKUaBVN6ANoFkdAm0k4fSx7iXV9lChoBmgJaA9DCERtG0ZBI2RAlIaUUpRoFU3oA2gWR0CbTAwTdtVJdX2UKGgGaAloD0MI1JtR89USZUCUhpRSlGgVTegDaBZHQJtN8XXRPXV1fZQoaAZoCWgPQwgvFLAdDOtiQJSGlFKUaBVN6ANoFkdAm1NXX2/SIHV9lChoBmgJaA9DCA4V4/zN3GJAlIaUUpRoFU3oA2gWR0CbVXr/82rGdX2UKGgGaAloD0MIPgPqzSiWY0CUhpRSlGgVTegDaBZHQJtXXfVI7Nl1fZQoaAZoCWgPQwjxRuaRv1ZmQJSGlFKUaBVN6ANoFkdAm1iMeKbay3V9lChoBmgJaA9DCAqgGFmyR2RAlIaUUpRoFU3oA2gWR0CbWcYTj/+9dX2UKGgGaAloD0MI8Pj2rkF7ZECUhpRSlGgVTegDaBZHQJtezXTVlPJ1fZQoaAZoCWgPQwjOjH40HIJhQJSGlFKUaBVN6ANoFkdAm18+gL7XQXV9lChoBmgJaA9DCL/yID3F4mZAlIaUUpRoFU3oA2gWR0CbYt1+iJwbdX2UKGgGaAloD0MIt3u5Tw5bYUCUhpRSlGgVTegDaBZHQJtm0M8YAKh1fZQoaAZoCWgPQwhCe/Xx0DZeQJSGlFKUaBVN6ANoFkdAm+HiNjslcHV9lChoBmgJaA9DCLXiGwqfU2JAlIaUUpRoFU3oA2gWR0Cb4qRHww0wdX2UKGgGaAloD0MI8b2/QfuGZkCUhpRSlGgVTegDaBZHQJvqFm6Gxlh1fZQoaAZoCWgPQwglBKvq5VpcQJSGlFKUaBVN6ANoFkdAm+zjFMqSYHV9lChoBmgJaA9DCEyL+iT3zmFAlIaUUpRoFU3oA2gWR0Cb8L8IzFdcdX2UKGgGaAloD0MIUfUrnY+QYUCUhpRSlGgVTegDaBZHQJvz6fwqiGp1fZQoaAZoCWgPQwjVCP1MPbJlQJSGlFKUaBVN6ANoFkdAm/ZnrdFfA3V9lChoBmgJaA9DCLyWkA/6M2NAlIaUUpRoFU3oA2gWR0Cb90b/Ot4idX2UKGgGaAloD0MIuAGfH0aNY0CUhpRSlGgVTegDaBZHQJv41vUBnzx1fZQoaAZoCWgPQwjudr00RZJkQJSGlFKUaBVN6ANoFkdAm/24XXRPXXV9lChoBmgJaA9DCCMva2KB+mVAlIaUUpRoFU3oA2gWR0CcABdjXnQqdX2UKGgGaAloD0MIwR2oUx7CYkCUhpRSlGgVTegDaBZHQJwFMqrilzl1fZQoaAZoCWgPQwiPGhNirtFlQJSGlFKUaBVN6ANoFkdAnAWwtnPE9HV9lChoBmgJaA9DCPc7FAV6KW1AlIaUUpRoFU2WAmgWR0CcC6XhfjS5dX2UKGgGaAloD0MIznADPr+nZUCUhpRSlGgVTegDaBZHQJwPxB0IToN1fZQoaAZoCWgPQwg+XHLcKcxeQJSGlFKUaBVN6ANoFkdAnBCyHVPN3XV9lChoBmgJaA9DCDdwB+qU00tAlIaUUpRoFUv4aBZHQJwaUELYwqR1fZQoaAZoCWgPQwg8hzJURXJiQJSGlFKUaBVN6ANoFkdAnB25Q1rIo3V9lChoBmgJaA9DCHC1TlyO5WNAlIaUUpRoFU3oA2gWR0CcHfVsk6cRdX2UKGgGaAloD0MIDf0TXKz/YkCUhpRSlGgVTegDaBZHQJwkuAlOXVt1fZQoaAZoCWgPQwjpmV5irPJnQJSGlFKUaBVN6ANoFkdAnCgTkuHvdHV9lChoBmgJaA9DCIfFqGvt0WJAlIaUUpRoFU3oA2gWR0CcKRE7nxJ/dX2UKGgGaAloD0MIFeP8TSgxX0CUhpRSlGgVTegDaBZHQJwryeGwiaB1fZQoaAZoCWgPQwgyBWucTSFjQJSGlFKUaBVN6ANoFkdAnC4rLU1AJXV9lChoBmgJaA9DCEsC1NQyS2dAlIaUUpRoFU3oA2gWR0CcNKu5z5oHdX2UKGgGaAloD0MIh6jCn2GFZkCUhpRSlGgVTegDaBZHQJw2hCMPz4F1fZQoaAZoCWgPQwj/lZUmJU5kQJSGlFKUaBVN6ANoFkdAnDgxIatLc3V9lChoBmgJaA9DCKMDkrAvM3FAlIaUUpRoFU0lA2gWR0CcOUfKISDidX2UKGgGaAloD0MIbf5fdWTsY0CUhpRSlGgVTegDaBZHQJw5SR4hUzd1fZQoaAZoCWgPQwhm+boMf9dhQJSGlFKUaBVN6ANoFkdAnDpQ3cYZVHV9lChoBmgJaA9DCHe+nxovR2NAlIaUUpRoFU3oA2gWR0CcPsdIoVmBdX2UKGgGaAloD0MI+s+aH3+ZYkCUhpRSlGgVTegDaBZHQJw/JWcSXdF1fZQoaAZoCWgPQwhETl/P12ZnQJSGlFKUaBVN6ANoFkdAnEJWoegctHV9lChoBmgJaA9DCHQkl/8QWGNAlIaUUpRoFU3oA2gWR0CcRdD2rXDndWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 620,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 20,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
