liliangiselly commited on
Commit
4853050
1 Parent(s): 9ef12a6

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v3
16
+ type: PandaReachDense-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.21 +/- 0.09
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:30a2353d3978c51c6aab8458efe4d30b36be537de83a10d50f37f6bf063cdea0
3
+ size 108131
a2c-PandaReachDense-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
a2c-PandaReachDense-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7c5712e11240>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7c5712df7b80>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1698026640099753063,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAGaO9vzvpEUCsOA/AkXZcv2PiXj8PMaW/gggIwL1zyr09//y/uRSCP4MG6L5KlIQ+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAALxByvxNbuT8GHca/4Dkov+9mkD7WRq6/So3xvo1WY75Zs2K/+tOUP8KL6b4BDvO9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAZo72/O+kRQKw4D8CPjq+/s2CMP6dscL+Rdly/Y+JePw8xpb/tF4S/U9HfvWsncb+CCAjAvXPKvT3//L/PNhTAGg2Uv/MQIb65FII/gwbovkqUhD7L28c/bBfIv7K2kL+UaA5LBEsGhpRoEnSUUpR1Lg==",
33
+ "achieved_goal": "[[-1.4815398 2.2798603 -2.237834 ]\n [-0.8611842 0.8706419 -1.2905596 ]\n [-2.1255193 -0.09885357 -1.9765393 ]\n [ 1.0162574 -0.45317468 0.25894386]]",
34
+ "desired_goal": "[[-0.94555944 1.4480919 -1.5477607 ]\n [-0.6571331 0.28203532 -1.3615367 ]\n [-0.47178108 -0.22200985 -0.8855491 ]\n [ 1.162719 -0.4561444 -0.11867905]]",
35
+ "observation": "[[-1.4815398 2.2798603 -2.237834 -1.371538 1.096701 -0.9391579 ]\n [-0.8611842 0.8706419 -1.2905596 -1.0319802 -0.10928597 -0.9420077 ]\n [-2.1255193 -0.09885357 -1.9765393 -2.3158453 -1.1566498 -0.15729122]\n [ 1.0162574 -0.45317468 0.25894386 1.561395 -1.5632148 -1.1305754 ]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAALJQhvRBkAT7o+m49zYAXPl/vtr0waK47rg2MPZ57gjzT4EU+9Y+/PPNmAT4UHWw+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
44
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
45
