Upload model
Browse files- README.md +201 -0
- config.json +146 -0
- config.py +29 -0
- model.py +96 -0
- model.safetensors +3 -0
README.md
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags: []
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
|
201 |
+
|
config.json
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "liaad/srl-pt_bertimbau-base_hf",
|
3 |
+
"architectures": [
|
4 |
+
"SRLModel"
|
5 |
+
],
|
6 |
+
"auto-map": {
|
7 |
+
"AutoConfig": "config.SRLModelConfig",
|
8 |
+
"AutoModel": "model.SRLModel"
|
9 |
+
},
|
10 |
+
"auto_map": {
|
11 |
+
"AutoConfig": "config.SRLModelConfig",
|
12 |
+
"AutoModel": "model.SRLModel"
|
13 |
+
},
|
14 |
+
"bert_model_name": "neuralmind/bert-base-portuguese-cased",
|
15 |
+
"embedding_dropout": 0.1,
|
16 |
+
"id2label": {
|
17 |
+
"0": "O",
|
18 |
+
"1": "[UNK]",
|
19 |
+
"10": "I-C-AM-PRD",
|
20 |
+
"11": "I-C-AM-TMP",
|
21 |
+
"12": "B-C-AM-LOC",
|
22 |
+
"13": "B-AM-PRD",
|
23 |
+
"14": "B-AM-EXT",
|
24 |
+
"15": "I-C-AM-LOC",
|
25 |
+
"16": "I-AM-PNC",
|
26 |
+
"17": "I-C-AM-CAU",
|
27 |
+
"18": "I-C-A2",
|
28 |
+
"19": "B-C-AM-MNR",
|
29 |
+
"2": "B-AM-CAU",
|
30 |
+
"20": "B-AM-PNC",
|
31 |
+
"21": "I-A2",
|
32 |
+
"22": "B-C-AM-ADV",
|
33 |
+
"23": "B-AM-REC",
|
34 |
+
"24": "B-C-A2",
|
35 |
+
"25": "B-AM-ADV",
|
36 |
+
"26": "B-A1",
|
37 |
+
"27": "I-C-AM-MNR",
|
38 |
+
"28": "I-A3",
|
39 |
+
"29": "I-C-AM-ADV",
|
40 |
+
"3": "I-AM-CAU",
|
41 |
+
"30": "I-A1",
|
42 |
+
"31": "B-A4",
|
43 |
+
"32": "B-C-A3",
|
44 |
+
"33": "B-AM-LOC",
|
45 |
+
"34": "B-C-A1",
|
46 |
+
"35": "I-AM-MNR",
|
47 |
+
"36": "B-A3",
|
48 |
+
"37": "B-A0",
|
49 |
+
"38": "B-C-A0",
|
50 |
+
"39": "I-AM-DIS",
|
51 |
+
"4": "B-C-AM-NEG",
|
52 |
+
"40": "I-AM-LOC",
|
53 |
+
"41": "B-AM-MNR",
|
54 |
+
"42": "I-AM-PRD",
|
55 |
+
"43": "B-C-AM-DIS",
|
56 |
+
"44": "B-C-AM-PRD",
|
57 |
+
"45": "I-AM-NEG",
|
58 |
+
"46": "B-AM-DIR",
|
59 |
+
"47": "B-C-V",
|
60 |
+
"48": "B-AM-DIS",
|
61 |
+
"49": "B-C-AM-CAU",
|
62 |
+
"5": "B-C-AM-TMP",
|
63 |
+
"50": "I-C-A0",
|
64 |
+
"51": "B-AM-NEG",
|
65 |
+
"52": "B-C-AM-EXT",
|
66 |
+
"53": "I-AM-DIR",
|
67 |
+
"54": "I-A0",
|
68 |
+
"55": "I-C-V",
|
69 |
+
"56": "B-V",
|
70 |
+
"57": "I-AM-EXT",
|
71 |
+
"58": "B-AM-TMP",
|
72 |
+
"59": "I-AM-ADV",
|
73 |
+
"6": "I-A4",
|
74 |
+
"60": "I-AM-TMP",
|
75 |
+
"7": "I-C-A3",
|
76 |
+
"8": "I-C-A1",
|
77 |
+
"9": "B-A2"
|
78 |
+
},
|
79 |
+
"label2id": {
|
80 |
+
"B-A0": 37,
|
81 |
+
"B-A1": 26,
|
82 |
+
"B-A2": 9,
|
83 |
+
"B-A3": 36,
|
84 |
+
"B-A4": 31,
|
85 |
+
"B-AM-ADV": 25,
|
86 |
+
"B-AM-CAU": 2,
|
87 |
+
"B-AM-DIR": 46,
|
88 |
+
"B-AM-DIS": 48,
|
89 |
+
"B-AM-EXT": 14,
|
90 |
+
"B-AM-LOC": 33,
|
91 |
+
"B-AM-MNR": 41,
|
92 |
+
"B-AM-NEG": 51,
|
93 |
+
"B-AM-PNC": 20,
|
94 |
+
"B-AM-PRD": 13,
|
95 |
+
"B-AM-REC": 23,
|
96 |
+
"B-AM-TMP": 58,
|
97 |
+
"B-C-A0": 38,
|
98 |
+
"B-C-A1": 34,
|