PPO_LunarLander-v2_linker/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:485f0b84dd4f4c62df8089bfa6f0c62e5b6d6a2a8aecc815b085a31c5cfb079d
3
+ size 84637
PPO_LunarLander-v2_linker/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9bf709355a09e4cbe33b50caf4a1381247b535eedc630043143bc0c4ed73e361
3
+ size 43073
PPO_LunarLander-v2_linker/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
PPO_LunarLander-v2_linker/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: False
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
README.md CHANGED
@@ -10,7 +10,7 @@ model-index:
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
- value: 277.60 +/- 17.67
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
 
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
+ value: 261.16 +/- 23.00
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5137ce3e60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5137ce3ef0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5137ce3f80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5137ceb050>", "_build": "<function ActorCriticPolicy._build at 0x7f5137ceb0e0>", "forward": "<function ActorCriticPolicy.forward at 0x7f5137ceb170>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5137ceb200>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5137ceb290>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5137ceb320>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5137ceb3b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5137ceb440>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f5137cbc2a0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 24, "num_timesteps": 1007616, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652263722.3386688, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQMAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAwAAAAAAANqOoj2ufZC64kk4tD7zja1RcVK6bqadMwAAgD8AAIA/mmGNPHR8oLyz0Gi+3cktviufwz3bSGc/AACAPwAAgD+NqZo9mRhNPuPb0b0jKBK/7FCePRwwlr0AAAAAAAAAAJpkJr1aKoE/QME5vGL5M79m2dO9OP/dOwAAAAAAAAAADSAJPhMYpD4XDD++9TLtvisbvbxniJy9AAAAAAAAAABmx9g8I9p/PxKA5j35uze/U++ePHB6hj0AAAAAAAAAALPnQ72HXm0/x3SYvUq9L78HBQG+SuJsvQAAAAAAAAAAs/ErvTwPbT2wgQM9UP/wvnGoE71CHts8AAAAAAAAAAAAVMu83lzWPfKjpD1jgsO+v8/pPEfyKToAAAAAAAAAAOZQ9D2k4oc/5cq8PqTEI79Iq00+05YhPgAAAAAAAAAAABRSvE/2ULxyMA2+bgsWvlFLQz0hMUc/AACAPwAAgD8zPTk9YUHuPavUxT190Ii+NS0IPnDnsz0AAAAAAAAAAE2nRD17QoK6pCSQuLqzkLNq0XK6dmCoNwAAgD8AAIA/M9T9PNQ7tj+smEM/DQTSPelHvbzKoke9AAAAAAAAAADNrYK8JUsRPkjetz4C7ri+AyFePqu21j0AAAAAAAAAAGbmYbo4uIm7G0jmPPM0Aj3cDNS8HYfYPQAAgD8AAIA/zcKuPKrftj9aXzU/WgBzPrRWnbxpW7m9AAAAAAAAAABN4+G969FqP588LL7S5jS/C+Fdvr9/pL0AAAAAAAAAAKb4rj3fobI/A/CSPjnowr6DbRI+lZuNPAAAAAAAAAAAcxtSPk85IT+eN3y++uQyv1mHbj2TnXq9AAAAAAAAAAAz95+9IvViPvb4cD7B6Mu+3r1KPYqPZj0AAAAAAAAAAFoWhT0UY7k/4kSkPmVXHL67huU9fmc2PgAAAAAAAAAAAMDuPYO8PT9QMTs+Pugav7S0Nz67dLk9AAAAAAAAAAAzxXa9TBOfPshz8DztGhe/j1WavSo91j0AAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLGEsIhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWViwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUjAFDlHSUUpQu"}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVJBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIEqW9wZc7cECUhpRSlIwBbJRLnIwBdJRHQLCMb5sTFl11fZQoaAZoCWgPQwgQy2YOyeVxQJSGlFKUaBVLy2gWR0CwjHUmICU5dX2UKGgGaAloD0MIjgQabCqlcECUhpRSlGgVS+BoFkdAsIyGSRr8BXV9lChoBmgJaA9DCO6W5IBdK3BAlIaUUpRoFUuxaBZHQLCMm/ub7TF1fZQoaAZoCWgPQwiOkewRqkVzQJSGlFKUaBVL02gWR0CwjKr349HMdX2UKGgGaAloD0MIUp0OZD2CVECUhpRSlGgVS39oFkdAsIy/yxzJZHV9lChoBmgJaA9DCHbj3ZGxZHFAlIaUUpRoFUuyaBZHQLCM5V0Lc9J1fZQoaAZoCWgPQwiHU+bmGxVAQJSGlFKUaBVLWGgWR0CwjPYfW+XadX2UKGgGaAloD0MIJqyNsROHcUCUhpRSlGgVS8doFkdAsI0UPxx1gnV9lChoBmgJaA9DCPEtrBuv4XJAlIaUUpRoFUusaBZHQLCNKjENvwV1fZQoaAZoCWgPQwjfMxKhEYJHQJSGlFKUaBVLY2gWR0CwjTXjENvwdX2UKGgGaAloD0MIsyPVdz7acUCUhpRSlGgVS7RoFkdAsI1CrELpinV9lChoBmgJaA9DCOy/zk2bLXJAlIaUUpRoFUvbaBZHQLCNQoKlYU51fZQoaAZoCWgPQwgiF5zBH+JyQJSGlFKUaBVNCwFoFkdAsI1wUypJgHV9lChoBmgJaA9DCATltn3PV3FAlIaUUpRoFUvHaBZHQLCNc/gBLf11fZQoaAZoCWgPQwgZraOqCVRxQJSGlFKUaBVLzmgWR0CwjYjxoZhsdX2UKGgGaAloD0MI+kLIeX8OckCUhpRSlGgVS9BoFkdAsI2GPFNtZXV9lChoBmgJaA9DCKJdhZSfzEpAlIaUUpRoFUteaBZHQLCNirlvIfd1fZQoaAZoCWgPQwixbycRYTpzQJSGlFKUaBVL22gWR0CwjacCgbqAdX2UKGgGaAloD0MIJAwDllzBNECUhpRSlGgVS2ZoFkdAsI3oeyRjjXV9lChoBmgJaA9DCK9amfBL1XFAlIaUUpRoFUu/aBZHQLCOCx5s0pF1fZQoaAZoCWgPQwiu1LMgVF5xQJSGlFKUaBVLqmgWR0CwjiOjRD1HdX2UKGgGaAloD0MIBabTug0OcUCUhpRSlGgVS85oFkdAsI4sfq5byHV9lChoBmgJaA9DCMB5ceLrqHJAlIaUUpRoFUvRaBZHQLCOSuQIUrV1fZQoaAZoCWgPQwhHk4sx8GxyQJSGlFKUaBVLwGgWR0CwjlQWJrLydX2UKGgGaAloD0MI/S0B+CcVckCUhpRSlGgVS7hoFkdAsI5aD15B1XV9lChoBmgJaA9DCOzf9ZlzRHJAlIaUUpRoFUvaaBZHQLCObpi7TUl1fZQoaAZoCWgPQwjj3vyGiRByQJSGlFKUaBVNJAFoFkdAsI6aRnvlVHV9lChoBmgJaA9DCDPABdky629AlIaUUpRoFUvFaBZHQLCOoLlV94N1fZQoaAZoCWgPQwgAyAkThlVxQJSGlFKUaBVLxmgWR0CwjrfxlQMydX2UKGgGaAloD0MIOBH92rpgc0CUhpRSlGgVS+poFkdAsI7Cu+yquXV9lChoBmgJaA9DCNi61Aj97XBAlIaUUpRoFUu+aBZHQLCO3DGcWj51fZQoaAZoCWgPQwi8Bn3p7ZFwQJSGlFKUaBVLumgWR0CwjwNSQ5mzdX2UKGgGaAloD0MI/FQVGsh6cECUhpRSlGgVS55oFkdAsI8Y4+8oQXV9lChoBmgJaA9DCPRuLCiMSXBAlIaUUpRoFUvLaBZHQLCPGdYnv2J1fZQoaAZoCWgPQwhSmzi5n6VzQJSGlFKUaBVLwmgWR0CwjyCxJNCadX2UKGgGaAloD0MI4bVLGw4zc0CUhpRSlGgVS71oFkdAsI9KzJIUanV9lChoBmgJaA9DCDT0T3Cx93BAlIaUUpRoFUvQaBZHQLCPTBAfMfR1fZQoaAZoCWgPQwjDDfj8sM1zQJSGlFKUaBVLymgWR0Cwj24y44IbdX2UKGgGaAloD0MI7YLBNXf6ckCUhpRSlGgVS9BoFkdAsI+QM5OrQ3V9lChoBmgJaA9DCKjGSzdJCnFAlIaUUpRoFUvTaBZHQLCPnRqXWvt1fZQoaAZoCWgPQwg/AKlNXJxyQJSGlFKUaBVNAAFoFkdAsI/Fpxm03XV9lChoBmgJaA9DCM0C7Q5p1HBAlIaUUpRoFUuzaBZHQLCPzzGgi/x1fZQoaAZoCWgPQwhdFajF4OZwQJSGlFKUaBVL6WgWR0Cwj+3jhky2dX2UKGgGaAloD0MIIc7DCcxWckCUhpRSlGgVS9JoFkdAsI/5qN6w+3V9lChoBmgJaA9DCDcXf9tTinFAlIaUUpRoFUvXaBZHQLCQPzwtrbh1fZQoaAZoCWgPQwi5qBYRhWpwQJSGlFKUaBVLyGgWR0CwkE863iJgdX2UKGgGaAloD0MI6lxRSsgwckCUhpRSlGgVS8NoFkdAsJBYcU/OdHV9lChoBmgJaA9DCHh7EAIy8HNAlIaUUpRoFUvXaBZHQLCQaAVO9Fp1fZQoaAZoCWgPQwj5npEIjTFzQJSGlFKUaBVL3GgWR0CwkHu1Bt1qdX2UKGgGaAloD0MIg1FJnQD3cECUhpRSlGgVS+1oFkdAsJCCBvrGBHV9lChoBmgJaA9DCN3PKcjPoW9AlIaUUpRoFUvGaBZHQLCQi4agmJF1fZQoaAZoCWgPQwjB4nDm19xxQJSGlFKUaBVLzGgWR0CwkL1H4GlidX2UKGgGaAloD0MIZFdaRmq+cECUhpRSlGgVS7JoFkdAsJDG16Vt43V9lChoBmgJaA9DCNPZyeDo/3FAlIaUUpRoFUvRaBZHQLCQ7hXKbKB1fZQoaAZoCWgPQwiR1hh0AvtzQJSGlFKUaBVLumgWR0CwkPkka/ATdX2UKGgGaAloD0MIP41785t7cUCUhpRSlGgVS6toFkdAsJEk6NlyzXV9lChoBmgJaA9DCEOqKF5lW29AlIaUUpRoFUvQaBZHQLCRKkvsZ511fZQoaAZoCWgPQwgLC+4HPHtxQJSGlFKUaBVLvGgWR0CwkSxK+SKWdX2UKGgGaAloD0MIFXE6yVaVcUCUhpRSlGgVS9RoFkdAsJE0oScslXV9lChoBmgJaA9DCH2SO2wiiG9AlIaUUpRoFUuWaBZHQLCRUgPmPo51fZQoaAZoCWgPQwikqgmibgJvQJSGlFKUaBVLrmgWR0CwkU/5HmRvdX2UKGgGaAloD0MIDD84n7packCUhpRSlGgVS8toFkdAsJFUcsDnvHV9lChoBmgJaA9DCEn0MoplRXJAlIaUUpRoFU0FAWgWR0CwkVpd0JWvdX2UKGgGaAloD0MIeqnYmNdtcUCUhpRSlGgVS8RoFkdAsJGPlRxcV3V9lChoBmgJaA9DCBHkoITZm3JAlIaUUpRoFUuraBZHQLCRosguAZt1fZQoaAZoCWgPQwiQgxJm2mBJQJSGlFKUaBVLXWgWR0CwkaWDlHSXdX2UKGgGaAloD0MIDr4wmSqOckCUhpRSlGgVTTcBaBZHQLCRsmJ3xF11fZQoaAZoCWgPQwhDBBxC1SJyQJSGlFKUaBVLsWgWR0Cwkb4T0xubdX2UKGgGaAloD0MIJ2vUQ7Roc0CUhpRSlGgVS+FoFkdAsJH8yXUpeHV9lChoBmgJaA9DCDcz+tFw6HBAlIaUUpRoFUu+aBZHQLCSLugYgq51fZQoaAZoCWgPQwietkYEY9dxQJSGlFKUaBVLq2gWR0CwkjonfEXMdX2UKGgGaAloD0MIdZKtLufkckCUhpRSlGgVS71oFkdAsJJFD6WPcXV9lChoBmgJaA9DCIknu5mRKnJAlIaUUpRoFUvQaBZHQLCSUDrJKap1fZQoaAZoCWgPQwgroib6fAdzQJSGlFKUaBVLzGgWR0Cwkl36Q/5ddX2UKGgGaAloD0MIhhxbzxAKSUCUhpRSlGgVS5BoFkdAsJJiBFuvU3V9lChoBmgJaA9DCEc9RKN75nFAlIaUUpRoFUvHaBZHQLCSduAqd6N1fZQoaAZoCWgPQwgtzEI755VxQJSGlFKUaBVL3mgWR0CwkrfKMefadX2UKGgGaAloD0MIc/T4vU1GdECUhpRSlGgVS8ZoFkdAsJK7MMZxaXV9lChoBmgJaA9DCJayDHHsPXBAlIaUUpRoFUusaBZHQLCS46Tnq3V1fZQoaAZoCWgPQwhUG5yIfghvQJSGlFKUaBVLtmgWR0CwkvPI0ZWJdX2UKGgGaAloD0MIaqZ7nZRWcUCUhpRSlGgVS71oFkdAsJMHYukDZHV9lChoBmgJaA9DCC0JUFPLj3BAlIaUUpRoFUvPaBZHQLCTLhHLA591fZQoaAZoCWgPQwggt18+GVNzQJSGlFKUaBVL7mgWR0Cwk0aVMVUNdX2UKGgGaAloD0MIfGKdKt+bS0CUhpRSlGgVS2BoFkdAsJNTCgsbvXV9lChoBmgJaA9DCAcoDTWK53BAlIaUUpRoFUutaBZHQLCTW16Vt411fZQoaAZoCWgPQwgBMJ5BQ3RyQJSGlFKUaBVL0WgWR0Cwk17dJrckdX2UKGgGaAloD0MINGd9yvEeckCUhpRSlGgVS7VoFkdAsJNx8Ti84HV9lChoBmgJaA9DCF6dY0A2eHBAlIaUUpRoFUvOaBZHQLCTm3BHkLh1fZQoaAZoCWgPQwithVloJ15zQJSGlFKUaBVL7GgWR0Cwk66p5u63dX2UKGgGaAloD0MIfhzNkRVJc0CUhpRSlGgVS9RoFkdAsJPPj1f3OHV9lChoBmgJaA9DCNBk/zwNhHNAlIaUUpRoFU0FAWgWR0Cwk+rADaGpdX2UKGgGaAloD0MI6X+5Fu2kckCUhpRSlGgVTQwBaBZHQLCT+ujRD1J1fZQoaAZoCWgPQwgwZeCAVsRzQJSGlFKUaBVL32gWR0Cwk/mlZX+3dX2UKGgGaAloD0MI3h/vVesHcUCUhpRSlGgVS89oFkdAsJQUm7aqTHV9lChoBmgJaA9DCJ2huOPNmXBAlIaUUpRoFUu7aBZHQLCUHnG82751fZQoaAZoCWgPQwiyR6gZ0qxxQJSGlFKUaBVLwGgWR0CwlCAq7ROUdX2UKGgGaAloD0MITdnpB/UrckCUhpRSlGgVS7poFkdAsJQub9ZRsXV9lChoBmgJaA9DCIzXvKozEHJAlIaUUpRoFUvDaBZHQLCUVpbUwzt1fZQoaAZoCWgPQwiFQC5xZExwQJSGlFKUaBVLvGgWR0CwlFkfDDTCdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1230, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 30, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7699e03680>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7699e03710>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7699e037a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7699e03830>", "_build": "<function ActorCriticPolicy._build at 0x7f7699e038c0>", "forward": "<function ActorCriticPolicy.forward at 0x7f7699e03950>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7699e039e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7699e03a70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7699e03b00>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7699e03b90>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7699e03c20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f7699e57240>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652294061.3504024, "learning_rate": 