+ "desired_goal": "[[-0.03944795 0.12635827 0.05834475]\n [ 0.14795227 -0.08932375 0.00532248]\n [ 0.06838547 0.01592809 0.19324045]\n [ 0.02338407 0.12636928 0.23057967]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9K9h7VrhziMAWyUSwOMAXSUR0CkZ0XkHUtqdX2UKGgGR7/R3fhuO0b+aAdLA2gIR0CkZw4Qrc0tdX2UKGgGR7/LpBX0XgtOaAdLBGgIR0CkZ35p8F6idX2UKGgGR7/PRQ79ycTbaAdLA2gIR0CkZ1U+C9RKdX2UKGgGR7/Xuf29L6DXaAdLBmgIR0CkZ7IqLCN0dX2UKGgGR7/WksjFAE+xaAdLA2gIR0CkZxyuZCv6dX2UKGgGR7+9pfx+az/qaAdLAmgIR0CkZ7oyj59FdX2UKGgGR7/W6N2ki2UjaAdLBGgIR0CkZ46JZW7wdX2UKGgGR7/SE4ecQRPHaAdLBGgIR0CkZ2gogFHKdX2UKGgGR7/K33pOerdWaAdLA2gIR0CkZyuXeFcqdX2UKGgGR7/QhsqJ/G2kaAdLA2gIR0CkZ8m5tm+TdX2UKGgGR7/XbgjyFwkxaAdLBGgIR0CkZ6Jd0JWvdX2UKGgGR7/Q4tYjjaPCaAdLA2gIR0CkZ3WZJCjUdX2UKGgGR7/MvRqoIfKZaAdLA2gIR0CkZzkWhysCdX2UKGgGR7/AIJJGvwEyaAdLAmgIR0CkZ3/jsD4hdX2UKGgGR7/ZPS2H+IdmaAdLBGgIR0CkZ9zIvJzUdX2UKGgGR7/TdbgTAWSEaAdLA2gIR0CkZ0dvCMxXdX2UKGgGR7+j2g3974SIaAdLAWgIR0CkZ0vCEYfodX2UKGgGR7/Wi/fwZwXJaAdLBWgIR0CkZ7mdy1eCdX2UKGgGR7/X8WbgCOm0aAdLBGgIR0CkZ5CMHbAUdX2UKGgGR7/TXMyJsO5KaAdLBGgIR0CkZ++mNzbOdX2UKGgGR7/QjfvWpZOjaAdLA2gIR0CkZ1pJGvwFdX2UKGgGR7/QbKRuCPIXaAdLA2gIR0CkZ8hLf1pTdX2UKGgGR7/BeKKpDNQkaAdLAmgIR0CkZ5t3fQ8fdX2UKGgGR7+lv2oNutOmaAdLAWgIR0CkZ804BFNMdX2UKGgGR7/Hw84gieNDaAdLA2gIR0CkZ/1SGahIdX2UKGgGR7/Sgbp/wy6+aAdLA2gIR0CkZ2fBnBcidX2UKGgGR7/Bb48EFGG3aAdLAmgIR0CkZ9WQXAM2dX2UKGgGR7/afe1rqMWHaAdLBGgIR0CkZ66kRBeHdX2UKGgGR7/P7l7tzCDVaAdLA2gIR0CkaAu0b961dX2UKGgGR7/Jn+yZ8a4uaAdLA2gIR0CkZ3YlY2bYdX2UKGgGR7/WG1x82JizaAdLBGgIR0CkZ+eo99tudX2UKGgGR7/Q0AcT8HfNaAdLA2gIR0CkaBdbX6IndX2UKGgGR7/VbiIcinpCaAdLA2gIR0CkZ4HU2DQJdX2UKGgGR7+lJaq0dBBzaAdLAWgIR0CkaB24mTkidX2UKGgGR7/RLVFx4ptraAdLA2gIR0CkZ/YsNDtxdX2UKGgGR7/cnSfDk2gnaAdLBmgIR0CkZ8lCb+cZdX2UKGgGR7/AJ2MbWEsbaAdLAmgIR0CkZ4yO7xusdX2UKGgGR7/GTrVvuPV/aAdLA2gIR0CkaCprULDydX2UKGgGR7/CCKaXrt3OaAdLAmgIR0CkZ/7NbC79dX2UKGgGR7++5RTCLuQZaAdLAmgIR0CkZ9He7+UAdX2UKGgGR7/XQyylenhsaAdLA2gIR0CkaDh2fTTfdX2UKGgGR7/YA4XGff4zaAdLBGgIR0CkaBCU5dWydX2UKGgGR7/eswco6S1WaAdLBmgIR0CkZ6b7CSA6dX2UKGgGR7+4K9f1HvtuaAdLAmgIR0CkaECcG1QZdX2UKGgGR7+kTN+so2GZaAdLAWgIR0CkaBTw2ETQdX2UKGgGR7/EIXTEzfrKaAdLAmgIR0CkaB7LU1AJdX2UKGgGR7/Un8KohpxnaAdLA2gIR0CkZ7VZ1V5sdX2UKGgGR7/HXhfjS5RTaAdLA2gIR0CkaE8DSw4bdX2UKGgGR7/llI3BHkLhaAdLCGgIR0CkZ/ZJkGzKdX2UKGgGR7/J0QK8cuJ2aAdLA2gIR0CkaFq+JxecdX2UKGgGR7/a9pAUtZmqaAdLBGgIR0CkaC8clw98dX2UKGgGR7/PITXarWAgaAdLA2gIR0CkaAJqZc9odX2UKGgGR7/hvE87p3X7aAdLBGgIR0CkZ8X1zySWdX2UKGgGR7+jG7z06HTJaAdLAWgIR0CkaGINEw36dX2UKGgGR7/DFTefqX4TaAdLAmgIR0CkaDoomXw9dX2UKGgGR7/ZIWP91loUaAdLBGgIR0CkaHJCrtE5dX2UKGgGR7/ZpY9xIatLaAdLBWgIR0CkaBmI0qH5dX2UKGgGR7/TdYGMXJo1aAdLBGgIR0CkaEzSThYOdX2UKGgGR7/dcWTHKfWdaAdLBmgIR0CkZ+MgU1yedX2UKGgGR7+8xJul41P4aAdLAmgIR0CkaHzRYzSDdX2UKGgGR7+j9uP3i704aAdLAWgIR0CkaFEbxVhkdX2UKGgGR7/Vo4+8oQWfaAdLA2gIR0CkaChO58SgdX2UKGgGR7/Qj2SMcZLqaAdLA2gIR0CkZ+9l/YrbdX2UKGgGR7/OIF/x2B8QaAdLA2gIR0CkaIj7ALy+dX2UKGgGR7/IiFCb+cYqaAdLA2gIR0CkaF2CEpRXdX2UKGgGR7+pky1uzhP1aAdLAWgIR0CkZ/O9nK4hdX2UKGgGR7/HprULDye7aAdLA2gIR0CkaDdMj/uLdX2UKGgGR7+zYRNATqSpaAdLAmgIR0CkZ/8qnWJ8dX2UKGgGR7/Qdn003wTeaAdLA2gIR0CkaJoVuaWpdX2UKGgGR7/K7GNrCWNWaAdLA2gIR0CkaG53kgfVdX2UKGgGR7+5XaJyhi9aaAdLAmgIR0CkaEGOdXkpdX2UKGgGR7/UDQZ4wAU+aAdLA2gIR0CkaA2kBS1mdX2UKGgGR7/QS39aUzKtaAdLA2gIR0CkaKmgzxgBdX2UKGgGR7/VBPbfxc3VaAdLA2gIR0CkaH37+DODdX2UKGgGR7/LB0p3HJcPaAdLA2gIR0CkaFEX1rZbdX2UKGgGR7+YqwyIpH7QaAdLAWgIR0CkaILsByS3dX2UKGgGR7+1O2y9mHxjaAdLAmgIR0CkaFoVVPvbdX2UKGgGR7/Kp97WuoxYaAdLA2gIR0CkaB2BBiTddX2UKGgGR7/MBdUsFt9AaAdLA2gIR0CkaLdCeEqUdX2UKGgGR7/P91EE1VHXaAdLA2gIR0CkaGizLOiWdX2UKGgGR7/NjrAxi5NHaAdLA2gIR0CkaMaCUX54dX2UKGgGR7/WdGRV6u4gaAdLBWgIR0CkaJr1EmY0dX2UKGgGR7/XdHlOoHcDaAdLBGgIR0CkaDFV1fVqdX2UKGgGR7+4FnqVyFPBaAdLAmgIR0CkaKMCkoF3dX2UKGgGR7/OZIg/1QIlaAdLA2gIR0CkaHYaxX4kdX2UKGgGR7/JBguyu6mPaAdLA2gIR0CkaD1qFh5PdX2UKGgGR7/SQSBbwBo3aAdLBGgIR0CkaNlar3j/dX2UKGgGR7/DvCMxXXAeaAdLAmgIR0CkaK2sRxtIdX2UKGgGR7/By925hBqsaAdLAmgIR0CkaEfoJRfndX2UKGgGR7/HlNlAeJYUaAdLAmgIR0CkaLXWFvhqdX2UKGgGR7/ZBacI7eVLaAdLBGgIR0CkaIjv3JxOdX2UKGgGR7/N+bVjI7vHaAdLA2gIR0CkaOXdKujidX2UKGgGR7+2zVtoBaLXaAdLAmgIR0CkaFBU70WedX2UKGgGR7+4JC0F8ohIaAdLAmgIR0CkaL48EFGHdX2UKGgGR7/GJ7b+Lm6oaAdLA2gIR0CkaPQCKaXsdX2UKGgGR7/aLYPGyX2NaAdLBGgIR0CkaJt0NjLCdX2UKGgGR7/I9SMtK7I1aAdLA2gIR0CkaF7ah6BzdX2UKGgGR7/WCE6DGtITaAdLA2gIR0CkaMywwCbMdX2UKGgGR7/D0K7ZnL7oaAdLAmgIR0CkaGa/qPfbdWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 50000,
62
+ "n_steps": 5,
63
+ "gamma": 0.99,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True]",
82
+ "bounded_above": "[ True True True]",
83
+ "_shape": [
84
+ 3
85
+ ],
86
+ "low": "[-1. -1. -1.]",
87
+ "high": "[1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ }
97
+ }
a2c-PandaReachDense-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5fbde354cef9df26865a84d6ebb300d1702d5e3f543c77f9d722b3f65ee9cdf2
3
+ size 45167
a2c-PandaReachDense-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db90fc3956161df820925fdb8cd36506241e4747b63b8f46cc28c875a5071800
3
+ size 46447
a2c-PandaReachDense-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
a2c-PandaReachDense-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.1.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7c5712e11240>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c5712df7b80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1698026640099753063, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAGaO9vzvpEUCsOA/AkXZcv2PiXj8PMaW/gggIwL1zyr09//y/uRSCP4MG6L5KlIQ+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAALxByvxNbuT8GHca/4Dkov+9mkD7WRq6/So3xvo1WY75Zs2K/+tOUP8KL6b4BDvO9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAZo72/O+kRQKw4D8CPjq+/s2CMP6dscL+Rdly/Y+JePw8xpb/tF4S/U9HfvWsncb+CCAjAvXPKvT3//L/PNhTAGg2Uv/MQIb65FII/gwbovkqUhD7L28c/bBfIv7K2kL+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-1.4815398 2.2798603 -2.237834 ]\n [-0.8611842 0.8706419 -1.2905596 ]\n [-2.1255193 -0.09885357 -1.9765393 ]\n [ 1.0162574 -0.45317468 0.25894386]]", "desired_goal": "[[-0.94555944 1.4480919 -1.5477607 ]\n [-0.6571331 0.28203532 -1.3615367 ]\n [-0.47178108 -0.22200985 -0.8855491 ]\n [ 1.162719 -0.4561444 -0.11867905]]", "observation": "[[-1.4815398 2.2798603 -2.237834 -1.371538 1.096701 -0.9391579 ]\n [-0.8611842 0.8706419 -1.2905596 -1.0319802 -0.10928597 -0.9420077 ]\n [-2.1255193 -0.09885357 -1.9765393 -2.3158453 -1.1566498 -0.15729122]\n [ 1.0162574 -0.45317468 0.25894386 1.561395 -1.5632148 -1.1305754 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAALJQhvRBkAT7o+m49zYAXPl/vtr0waK47rg2MPZ57gjzT4EU+9Y+/PPNmAT4UHWw+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.03944795 0.12635827 0.05834475]\n [ 0.14795227 -0.08932375 0.00532248]\n [ 0.06838547 0.01592809 0.19324045]\n [ 0.02338407 0.12636928 