liadraz commited on
Commit
e7b0a7d
1 Parent(s): 7015e23

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v3
16
+ type: PandaReachDense-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.26 +/- 0.12
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8aa42cdd29946abbff3077deb64834adb5889d0a3a3cd7e152a21f519af54ef3
3
+ size 106830
a2c-PandaReachDense-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
a2c-PandaReachDense-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x78ea81955750>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x78ea819519c0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1693166959047298817,
28
+ "learning_rate": 0.001,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAZj+DP6N2n79G55k/e6s5v2xZqr/IR4y/blnDPgJg1r43Ljo/X3EaP17l2z6pqCY/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAATmLFP2Slcb/B2Zk/XoV3v8+yd78WE4u/svgGP5WHQ7/YOe0+HwifP9/myD9jfoU/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABmP4M/o3afv0bnmT8DYXQ/ZHBsv6Jpsz97qzm/bFmqv8hHjL8ttTu/2styv7GRcr9uWcM+AmDWvjcuOj//H1o/sevKv708pT9fcRo/XuXbPqmoJj8zprg/jFLEP75hhz+UaA5LBEsGhpRoEnSUUpR1Lg==",
33
+ "achieved_goal": "[[ 1.0253723 -1.245808 1.2023704 ]\n [-0.72527283 -1.3308539 -1.0959406 ]\n [ 0.38154167 -0.41870123 0.7272677 ]\n [ 0.6032924 0.4294843 0.65101105]]",
34
+ "desired_goal": "[[ 1.5420625 -0.9439299 1.2019578 ]\n [-0.9668788 -0.96757215 -1.08652 ]\n [ 0.5272323 -0.76378757 0.46333194]\n [ 1.2424353 1.5695456 1.0429195 ]]",
35
+ "observation": "[[ 1.0253723 -1.245808 1.2023704 0.9546053 -0.92358994 1.4016612 ]\n [-0.72527283 -1.3308539 -1.0959406 -0.7332333 -0.948423 -0.9475356 ]\n [ 0.38154167 -0.41870123 0.7272677 0.8520507 -1.5853177 1.2909161 ]\n [ 0.6032924 0.4294843 0.65101105 1.442572 1.5337691 1.0576704 ]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAucPevfTciD0zMHw+e+qZvGCxQr0d7UY+tgNvvR6Kbjxnnkc8x2AOvvxSoj2POG8+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
44
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
45
+ "desired_goal": "[[-0.10877175 0.06682768 0.24627762]\n [-0.01878857 -0.04753244 0.19426389]\n [-0.05835315 0.0145593 0.01218376]\n [-0.13904105 0.07925984 0.23361419]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv72fK6nR9gGMAWyUSwKMAXSUR0Csk+sH8jzJdX2UKGgGR7/YCP6sQumKaAdLBGgIR0CsknbxNIsidX2UKGgGR7/Vews5GSZCaAdLBGgIR0Csk51j7Q9idX2UKGgGR7+/kQwsXizcaAdLAmgIR0Csk/esgdOqdX2UKGgGR7++nbZezD4yaAdLAmgIR0CskoNyPuG9dX2UKGgGR7/dSYw7DEWJaAdLBWgIR0CskzWuxKQJdX2UKGgGR7/N3ljmSyMUaAdLA2gIR0Csk7LyDqW1dX2UKGgGR7/EUhV2icoZaAdLAmgIR0CskpLAP/aQdX2UKGgGR7/Sh0yP+4smaAdLA2gIR0CslA101ZTydX2UKGgGR7/NlNlAeJYUaAdLA2gIR0Csk0r8R+SbdX2UKGgGR7/DCHARChN/aAdLAmgIR0Cskp9LYf4idX2UKGgGR7/T5/LDAJswaAdLA2gIR0Csk8XWWhRJdX2UKGgGR7/OfL9uP3i8aAdLA2gIR0CslCLDye7MdX2UKGgGR7+15nlGPPszaAdLAmgIR0Csk1p0wJw9dX2UKGgGR7+pSLqD9OynaAdLAWgIR0CslCk2P1cudX2UKGgGR7/RoWYWtU4raAdLA2gIR0CskrUd7v5QdX2UKGgGR7/Pye7L+xW1aAdLA2gIR0Csk9vjfek6dX2UKGgGR7+8F/x2B8QaaAdLAmgIR0Csk2gaFVT8dX2UKGgGR7/T7wKBun/DaAdLA2gIR0CslEFz2exwdX2UKGgGR7/E7aIvalDXaAdLAmgIR0Csk3kGZ/kOdX2UKGgGR7/PC66J66ataAdLA2gIR0Csk/OnMt9QdX2UKGgGR7/apmEoOQQuaAdLBGgIR0CsktN4zJp4dX2UKGgGR7/Rb+cYqG1yaAdLA2gIR0Csk42qtHQQdX2UKGgGR7/UUtZmqYJFaAdLA2gIR0Cskut1ZDArdX2UKGgGR7/cSKWLP2PDaAdLBWgIR0CslGZccENfdX2UKGgGR7/YExIre67NaAdLBGgIR0CslBKFZgXudX2UKGgGR7/KkvboKUmlaAdLA2gIR0Csk6RceKbbdX2UKGgGR7/Vj1f3N9piaAdLA2gIR0Cskv7F0gbIdX2UKGgGR7/RN83Mpw0gaAdLA2gIR0CslHxbSqlxdX2UKGgGR7/MN7SiM5wPaAdLA2gIR0CslCiz1K5DdX2UKGgGR7+98YyfthNNaAdLAmgIR0Csk7SC4BmxdX2UKGgGR7/BWfbsWweOaAdLA2gIR0CslDtTUAktdX2UKGgGR7/Z8jRlYlpoaAdLBGgIR0CskxtmL9/CdX2UKGgGR7/ULVFx4ptraAdLBGgIR0CslJi704BFdX2UKGgGR7/S2phnanJlaAdLBGgIR0Csk9BoEjgRdX2UKGgGR7+9aq0dBBzFaAdLAmgIR0CskytX5nDjdX2UKGgGR7/PWuHN5dGBaAdLA2gIR0CslFJgTh5xdX2UKGgGR7/T9wm3OObRaAdLBGgIR0CslLY+r2g4dX2UKGgGR7/XG4ZuQ6p6aAdLBGgIR0Csk+4XGff5dX2UKGgGR7/RUJfICEHuaAdLA2gIR0Csk0JdSl3ydX2UKGgGR7/SS5iExqO+aAdLA2gIR0CslGlqSHM2dX2UKGgGR7/B0nPVurIYaAdLAmgIR0Csk/ufdyksdX2UKGgGR7/W/6wdKdxyaAdLBGgIR0CslNRtHhCMdX2UKGgGR7/FA8jiXIEKaAdLA2gIR0CslICROk+HdX2UKGgGR7/XQpF1B+nZaAdLBGgIR0Csk2B4t6HCdX2UKGgGR7+nIjnmq5skaAdLAWgIR0Csk2aXKKYRdX2UKGgGR7/XvAoG6f8NaAdLBGgIR0CslBj7qIJrdX2UKGgGR7/U1gpjMFEBaAdLA2gIR0CslOevhZQpdX2UKGgGR7/HWmP5pJwsaAdLA2gIR0CslJSKekHldX2UKGgGR7+3hfjS5RTCaAdLAmgIR0Csk3Rr8BMjdX2UKGgGR7/MKEWZZ0SzaAdLA2gIR0CslC84gieNdX2UKGgGR7/OL0jC53C9aAdLA2gIR0CslP4EW69TdX2UKGgGR7/YGACnxaxHaAdLBGgIR0Csk5AUcn3MdX2UKGgGR7/LGc4HX2/SaAdLA2gIR0CslRQVj7Q+dX2UKGgGR7/UCbtqpLmIaAdLBGgIR0CslEvykKu0dX2UKGgGR7+g/3WWhRIjaAdLAWgIR0CslRquKXOXdX2UKGgGR7/dAUL2HtWuaAdLB2gIR0CslMbgjyFxdX2UKGgGR7+zUAksz2vjaAdLAmgIR0CslFjFId2gdX2UKGgGR7/Wjslb/wRXaAdLBGgIR0Csk6zkp7TldX2UKGgGR7/RvrWy1NQCaAdLA2gIR0CslTDRUm2LdX2UKGgGR7/JQSi/O+qSaAdLA2gIR0CslN3+MqBmdX2UKGgGR7+kiSq2jO9naAdLAWgIR0CslOck+otMdX2UKGgGR7/Lf2K2rn1WaAdLA2gIR0CslHM1baAXdX2UKGgGR7/LlhgE2YOUaAdLA2gIR0Csk8kSElE7dX2UKGgGR7/SmOU+s5n2aAdLA2gIR0CslU4DDCP7dX2UKGgGR7+5DeCTUy57aAdLAmgIR0Csk9on0CiidX2UKGgGR7/FB2OhkAggaAdLA2gIR0CslQE3Kji5dX2UKGgGR7/UIgNgBtDVaAdLA2gIR0CslI1A7gbZdX2UKGgGR7/CsZpBX0XhaAdLAmgIR0Csk+foicG1dX2UKGgGR7/MDK5kK/mDaAdLA2gIR0CslWLIxQBQdX2UKGgGR7/KlwcYIjW1aAdLA2gIR0CslRjynUDudX2UKGgGR7/CKlYU34sVaAdLAmgIR0Csk/nRb8m8dX2UKGgGR7+3GCI1tO2zaAdLAmgIR0CslXUPhAGCdX2UKGgGR7/S7Dl5nlGPaAdLBGgIR0CslK04BFNMdX2UKGgGR7+81CPZIxxlaAdLAmgIR0CslYLuIAOsdX2UKGgGR7/VEqDsdDIBaAdLA2gIR0CslS8l5WzXdX2UKGgGR7+7iVB2OhkBaAdLAmgIR0CslLs3qAz6dX2UKGgGR7/Mikfs/pt8aAdLA2gIR0CslA+W4Vh1dX2UKGgGR7+i2Yv38GcGaAdLAWgIR0CslY3sgMc7dX2UKGgGR7/Rd2xIJ7b+aAdLA2gIR0CslUbSJCSidX2UKGgGR7/LUhFEy+HraAdLA2gIR0CslCcwHqu9dX2UKGgGR7/W7CBPKuB+aAdLBGgIR0CslNn3cpLFdX2UKGgGR7/XoHcDbJwLaAdLBGgIR0CslawtapxWdX2UKGgGR7+9gssg+yJLaAdLAmgIR0CslDfiPyTZdX2UKGgGR7/T1zQu27WeaAdLA2gIR0CslV7BfrrxdX2UKGgGR7+6x7iQ1aW5aAdLAmgIR0CslOqz7di2dX2UKGgGR7+hSP2f029+aAdLAWgIR0CslD7z9S/CdX2UKGgGR7/H9Sde6ZpjaAdLA2gIR0Cslb+/xlQNdX2UKGgGR7/TN+LFXJYDaAdLA2gIR0CslQDriVB2dX2UKGgGR7/FiH6/IsAeaAdLA2gIR0CslFVR1oxpdX2UKGgGR7/Xtygf2bobaAdLBGgIR0CslXwQL/jsdX2UKGgGR7+nnMdLg4wRaAdLAWgIR0CslQfgBLf2dX2UKGgGR7/MJ/G2kSElaAdLA2gIR0Cslda55JK8dX2UKGgGR7/Hhz/6wdKeaAdLA2gIR0CslGinHeabdX2UKGgGR7/O3++/QBxQaAdLA2gIR0CslR43FUADdX2UKGgGR7/LvVmSQo1DaAdLA2gIR0Csle0bcXWOdX2UKGgGR7/ZeDnNgSezaAdLBGgIR0CslZlEiMYNdX2UKGgGR7/BIMBp5/smaAdLAmgIR0CslHk9Mbm2dX2UKGgGR7+95C4SYgJUaAdLAmgIR0CslSudGy5adX2UKGgGR7+kOf/WDpTuaAdLAWgIR0CslH/eUILPdWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 66715,
62
+ "n_steps": 4,
63
+ "gamma": 0.99,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True]",
82
+ "bounded_above": "[ True True True]",
83
+ "_shape": [
84
+ 3
85
+ ],
86
+ "low": "[-1. -1. -1.]",