0.0003, "tensorboard_log": "runs/3oqb7f7p", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAADOcjLxkLi4+h6jMvXXmnL7E8Zu8YM83PQAAAAAAAAAAzfGSvMMpRbqDSEY5I4qjNDWlLrpIm2S4AACAPwAAgD9AfYq94xtTPUalET7GJ22+96lVPUZ0B70AAAAAAAAAAM1vUz5H5G8/HnAePsrcr778ccQ+4AghPQAAAAAAAAAAmvKXPHvWkLp/WQq3e8cZsvTDjjohyCA2AACAPwAAgD+aWWc8SIeiutYUETjm1wgzkE69OjDqJrcAAIA/AACAP2ZlBr1cr026VjeJOzx+PDhoAfC6A31YuAAAgD8AAIA/DcqaPV7WMD+evxQ9H7elvlBpKT3CTZO9AAAAAAAAAAANlZG9haPyuZChYbhVxdaw7oSZuuSpgjcAAIA/AACAP2Y8PL2FY+G5Rlagu4r7OjhpM4W6hFpMOgAAgD8AAIA/2jPFvamIdT7vVAM9Lk9fvphZibzXWTc7AAAAAAAAAADG4yE+LofFO/Q8Bb6L/Fi+rVh2PGk3mLoAAAAAAAAAAJqOSz0uQ6Y9xnokvl5VTr4dVOe9EKfhvAAAAAAAAAAAptkMPqSjQLurQlQ4JBJYtfZ/W7woCXy3AACAPwAAgD8at3g9e6KvuspTdDqtyAe2BxGYt5eai7kAAIA/AACAPwBsnLwU+ou67raMPMr+XLaD0i074Rw+tQAAgD8AAIA/mjlfO+HyhboPlkq7nJBzNo05Nbtj0mc6AACAPwAAgD/Nxqq8ewCRuko48Dp9jDu2+GIDu0E+KLUAAIA/AACAP5rZOLxcQ0S6xOybu5OIUDjjAqs73EkWOQAAgD8AAIA/wHYwvqU7AT+68KQ+qdmzvkisIbyJWMA9AAAAAAAAAABmyhG8e1SmuOqBNLpe+ua6wb2Zu5JgyjsAAIA/AAAAAJpHn7zhfLm6oouXNpoonzGOfKq4nzixtQAAgD8AAIA/MwMCPXEtJbnGFTs703CINk+ruDrNnF+6AACAPwAAgD/NhV294aCVukVgLjmA+h406sbYugbUSbgAAIA/AACAP4AQUb0pgHW6drOJuqlnk7WuegU6WMegOQAAgD8AAIA/M2s2PK7tgLroWUg7mtmss0wHXrs2A2W6AACAPwAAgD/NqAy9KRhNuue4NTjEP4wzRDAEusJPVLcAAIA/AACAPyAaIT58M/g+wV0+vgTTib5iHj69VeH9vQAAAAAAAAAAgPdvPVJA8bkalYc7ZQKJNg87gDqIsJ26AACAPwAAgD8zFqW9dmEBvKjMAT4eMvQ8H3dNvd6eyD0AAAAAAACAP2Yecz0UnpO6sXYvuMvpd7M5rgA7v59JNwAAgD8AAIA/Ztg1PHFNEblhkzA4BxWMMzagSjv6dk+3AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIpmCNs+mIY0CUhpRSlIwBbJRN6AOMAXSUR0CaD20qH447dX2UKGgGaAloD0MIraOqCSKSYUCUhpRSlGgVTegDaBZHQJoQLAJswcp1fZQoaAZoCWgPQwiwdhTnKOFlQJSGlFKUaBVN6ANoFkdAmhFfNVzZH3V9lChoBmgJaA9DCITyPo7m2GdAlIaUUpRoFU3oA2gWR0CaF1Fr2xptdX2UKGgGaAloD0MI3LdaJy5JRUCUhpRSlGgVS5VoFkdAmhoZHRTjvXV9lChoBmgJaA9DCJrrNNLSvmNAlIaUUpRoFU3oA2gWR0CaHhYGdI5HdX2UKGgGaAloD0MIPWGJBxR6YkCUhpRSlGgVTegDaBZHQJohV54W1tx1fZQoaAZoCWgPQwhrgNJQI3pgQJSGlFKUaBVN6ANoFkdAmiP/9UCJXXV9lChoBmgJaA9DCBSy8zY29GJAlIaUUpRoFU3oA2gWR0CaJPB42S+ydX2UKGgGaAloD0MIrwrUYvAmUUCUhpRSlGgVS7ZoFkdAmiaPrGBFu3V9lChoBmgJaA9DCEPFOH8TmGVAlIaUUpRoFU3oA2gWR0CaK+HLidaudX2UKGgGaAloD0MIPiDQmbQFZkCUhpRSlGgVTegDaBZHQJouahN/OMV1fZQoaAZoCWgPQwj5ZwbxgTxiQJSGlFKUaBVN6ANoFkdAmjUz8DSw4nV9lChoBmgJaA9DCGPQCaGD62lAlIaUUpRoFU3oA2gWR0CaOdfCAMDwdX2UKGgGaAloD0MIukkMAquMZECUhpRSlGgVTegDaBZHQJpA1F9a2Wp1fZQoaAZoCWgPQwiOyk3U0n9bQJSGlFKUaBVN6ANoFkdAmkHihSLqEHV9lChoBmgJaA9DCI178xumTGJAlIaUUpRoFU3oA2gWR0CaUHnVG0/odX2UKGgGaAloD0MI203wTdM8YECUhpRSlGgVTegDaBZHQJpQwTIvJzV1fZQoaAZoCWgPQwiQFJFhFb5kQJSGlFKUaBVN6ANoFkdAmlhtRR/EwXV9lChoBmgJaA9DCIuKOJ1kwmVAlIaUUpRoFU3oA2gWR0CaXDJbMX7+dX2UKGgGaAloD0MIt/C8VOxlaECUhpRSlGgVTegDaBZHQJpdR1zQu291fZQoaAZoCWgPQwh1r5P6sophQJSGlFKUaBVN6ANoFkdAmmBsc6vJR3V9lChoBmgJaA9DCGUXDK456GBAlIaUUpRoFU3oA2gWR0CaYwaV2Rq5dX2UKGgGaAloD0MI6PUn8