0.23057967]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9K9h7VrhziMAWyUSwOMAXSUR0CkZ0XkHUtqdX2UKGgGR7/R3fhuO0b+aAdLA2gIR0CkZw4Qrc0tdX2UKGgGR7/LpBX0XgtOaAdLBGgIR0CkZ35p8F6idX2UKGgGR7/PRQ79ycTbaAdLA2gIR0CkZ1U+C9RKdX2UKGgGR7/Xuf29L6DXaAdLBmgIR0CkZ7IqLCN0dX2UKGgGR7/WksjFAE+xaAdLA2gIR0CkZxyuZCv6dX2UKGgGR7+9pfx+az/qaAdLAmgIR0CkZ7oyj59FdX2UKGgGR7/W6N2ki2UjaAdLBGgIR0CkZ46JZW7wdX2UKGgGR7/SE4ecQRPHaAdLBGgIR0CkZ2gogFHKdX2UKGgGR7/K33pOerdWaAdLA2gIR0CkZyuXeFcqdX2UKGgGR7/QhsqJ/G2kaAdLA2gIR0CkZ8m5tm+TdX2UKGgGR7/XbgjyFwkxaAdLBGgIR0CkZ6Jd0JWvdX2UKGgGR7/Q4tYjjaPCaAdLA2gIR0CkZ3WZJCjUdX2UKGgGR7/MvRqoIfKZaAdLA2gIR0CkZzkWhysCdX2UKGgGR7/AIJJGvwEyaAdLAmgIR0CkZ3/jsD4hdX2UKGgGR7/ZPS2H+IdmaAdLBGgIR0CkZ9zIvJzUdX2UKGgGR7/TdbgTAWSEaAdLA2gIR0CkZ0dvCMxXdX2UKGgGR7+j2g3974SIaAdLAWgIR0CkZ0vCEYfodX2UKGgGR7/Wi/fwZwXJaAdLBWgIR0CkZ7mdy1eCdX2UKGgGR7/X8WbgCOm0aAdLBGgIR0CkZ5CMHbAUdX2UKGgGR7/TXMyJsO5KaAdLBGgIR0CkZ++mNzbOdX2UKGgGR7/QjfvWpZOjaAdLA2gIR0CkZ1pJGvwFdX2UKGgGR7/QbKRuCPIXaAdLA2gIR0CkZ8hLf1pTdX2UKGgGR7/BeKKpDNQkaAdLAmgIR0CkZ5t3fQ8fdX2UKGgGR7+lv2oNutOmaAdLAWgIR0CkZ804BFNMdX2UKGgGR7/Hw84gieNDaAdLA2gIR0CkZ/1SGahIdX2UKGgGR7/Sgbp/wy6+aAdLA2gIR0CkZ2fBnBcidX2UKGgGR7/Bb48EFGG3aAdLAmgIR0CkZ9WQXAM2dX2UKGgGR7/afe1rqMWHaAdLBGgIR0CkZ66kRBeHdX2UKGgGR7/P7l7tzCDVaAdLA2gIR0CkaAu0b961dX2UKGgGR7/Jn+yZ8a4uaAdLA2gIR0CkZ3YlY2bYdX2UKGgGR7/WG1x82JizaAdLBGgIR0CkZ+eo99tudX2UKGgGR7/Q0AcT8HfNaAdLA2gIR0CkaBdbX6IndX2UKGgGR7/VbiIcinpCaAdLA2gIR0CkZ4HU2DQJdX2UKGgGR7+lJaq0dBBzaAdLAWgIR0CkaB24mTkidX2UKGgGR7/RLVFx4ptraAdLA2gIR0CkZ/YsNDtxdX2UKGgGR7/cnSfDk2gnaAdLBmgIR0CkZ8lCb+cZdX2UKGgGR7/AJ2MbWEsbaAdLAmgIR0CkZ4yO7xusdX2UKGgGR7/GTrVvuPV/aAdLA2gIR0CkaCprULDydX2UKGgGR7/CCKaXrt3OaAdLAmgIR0CkZ/7NbC79dX2UKGgGR7++5RTCLuQZaAdLAmgIR0CkZ9He7+UAdX2UKGgGR7/XQyylenhsaAdLA2gIR0CkaDh2fTTfdX2UKGgGR7/YA4XGff4zaAdLBGgIR0CkaBCU5dWydX2UKGgGR7/eswco6S1WaAdLBmgIR0CkZ6b7CSA6dX2UKGgGR7+4K9f1HvtuaAdLAmgIR0CkaECcG1QZdX2UKGgGR7+kTN+so2GZaAdLAWgIR0CkaBTw2ETQdX2UKGgGR7/EIXTEzfrKaAdLAmgIR0CkaB7LU1AJdX2UKGgGR7/Un8KohpxnaAdLA2gIR0CkZ7VZ1V5sdX2UKGgGR7/HXhfjS5RTaAdLA2gIR0CkaE8DSw4bdX2UKGgGR7/llI3BHkLhaAdLCGgIR0CkZ/ZJkGzKdX2UKGgGR7/J0QK8cuJ2aAdLA2gIR0CkaFq+JxecdX2UKGgGR7/a9pAUtZmqaAdLBGgIR0CkaC8clw98dX2UKGgGR7/PITXarWAgaAdLA2gIR0CkaAJqZc9odX2UKGgGR7/hvE87p3X7aAdLBGgIR0CkZ8X1zySWdX2UKGgGR7+jG7z06HTJaAdLAWgIR0CkaGINEw