87
+ "high": "[1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ }
97
+ }
a2c-PandaReachDense-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ce4cd0e47271193ebbd5443143fa611bbf15a84618ba1e20f2921f37c9c871b6
3
+ size 44734
a2c-PandaReachDense-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:01bbbcc6f80d61fd2ae5a66c5207da5649dd6a5ef92390a1aee8f5b7200ffb29
3
+ size 46014
a2c-PandaReachDense-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x78ea81955750>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78ea819519c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1693166959047298817, "learning_rate": 0.001, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAZj+DP6N2n79G55k/e6s5v2xZqr/IR4y/blnDPgJg1r43Ljo/X3EaP17l2z6pqCY/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAATmLFP2Slcb/B2Zk/XoV3v8+yd78WE4u/svgGP5WHQ7/YOe0+HwifP9/myD9jfoU/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABmP4M/o3afv0bnmT8DYXQ/ZHBsv6Jpsz97qzm/bFmqv8hHjL8ttTu/2styv7GRcr9uWcM+AmDWvjcuOj//H1o/sevKv708pT9fcRo/XuXbPqmoJj8zprg/jFLEP75hhz+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 1.0253723 -1.245808 1.2023704 ]\n [-0.72527283 -1.3308539 -1.0959406 ]\n [ 0.38154167 -0.41870123 0.7272677 ]\n [ 0.6032924 0.4294843 0.65101105]]", "desired_goal": "[[ 1.5420625 -0.9439299 1.2019578 ]\n [-0.9668788 -0.96757215 -1.08652 ]\n [ 0.5272323 -0.76378757 0.46333194]\n [ 1.2424353 1.5695456 1.0429195 ]]", "observation": "[[ 1.0253723 -1.245808 1.2023704 0.9546053 -0.92358994 1.4016612 ]\n [-0.72527283 -1.3308539 -1.0959406 -0.7332333 -0.948423 -0.9475356 ]\n [ 0.38154167 -0.41870123 0.7272677 0.8520507 -1.5853177 1.2909161 ]\n [ 0.6032924 0.4294843 0.65101105 1.442572 1.5337691 1.0576704 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAucPevfTciD0zMHw+e+qZvGCxQr0d7UY+tgNvvR6Kbjxnnkc8x2AOvvxSoj2POG8+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.10877175 0.06682768 0.24627762]\n [-0.01878857 -0.04753244 0.19426389]\n [-0.05835315 0.0145593 0.01218376]\n [-0.13904105 0.07925984 0.23361419]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv72fK6nR9gGMAWyUSwKMAXSUR0Csk+sH8jzJdX2UKGgGR7/YCP6sQumKaAdLBGgIR0CsknbxNIsidX2UKGgGR7/Vews5GSZCaAdLBGgIR0Csk51j7Q9idX2UKGgGR7+/kQwsXizcaAdLAmgIR0Csk/esgdOqdX2UKGgGR7++nbZezD4yaAdLAmgIR0CskoNyPuG9dX2UKGgGR7/dSYw7DEWJaAdLBWgIR0CskzWuxKQJdX2UKGgGR7/N3ljmSyMUaAdLA2gIR0Csk7LyDqW1dX2UKGgGR7/EUhV2icoZaAdLAmgIR0CskpLAP/aQdX2UKGgGR7/Sh0yP+4smaAdLA2gIR0CslA101ZTydX2UKGgGR7/NlNlAeJYUaAdLA2gIR0Csk0r8R+SbdX2UKGgGR7/DCHARChN/aAdLAmgIR0Cskp9LYf4idX2UKGgGR7/T5/LDAJswaAdLA2gIR0Csk8XWWhRJdX2UKGgGR7/OfL9uP3i8aAdLA2gIR0CslCLDye7MdX2UKGgGR7+15nlGPPszaAdLAmgIR0Csk1p0wJw9dX2UKGgGR7+pSLqD9OynaAdLAWgIR0CslCk2P1cudX2UKGgGR7/RoWYWtU4raAdLA2gIR0CskrUd7v5QdX2UKGgGR7/Pye7L+xW1aAdLA2gIR0Csk9vjfek6dX2UKGgGR7+8F/x2B8QaaAdLAmgIR0Csk2gaFVT8dX2UKGgGR7/T7wKBun/DaAdLA2gIR0CslEFz2exwdX2UKGgGR7/E7aIvalDXaAdLAmgIR0Csk3kGZ/kOdX2UKGgGR7/PC66J66ataAdLA2gIR0Csk/OnMt9QdX2UKGgGR7/apmEoOQQuaAdLBGgIR0CsktN4zJp4dX2UKGgGR7/Rb+cYqG1yaAdLA2gIR0Csk42qtHQQdX2UKGgGR7/UUtZmqYJFaAdLA2gIR0Cskut1ZDArdX2UKGgGR7/cSKWLP2PDaAdLBWgIR0CslGZccENfdX2UKGgGR7/YExIre67NaAdLBGgIR0CslBKFZgXudX2UKGgGR7/KkvboKUmlaAdLA2gIR0Csk6RceKbbdX2UKGgGR7/Vj1f3N9piaAdLA2gIR0Cskv7F0gbIdX2UKGgGR7/RN83Mpw0gaAdLA2gIR0CslHxbSqlxdX2UKGgGR7/MN7SiM5wPaAdLA2gIR0CslCiz1K5DdX2UKGgGR7+98YyfthNNaAdLAmgIR0Csk7SC4BmxdX2UKGgGR7/BWfbsWweOaAdLA2gIR0CslDtTUAktdX2UKGgGR7/Z8jRlYlpoaAdLBGgIR0CskxtmL9/CdX2UKGgGR7/ULVFx4ptraAdLBGgIR0CslJi704BFdX2UKGgGR7/S2phnanJlaAdLBGgIR0Csk9BoEjgRdX2UKGgGR7+9aq0dBBzFaAdLAmgIR0CskytX5nDjdX2UKGgGR7/PWuHN5dGBaAdLA2gIR0CslFJgTh5xdX2UKGgGR7/T9wm3OObRaAdLBGgIR0CslLY+r2g4dX2UKGgGR7/XG4ZuQ6p6aAdLBGgIR0Csk+4XGff5dX2UKGgGR7/RUJfICEHuaAdLA2gIR0Csk0JdSl3ydX2UKGgGR7/SS5iExqO+aAdLA2gIR0CslGlqSHM2dX2UKGgGR7/B0nPVurIYaAdLAmgIR0Csk/ufdyksdX2UKGgGR7/W/6wdKdxyaAdLBGgIR0CslNRtHhCMdX2UKGgGR7/FA8jiXIEKaAdLA2gIR0CslICROk+HdX2UKGgGR7/XQpF1B+nZaAdLBGgIR0Csk2B4t6HCdX2UKGgGR7+nIjnmq5skaAdLAWgIR0Csk2aXKKYRdX2UKGgGR7/XvAoG6f8NaAdLBGgIR0CslBj7qIJrdX2UKGgGR7/U1gpjMFEBaAdLA2gIR0CslOevhZQpdX2UKGgGR7/HWmP5pJwsaAdLA2gIR0CslJSKekHldX2UKGgGR7+3hfjS5RTCaAdLAmgIR0Csk3Rr8BMjdX2UKGgGR7/MKEWZZ0SzaAdLA2gIR0CslC84gieNdX2UKGgGR7/OL0jC53C9aAdLA2gIR0CslP4EW69TdX2UKGgGR7/YGACnxaxHaAdLBGgIR0Csk5AUcn3MdX2UKGgGR7/LGc4HX2/SaAdLA2gIR0CslRQVj7Q+dX2UKGgGR7/UCbtqpLmIaAdLBGgIR0CslEvykKu0dX2UKGgGR7+g/3WWhRIjaAdLAWgIR0