TmJY0CUhpRSlGgVTegDaBZHQJpk5PuXu3N1fZQoaAZoCWgPQwh5dCMsqnxlQJSGlFKUaBVN6ANoFkdAmmnLQTmGNHV9lChoBmgJaA9DCDScMjdfEWRAlIaUUpRoFU3oA2gWR0CaafKNyYG/dX2UKGgGaAloD0MILsVVZd+sYUCUhpRSlGgVTegDaBZHQJpr1kGzKLd1fZQoaAZoCWgPQwgQejarvr5jQJSGlFKUaBVN6ANoFkdAmm2aTSsr/nV9lChoBmgJaA9DCBHjNa/qc2bAlIaUUpRoFU2/AWgWR0CabrmpVCHAdX2UKGgGaAloD0MIgnSxaSVjaECUhpRSlGgVTegDaBZHQJpv3zUZvUB1fZQoaAZoCWgPQwgLCRhd3mlnQJSGlFKUaBVN6ANoFkdAmnSe5J9RaXV9lChoBmgJaA9DCLotkQvOvWRAlIaUUpRoFU3oA2gWR0CadP+0PYnOdX2UKGgGaAloD0MI97GC34YZYkCUhpRSlGgVTegDaBZHQJp4NxQzk6t1fZQoaAZoCWgPQwgzwXCu4ShlQJSGlFKUaBVN6ANoFkdAmnvZle4TbnV9lChoBmgJaA9DCNqM0xDVYmZAlIaUUpRoFU3oA2gWR0Ca96vg3tKJdX2UKGgGaAloD0MIuRluwGdJY0CUhpRSlGgVTegDaBZHQJr4db4agmJ1fZQoaAZoCWgPQwgG2h1SDG1dQJSGlFKUaBVN6ANoFkdAmwAz4593KXV9lChoBmgJaA9DCLIPsiwYU2VAlIaUUpRoFU3oA2gWR0CbAzB9kSVXdX2UKGgGaAloD0MIE0TdB6BbYUCUhpRSlGgVTegDaBZHQJsHTs8gZCR1fZQoaAZoCWgPQwifymlPSUFkQJSGlFKUaBVN6ANoFkdAmwqz/ZM+NnV9lChoBmgJaA9DCIaPiCkRt2ZAlIaUUpRoFU3oA2gWR0CbDYEm6XjVdX2UKGgGaAloD0MIDmjpCjZzZ0CUhpRSlGgVTegDaBZHQJsOdk/bCaZ1fZQoaAZoCWgPQwg/i6VIvjRhQJSGlFKUaBVN6ANoFkdAmxAlFc6eXnV9lChoBmgJaA9DCNeFH5zP72JAlIaUUpRoFU3oA2gWR0CbFWguyu6mdX2UKGgGaAloD0MI8aFES54aYUCUhpRSlGgVTegDaBZHQJsYB31SOzZ1fZQoaAZoCWgPQwiWeEDZlLRwQJSGlFKUaBVNLAJoFkdAmx1327FsHnV9lChoBmgJaA9DCNZYwtqYc2NAlIaUUpRoFU3oA2gWR0CbHfqvvBrOdX2UKGgGaAloD0MIVft0PGarYUCUhpRSlGgVTegDaBZHQJspIIkZ75V1fZQoaAZoCWgPQwhAoDNpU01fQJSGlFKUaBVN6ANoFkdAmyo2vfTCtXV9lChoBmgJaA9DCMcRa/Ep22JAlIaUUpRoFU3oA2gWR0CbORCu2Zy/dX2UKGgGaAloD0MIEJaxoRsmZ0CUhpRSlGgVTegDaBZHQJs5U5OrQw91fZQoaAZoCWgPQwgt7GmHPyRiQJSGlFKUaBVN6ANoFkdAm0DzZYgaFXV9lChoBmgJaA9DCONTAIxn719AlIaUUpRoFU3oA2gWR0CbRNg/C66KdX2UKGgGaAloD0MIyF7v/niAY0CUhpRSlGgVTegDaBZHQJtF+8oQWep1fZQoaAZoCWgPQwgY0At3LtNmQJSGlFKUaBVN6ANoFkdAm0k4fSx7iXV9lChoBmgJaA9DCERtG0ZBI2RAlIaUUpRoFU3oA2gWR0CbTAwTdtVJdX2UKGgGaAloD0MI1JtR89USZUCUhpRSlGgVTegDaBZHQJtN8XXRPXV1fZQoaAZoCWgPQwgvFLAdDOtiQJSGlFKUaBVN6ANoFkdAm1NXX2/SIHV9lChoBmgJaA9DCA4V4/zN3GJAlIaUUpRoFU3oA2gWR0CbVXr/82rGdX2UKGgGaAloD0MIPgPqzSiWY0CUhpRSlGgVTegDaBZHQJtXXfVI7Nl1fZQoaAZoCWgPQwjxRuaRv1ZmQJSGlFKUaBVN6ANoFkdAm1iMeKbay3V9lChoBmgJaA9DCAqgGFmyR2RAlIaUUpRoFU3oA2gWR0CbWcYTj/+9dX2UKGgGaAloD0MI8Pj2rkF7ZECUhpRSlGgVTegDaBZHQJtezXTVlPJ1fZQoaAZoCWgPQwjOjH40HIJhQJSGlFKUaBVN6ANoFkdAm18+gL7XQXV9lChoBmgJaA9DCL/yID3F4mZAlIaUUpRoFU3oA2gWR0CbYt1+iJwbdX2UKGgGaAloD0MIt3u5Tw5bYUCUhpRSlGgVTegDaBZHQJtm0M8YAKh1fZQoaAZoCWgPQwhCe/Xx0DZeQJSGlFKUaBVN6ANoFkdAm+HiNjslcHV9lChoBmgJaA9DCLXiGwqfU2JAlIaUUpRoFU3oA2gWR0Cb4qRHww0wdX2UKGgGaAloD0MI8b2/QfuGZkCUhpRSlGgVTegDaBZHQJvqFm6Gxlh1fZQoaAZoCWgPQwglBKvq5VpcQJSGlFKUaBVN6ANoFkdAm+zjFMqSYHV9lChoBmgJaA9DCEyL+iT3zmFAlIaUUpRoFU3oA2gWR0Cb8L8IzFdcdX2UKGgGaAloD0MIUfUrnY+QYUCUhpRSlGgVTegDaBZHQJvz6fwqiGp1fZQoaAZoCWgPQwjVCP1MPbJlQJSGlFKUaBVN6ANoFkdAm/ZnrdFfA3V9lChoBmgJaA9DCLyWkA/6M2NAlIaUUpRoFU3oA2gWR0Cb90b/Ot4idX2UKGgGaAloD0MIuAGfH0aNY0CUhpRSlGgVTegDaBZHQJv41vUBnzx1fZQoaAZoCWgPQwjudr00RZJkQJSGlFKUaBVN6ANoFkdAm/24XXRPXXV9lChoBmgJaA9DCCMva2KB+mVAlIaUUpRoFU3oA2gWR0CcABdjXnQqdX2UKGgGaAloD0MIwR2oUx7CYkCUhpRSlGgVTegDaBZHQJwFMqrilzl1fZQoaAZoCWgPQwiPGhNirtFlQJSGlFKUaBVN6ANoFkdAnAWwtnPE9HV9lChoBmgJaA9DCPc7FAV6KW1AlIaUUpRoFU2WAmgWR0CcC6XhfjS5dX2UKGgGaAloD0MIznADPr+nZUCUhpRSlGgVTegDaBZHQJwPxB0IToN1fZQoaAZoCWgPQwg+XHLcKcxeQJSGlFKUaBVN6ANoFkdAnBCyHVPN3XV9lChoBmgJaA9DCDdwB+qU00tAlIaUUpRoFUv4aBZHQJwaUELYwqR1fZQoaAZoCWgPQwg8hzJURXJiQJSGlFKUaBVN6ANoFkdAnB25Q1rIo3V9lChoBmgJaA9DCHC1TlyO5WNAlIaUUpRoFU3oA2gWR0CcHfVsk6cRdX2UKGgGaAloD0MIDf0TXKz/YkCUhpRSlGgVTegDaBZHQJwkuAlOXVt1fZQoaAZoCWgPQwjpmV5irPJnQJSGlFKUaBVN6ANoFkdAnCgTkuHvdHV9lChoBmgJaA9DCIfFqGvt0WJAlIaUUpRoFU3oA2gWR0CcKRE7nxJ/dX2UKGgGaAloD0MIFeP8TSgxX0CUhpRSlGgVTegDaBZHQJwryeGwiaB1fZQoaAZoCWgPQwgyBWucTSFjQJSGlFKUaBVN6ANoFkdAnC4rLU1AJXV9lChoBmgJaA9DCEsC1NQyS2dAlIaUUpRoFU3oA2gWR0CcNKu5z5oHdX2UKGgGaAloD0MIh6jCn2GFZkCUhpRSlGgVTegDaBZHQJw2hCMPz4F1fZQoaAZoCWgPQwj/lZUmJU5kQJSGlFKUaBVN6ANoFkdAnDgxIatLc3V9lChoBmgJaA9DCKMDkrAvM3FAlIaUUpRoFU0lA2gWR0CcOUfKISDidX2UKGgGaAloD0MIbf5fdWTsY0CUhpRSlGgVTegDaBZHQJw5SR4hUzd1fZQoaAZoCWgPQwhm+boMf9dhQJSGlFKUaBVN6ANoFkdAnDpQ3cYZVHV9lChoBmgJaA9DCHe+nxovR2NAlIaUUpRoFU3oA2gWR0CcPsdIoVmBdX2UKGgGaAloD0MI+s+aH3+ZYkCUhpRSlGgVTegDaBZHQJw/JWcSXdF1fZQoaAZoCWgPQwhETl/P12ZnQJSGlFKUaBVN6ANoFkdAnEJWoegctHV9lChoBmgJaA9DCHQkl/8QWGNAlIaUUpRoFU3oA2gWR0CcRdD2rXDndWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 620, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 20, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "False", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7889da08720823c0fafeb0a128975b1a247c6dda7ccf24eefe790592ab73a337
3
- size 207664
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:933d024a0085c32c180e2cf2ec30e6ac34c463dcef4e20f0bf894790f533ccc1
3
+ size 231262
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 277.60193643238534, "std_reward": 17.670216265711524, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-11T11:36:26.193962"}
 
1
+ {"mean_reward": 261.1599042584806, "std_reward": 23.003640750759214, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-11T19:09:34.465274"}