36dX2UKGgGR7/DFTefqX4TaAdLAmgIR0CkaDoomXw9dX2UKGgGR7/ZIWP91loUaAdLBGgIR0CkaHJCrtE5dX2UKGgGR7/ZpY9xIatLaAdLBWgIR0CkaBmI0qH5dX2UKGgGR7/TdYGMXJo1aAdLBGgIR0CkaEzSThYOdX2UKGgGR7/dcWTHKfWdaAdLBmgIR0CkZ+MgU1yedX2UKGgGR7+8xJul41P4aAdLAmgIR0CkaHzRYzSDdX2UKGgGR7+j9uP3i704aAdLAWgIR0CkaFEbxVhkdX2UKGgGR7/Vo4+8oQWfaAdLA2gIR0CkaChO58SgdX2UKGgGR7/Qj2SMcZLqaAdLA2gIR0CkZ+9l/YrbdX2UKGgGR7/OIF/x2B8QaAdLA2gIR0CkaIj7ALy+dX2UKGgGR7/IiFCb+cYqaAdLA2gIR0CkaF2CEpRXdX2UKGgGR7+pky1uzhP1aAdLAWgIR0CkZ/O9nK4hdX2UKGgGR7/HprULDye7aAdLA2gIR0CkaDdMj/uLdX2UKGgGR7+zYRNATqSpaAdLAmgIR0CkZ/8qnWJ8dX2UKGgGR7/Qdn003wTeaAdLA2gIR0CkaJoVuaWpdX2UKGgGR7/K7GNrCWNWaAdLA2gIR0CkaG53kgfVdX2UKGgGR7+5XaJyhi9aaAdLAmgIR0CkaEGOdXkpdX2UKGgGR7/UDQZ4wAU+aAdLA2gIR0CkaA2kBS1mdX2UKGgGR7/QS39aUzKtaAdLA2gIR0CkaKmgzxgBdX2UKGgGR7/VBPbfxc3VaAdLA2gIR0CkaH37+DODdX2UKGgGR7/LB0p3HJcPaAdLA2gIR0CkaFEX1rZbdX2UKGgGR7+YqwyIpH7QaAdLAWgIR0CkaILsByS3dX2UKGgGR7+1O2y9mHxjaAdLAmgIR0CkaFoVVPvbdX2UKGgGR7/Kp97WuoxYaAdLA2gIR0CkaB2BBiTddX2UKGgGR7/MBdUsFt9AaAdLA2gIR0CkaLdCeEqUdX2UKGgGR7/P91EE1VHXaAdLA2gIR0CkaGizLOiWdX2UKGgGR7/NjrAxi5NHaAdLA2gIR0CkaMaCUX54dX2UKGgGR7/WdGRV6u4gaAdLBWgIR0CkaJr1EmY0dX2UKGgGR7/XdHlOoHcDaAdLBGgIR0CkaDFV1fVqdX2UKGgGR7+4FnqVyFPBaAdLAmgIR0CkaKMCkoF3dX2UKGgGR7/OZIg/1QIlaAdLA2gIR0CkaHYaxX4kdX2UKGgGR7/JBguyu6mPaAdLA2gIR0CkaD1qFh5PdX2UKGgGR7/SQSBbwBo3aAdLBGgIR0CkaNlar3j/dX2UKGgGR7/DvCMxXXAeaAdLAmgIR0CkaK2sRxtIdX2UKGgGR7/By925hBqsaAdLAmgIR0CkaEfoJRfndX2UKGgGR7/HlNlAeJYUaAdLAmgIR0CkaLXWFvhqdX2UKGgGR7/ZBacI7eVLaAdLBGgIR0CkaIjv3JxOdX2UKGgGR7/N+bVjI7vHaAdLA2gIR0CkaOXdKujidX2UKGgGR7+2zVtoBaLXaAdLAmgIR0CkaFBU70WedX2UKGgGR7+4JC0F8ohIaAdLAmgIR0CkaL48EFGHdX2UKGgGR7/GJ7b+Lm6oaAdLA2gIR0CkaPQCKaXsdX2UKGgGR7/aLYPGyX2NaAdLBGgIR0CkaJt0NjLCdX2UKGgGR7/I9SMtK7I1aAdLA2gIR0CkaF7ah6BzdX2UKGgGR7/WCE6DGtITaAdLA2gIR0CkaMywwCbMdX2UKGgGR7/D0K7ZnL7oaAdLAmgIR0CkaGa/qPfbdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (707 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.2135299440473318, "std_reward": 0.0881590711931479, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-23T02:47:29.322606"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a238c7b8af4847d541c47a371dc70c4a1b8a4e215e176c5bcd2d65605715abb0
3
+ size 2623