99 |
+
"B-C-A2": 24,
|
100 |
+
"B-C-A3": 32,
|
101 |
+
"B-C-AM-ADV": 22,
|
102 |
+
"B-C-AM-CAU": 49,
|
103 |
+
"B-C-AM-DIS": 43,
|
104 |
+
"B-C-AM-EXT": 52,
|
105 |
+
"B-C-AM-LOC": 12,
|
106 |
+
"B-C-AM-MNR": 19,
|
107 |
+
"B-C-AM-NEG": 4,
|
108 |
+
"B-C-AM-PRD": 44,
|
109 |
+
"B-C-AM-TMP": 5,
|
110 |
+
"B-C-V": 47,
|
111 |
+
"B-V": 56,
|
112 |
+
"I-A0": 54,
|
113 |
+
"I-A1": 30,
|
114 |
+
"I-A2": 21,
|
115 |
+
"I-A3": 28,
|
116 |
+
"I-A4": 6,
|
117 |
+
"I-AM-ADV": 59,
|
118 |
+
"I-AM-CAU": 3,
|
119 |
+
"I-AM-DIR": 53,
|
120 |
+
"I-AM-DIS": 39,
|
121 |
+
"I-AM-EXT": 57,
|
122 |
+
"I-AM-LOC": 40,
|
123 |
+
"I-AM-MNR": 35,
|
124 |
+
"I-AM-NEG": 45,
|
125 |
+
"I-AM-PNC": 16,
|
126 |
+
"I-AM-PRD": 42,
|
127 |
+
"I-AM-TMP": 60,
|
128 |
+
"I-C-A0": 50,
|
129 |
+
"I-C-A1": 8,
|
130 |
+
"I-C-A2": 18,
|
131 |
+
"I-C-A3": 7,
|
132 |
+
"I-C-AM-ADV": 29,
|
133 |
+
"I-C-AM-CAU": 17,
|
134 |
+
"I-C-AM-LOC": 15,
|
135 |
+
"I-C-AM-MNR": 27,
|
136 |
+
"I-C-AM-PRD": 10,
|
137 |
+
"I-C-AM-TMP": 11,
|
138 |
+
"I-C-V": 55,
|
139 |
+
"O": 0,
|
140 |
+
"[UNK]": 1
|
141 |
+
},
|
142 |
+
"model_type": "srl",
|
143 |
+
"num_labels": 61,
|
144 |
+
"torch_dtype": "float32",
|
145 |
+
"transformers_version": "4.39.3"
|
146 |
+
}
|
config.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig
|
2 |
+
|
3 |
+
class SRLModelConfig(PretrainedConfig):
|
4 |
+
model_type = "srl"
|
5 |
+
|
6 |
+
def __init__(
|
7 |
+
self,
|
8 |
+
num_labels=0,
|
9 |
+
bert_model_name="bert-base-uncased",
|
10 |
+
embedding_dropout=0.0,
|
11 |
+
label2id = {},
|
12 |
+
id2label = {},
|
13 |
+
**kwargs,
|
14 |
+
):
|
15 |
+
super().__init__(**kwargs)
|
16 |
+
self.num_labels = num_labels
|
17 |
+
self.bert_model_name = bert_model_name
|
18 |
+
self.embedding_dropout = embedding_dropout
|
19 |
+
self.label2id = label2id
|
20 |
+
self.id2label = id2label
|
21 |
+
|
22 |
+
def to_dict(self):
|
23 |
+
config_dict = super().to_dict()
|
24 |
+
|
25 |
+
config_dict["num_labels"] = self.num_labels
|
26 |
+
# config_dict["bert_model_name"] = self.bert_model_name
|
27 |
+
# config_dict["embedding_dropout"] = self.embedding_dropout
|
28 |
+
|
29 |
+
return config_dict
|
model.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
import torch.nn.functional as F
|
3 |
+
from transformers import AutoModel, AutoTokenizer, PreTrainedModel
|
4 |
+
from config import SRLModelConfig
|
5 |
+
|
6 |
+
|
7 |
+
class SRLModel(PreTrainedModel):
|
8 |
+
config_class = SRLModelConfig
|
9 |
+
|
10 |
+
def __init__(self, config):
|
11 |
+
super().__init__(config)
|
12 |
+
|
13 |
+
print(config.num_labels, config.bert_model_name, config.embedding_dropout)
|
14 |
+
|
15 |
+
# Load pre-trained transformer-based model and tokenizer
|
16 |
+
self.tokenizer = AutoTokenizer.from_pretrained(config.bert_model_name)
|
17 |
+
self.transformer = AutoModel.from_pretrained(
|
18 |
+
config.bert_model_name,
|
19 |
