lighteternal commited on
Commit
8ea34cb
1 Parent(s): b129f50

Update from earendil

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md ADDED
@@ -0,0 +1,163 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: sentence-similarity
3
+ language:
4
+ - en
5
+ - el
6
+ tags:
7
+ - sentence-transformers
8
+ - feature-extraction
9
+ - sentence-similarity
10
+ - transformers
11
+ ---
12
+
13
+ # Semantic Textual Similarity for the Greek language using Transformers and Transfer Learning
14
+ ### By the Hellenic Army Academy (SSE) and the Technical University of Crete (TUC)
15
+
16
+
17
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
18
+
19
+ We follow a Teacher-Student transfer learning approach described [here](https://www.sbert.net/examples/training/multilingual/README.html) to train an XLM-Roberta-base model on STS using parallel EN-EL sentence pairs.
20
+
21
+ ## Usage (Sentence-Transformers)
22
+
23
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
24
+
25
+ ```
26
+ pip install -U sentence-transformers
27
+ ```
28
+
29
+ Then you can use the model like this:
30
+
31
+ ```python
32
+ from sentence_transformers import SentenceTransformer
33
+ model = SentenceTransformer('{MODEL_NAME}')
34
+
35
+ sentences1 = ['Το κινητό έπεσε και έσπασε.',
36
+ 'Το κινητό έπεσε και έσπασε.',
37
+ 'Το κινητό έπεσε και έσπασε.']
38
+
39
+ sentences2 = ["H πτώση κατέστρεψε τη συσκευή.",
40
+ "Το αυτοκίνητο έσπασε στα δυο.",
41
+ "Ο υπουργός έπεσε και έσπασε το πόδι του."]
42
+
43
+ embeddings1 = model.encode(sentences1, convert_to_tensor=True)
44
+ embeddings2 = model.encode(sentences2, convert_to_tensor=True)
45
+
46
+ embeddings1 = model.encode(sentences1, convert_to_tensor=True)
47
+ embeddings2 = model.encode(sentences2, convert_to_tensor=True)
48
+
49
+ #Compute cosine-similarities (clone repo for util functions)
50
+ from sentence_transformers import util
51
+ cosine_scores = util.pytorch_cos_sim(embeddings1, embeddings2)
52
+
53
+ #Output the pairs with their score
54
+ for i in range(len(sentences1)):
55
+ print("{} \t\t {} \t\t Score: {:.4f}".format(sentences1[i], sentences2[i], cosine_scores[i][i]))
56
+
57
+ #Outputs:
58
+ #Το κινητό έπεσε και έσπασε. H πτώση κατέστρεψε τη συσκευή. Score: 0.6741
59
+ #Το κινητό έπεσε και έσπασε. Το αυτοκίνητο έσπασε στα δυο. Score: 0.5067
60
+ #Το κινητό έπεσε και έσπασε. Ο υπουργός έπεσε και έσπασε το πόδι του. Score: 0.4548
61
+
62
+ ```
63
+
64
+
65
+
66
+ ## Usage (HuggingFace Transformers)
67
+ Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
68
+
69
+ ```python
70
+ from transformers import AutoTokenizer, AutoModel
71
+ import torch
72
+
73
+
74
+ #Mean Pooling - Take attention mask into account for correct averaging
75
+ def mean_pooling(model_output, attention_mask):
76
+ token_embeddings = model_output[0] #First element of model_output contains all token embeddings
77
+ input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
78
+ return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
79
+
80
+
81
+ # Sentences we want sentence embeddings for
82
+ sentences = ['This is an example sentence', 'Each sentence is converted']
83
+
84
+ # Load model from HuggingFace Hub
85
+ tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
86
+ model = AutoModel.from_pretrained(
87
+
88
+ # Tokenize sentences
89
+ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
90
+
91
+ # Compute token embeddings
92
+ with torch.no_grad():
93
+ model_output = model(**encoded_input)
94
+
95
+ # Perform pooling. In this case, max pooling.
96
+ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
97
+
98
+ print("Sentence embeddings:")
99
+ print(sentence_embeddings)
100
+ ```
101
+
102
+
103
+
104
+ ## Evaluation Results
105
+
106
+ <!--- Describe how your model was evaluated -->
107
+
108
+ For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
109
+
110
+
111
+ ## Training
112
+ The model was trained with the parameters:
113
+
114
+ **DataLoader**:
115
+
116
+ `torch.utils.data.dataloader.DataLoader` of length 135121 with parameters:
117
+ ```
118
+ {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
119
+ ```
120
+
121
+ **Loss**:
122
+
123
+ `sentence_transformers.losses.MSELoss.MSELoss`
124
+
125
+ Parameters of the fit()-Method:
126
+ ```
127
+ {
128
+ "callback": null,
129
+ "epochs": 4,
130
+ "evaluation_steps": 1000,
131
+ "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator",
132
+ "max_grad_norm": 1,
133
+ "optimizer_class": "<class 'transformers.optimization.AdamW'>",
134
+ "optimizer_params": {
135
+ "correct_bias": false,
136
+ "eps": 1e-06,
137
+ "lr": 2e-05
138
+ },
139
+ "scheduler": "WarmupLinear",
140
+ "steps_per_epoch": null,
141
+ "warmup_steps": 10000,
142
+ "weight_decay": 0.01
143
+ }
144
+ ```
145
+
146
+
147
+ ## Full Model Architecture
148
+ ```
149
+ SentenceTransformer(
150
+ (0): Transformer({'max_seq_length': 400, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
151
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
152
+ )
153
+ ```
154
+
155
+ ## Acknowledgement
156
+ The research work was supported by the Hellenic Foundation for Research and Innovation (HFRI) under the HFRI PhD Fellowship grant (Fellowship Number:50, 2nd call)
157
+
158
+
159
+
160
+ ## Citing & Authors
161
+ Citation info of Greek model: TBD
162
+
163
+ Based on the transfer learning approach of [Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation](https://arxiv.org/abs/2004.09813)
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "xlm-roberta-base",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "xlm-roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "output_past": true,
22
+ "pad_token_id": 1,
23
+ "position_embedding_type": "absolute",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.10.0",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 250002
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.10.0",
5
+ "pytorch": "1.7.1"
6
+ }
7
+ }
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d16cebd42b2b6dd45e281075c8a33032782622bfd6b2be69a388bd967559d7ca
3
+ size 1112261175
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 400,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "sep_token": "</s>", "pad_token": "<pad>", "cls_token": "<s>", "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": false}}
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": "<s>", "eos_token": "</s>", "sep_token": "</s>", "cls_token": "<s>", "unk_token": "<unk>", "pad_token": "<pad>", "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "model_max_length": 512, "special_tokens_map_file": null, "name_or_path": "xlm-roberta-base", "tokenizer_class": "XLMRobertaTokenizer"}