CslRquKXOXdX2UKGgGR7/dAUL2HtWuaAdLB2gIR0CslMbgjyFxdX2UKGgGR7+zUAksz2vjaAdLAmgIR0CslFjFId2gdX2UKGgGR7/Wjslb/wRXaAdLBGgIR0Csk6zkp7TldX2UKGgGR7/RvrWy1NQCaAdLA2gIR0CslTDRUm2LdX2UKGgGR7/JQSi/O+qSaAdLA2gIR0CslN3+MqBmdX2UKGgGR7+kiSq2jO9naAdLAWgIR0CslOck+otMdX2UKGgGR7/Lf2K2rn1WaAdLA2gIR0CslHM1baAXdX2UKGgGR7/LlhgE2YOUaAdLA2gIR0Csk8kSElE7dX2UKGgGR7/SmOU+s5n2aAdLA2gIR0CslU4DDCP7dX2UKGgGR7+5DeCTUy57aAdLAmgIR0Csk9on0CiidX2UKGgGR7/FB2OhkAggaAdLA2gIR0CslQE3Kji5dX2UKGgGR7/UIgNgBtDVaAdLA2gIR0CslI1A7gbZdX2UKGgGR7/CsZpBX0XhaAdLAmgIR0Csk+foicG1dX2UKGgGR7/MDK5kK/mDaAdLA2gIR0CslWLIxQBQdX2UKGgGR7/KlwcYIjW1aAdLA2gIR0CslRjynUDudX2UKGgGR7/CKlYU34sVaAdLAmgIR0Csk/nRb8m8dX2UKGgGR7+3GCI1tO2zaAdLAmgIR0CslXUPhAGCdX2UKGgGR7/S7Dl5nlGPaAdLBGgIR0CslK04BFNMdX2UKGgGR7+81CPZIxxlaAdLAmgIR0CslYLuIAOsdX2UKGgGR7/VEqDsdDIBaAdLA2gIR0CslS8l5WzXdX2UKGgGR7+7iVB2OhkBaAdLAmgIR0CslLs3qAz6dX2UKGgGR7/Mikfs/pt8aAdLA2gIR0CslA+W4Vh1dX2UKGgGR7+i2Yv38GcGaAdLAWgIR0CslY3sgMc7dX2UKGgGR7/Rd2xIJ7b+aAdLA2gIR0CslUbSJCSidX2UKGgGR7/LUhFEy+HraAdLA2gIR0CslCcwHqu9dX2UKGgGR7/W7CBPKuB+aAdLBGgIR0CslNn3cpLFdX2UKGgGR7/XoHcDbJwLaAdLBGgIR0CslawtapxWdX2UKGgGR7+9gssg+yJLaAdLAmgIR0CslDfiPyTZdX2UKGgGR7/T1zQu27WeaAdLA2gIR0CslV7BfrrxdX2UKGgGR7+6x7iQ1aW5aAdLAmgIR0CslOqz7di2dX2UKGgGR7+hSP2f029+aAdLAWgIR0CslD7z9S/CdX2UKGgGR7/H9Sde6ZpjaAdLA2gIR0Cslb+/xlQNdX2UKGgGR7/TN+LFXJYDaAdLA2gIR0CslQDriVB2dX2UKGgGR7/FiH6/IsAeaAdLA2gIR0CslFVR1oxpdX2UKGgGR7/Xtygf2bobaAdLBGgIR0CslXwQL/jsdX2UKGgGR7+nnMdLg4wRaAdLAWgIR0CslQfgBLf2dX2UKGgGR7/MJ/G2kSElaAdLA2gIR0Cslda55JK8dX2UKGgGR7/Hhz/6wdKeaAdLA2gIR0CslGinHeabdX2UKGgGR7/O3++/QBxQaAdLA2gIR0CslR43FUADdX2UKGgGR7/LvVmSQo1DaAdLA2gIR0Csle0bcXWOdX2UKGgGR7/ZeDnNgSezaAdLBGgIR0CslZlEiMYNdX2UKGgGR7/BIMBp5/smaAdLAmgIR0CslHk9Mbm2dX2UKGgGR7+95C4SYgJUaAdLAmgIR0CslSudGy5adX2UKGgGR7+kOf/WDpTuaAdLAWgIR0CslH/eUILPdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 66715, "n_steps": 4, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.25984796714037656, "std_reward": 0.11805488234748682, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-27T20:55:34.258124"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4fb7fb0028b149ec396f04172e8fc65de6e5bbb047ff9cbdc80e8c929ced8f74
3
+ size 2636