feat:A model trained on the emotional corpus of Chinese dialogue, 2 categories.
Browse files- README.md +37 -0
- config.json +34 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- tokenizer.json +0 -0
- tokenizer_config.json +1 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: zh
|
3 |
+
widget:
|
4 |
+
- text: "我喜欢下雨。"
|
5 |
+
- text: "我讨厌他。"
|
6 |
+
---
|
7 |
+
|
8 |
+
# liam168/c2-roberta-base-finetuned-dianping-chinese
|
9 |
+
|
10 |
+
## Model description
|
11 |
+
|
12 |
+
用中文对话情绪语料训练的模型,2分类:乐观和悲观。
|
13 |
+
|
14 |
+
## Overview
|
15 |
+
|
16 |
+
- **Language model**: BertForSequenceClassification
|
17 |
+
- **Model size**: 410M
|
18 |
+
- **Language**: Chinese
|
19 |
+
|
20 |
+
## Example
|
21 |
+
|
22 |
+
```python
|
23 |
+
>>> from transformers import AutoModelForSequenceClassification , AutoTokenizer, pipeline
|
24 |
+
|
25 |
+
>>> model_name = "liam168/c2-roberta-base-finetuned-dianping-chinese"
|
26 |
+
>>> class_num = 2
|
27 |
+
>>> ts_texts = ["我喜欢下雨。", "我讨厌他."]
|
28 |
+
>>> model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=class_num)
|
29 |
+
>>> tokenizer = AutoTokenizer.from_pretrained(model_name)
|
30 |
+
>>> classifier = pipeline('sentiment-analysis', model=model, tokenizer=tokenizer)
|
31 |
+
>>> classifier(ts_texts[0])
|
32 |
+
>>> classifier(ts_texts[1])
|
33 |
+
|
34 |
+
[{'label': 'positive', 'score': 0.9973447918891907}]
|
35 |
+
[{'label': 'negative', 'score': 0.9972558617591858}]
|
36 |
+
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "liam168/c2-roberta-base-finetuned-dianping-chinese",
|
3 |
+
"architectures": [
|
4 |
+
"BertForSequenceClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"gradient_checkpointing": false,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 768,
|
11 |
+
"id2label": {
|
12 |
+
"0": "negative",
|
13 |
+
"1": "positive"
|
14 |
+
},
|
15 |
+
"initializer_range": 0.02,
|
16 |
+
"intermediate_size": 3072,
|
17 |
+
"label2id": {
|
18 |
+
"negative": 0,
|
19 |
+
"positive": 1
|
20 |
+
},
|
21 |
+
"layer_norm_eps": 1e-12,
|
22 |
+
"max_position_embeddings": 512,
|
23 |
+
"model_type": "bert",
|
24 |
+
"num_attention_heads": 12,
|
25 |
+
"num_hidden_layers": 12,
|
26 |
+
"pad_token_id": 0,
|
27 |
+
"position_embedding_type": "absolute",
|
28 |
+
"problem_type": "single_label_classification",
|
29 |
+
"torch_dtype": "float32",
|
30 |
+
"transformers_version": "4.9.0.dev0",
|
31 |
+
"type_vocab_size": 2,
|
32 |
+
"use_cache": true,
|
33 |
+
"vocab_size": 21128
|
34 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c6278fcb09fd6234e2e24f26ebcd7e0fb01fee305d0851d6862550c85d60242
|
3 |
+
size 409160877
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"do_lower_case": true, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "do_basic_tokenize": true, "never_split": null, "special_tokens_map_file": null, "name_or_path": "liam168/c2-roberta-base-finetuned-dianping-chinese", "tokenizer_class": "BertTokenizer"}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|