+
num_labels=config.num_labels,
|
20 |
+
output_hidden_states=True,
|
21 |
+
)
|
22 |
+
self.transformer.config.id2label = config.id2label
|
23 |
+
self.transformer.config.label2id = config.label2id
|
24 |
+
|
25 |
+
# The roberta models do not have token_type_embeddings
|
26 |
+
# (the type_vocab_size is 1)
|
27 |
+
# but we use this to pass the verb's position
|
28 |
+
# so we need to change the model and initialize the embeddings randomly
|
29 |
+
if "xlm" in config.bert_model_name or "roberta" in config.bert_model_name:
|
30 |
+
self.transformer.config.type_vocab_size = 2
|
31 |
+
# Create a new Embeddings layer, with 2 possible segments IDs instead of 1
|
32 |
+
self.transformer.embeddings.token_type_embeddings = nn.Embedding(
|
33 |
+
2, self.transformer.config.hidden_size
|
34 |
+
)
|
35 |
+
# Initialize it
|
36 |
+
self.transformer.embeddings.token_type_embeddings.weight.data.normal_(
|
37 |
+
mean=0.0, std=self.transformer.config.initializer_range
|
38 |
+
)
|
39 |
+
|
40 |
+
# Linear layer for tag projection
|
41 |
+
self.tag_projection_layer = nn.Linear(
|
42 |
+
self.transformer.config.hidden_size, config.num_labels
|
43 |
+
)
|
44 |
+
|
45 |
+
# Dropout layer for embeddings
|
46 |
+
self.embedding_dropout = nn.Dropout(p=config.embedding_dropout)
|
47 |
+
|
48 |
+
# Number of labels
|
49 |
+
self.num_labels = config.num_labels
|
50 |
+
|
51 |
+
def forward(self, input_ids, attention_mask, token_type_ids, labels=None):
|
52 |
+
|
53 |
+
# print("FORWARD")
|
54 |
+
# print(labels)
|
55 |
+
|
56 |
+
# Forward pass through the transformer model
|
57 |
+
# Returns BaseModelOutputWithPoolingAndCrossAttentions
|
58 |
+
outputs = self.transformer(
|
59 |
+
input_ids=input_ids,
|
60 |
+
attention_mask=attention_mask,
|
61 |
+
token_type_ids=token_type_ids,
|
62 |
+
)
|
63 |
+
|
64 |
+
# Extract the [CLS] token representation
|
65 |
+
# cls_output = outputs.pooler_output
|
66 |
+
|
67 |
+
bert_embedding = outputs.last_hidden_state
|
68 |
+
|
69 |
+
# Apply dropout to the embeddings
|
70 |
+
embedded_text_input = self.embedding_dropout(bert_embedding)
|
71 |
+
|
72 |
+
# Project to tag space
|
73 |
+
logits = self.tag_projection_layer(embedded_text_input)
|
74 |
+
|
75 |
+
reshaped_log_probs = logits.view(-1, self.num_labels)
|
76 |
+
class_probabilities = F.softmax(reshaped_log_probs, dim=-1).view(
|
77 |
+
logits.size(0), logits.size(1), -1
|
78 |
+
)
|
79 |
+
|
80 |
+
output_dict = {"logits": logits, "class_probabilities": class_probabilities}
|
81 |
+
|
82 |
+
output_dict["attention_mask"] = attention_mask
|
83 |
+
output_dict["input_ids"] = input_ids
|
84 |
+
# output_dict["start_offsets"] = start_offsets
|
85 |
+
|
86 |
+
if labels is not None:
|
87 |
+
# print("Input", logits.view(-1, self.num_labels).size())
|
88 |
+
# print("Target", labels.view(-1).size())
|
89 |
+
# print("C", self.num_labels)
|
90 |
+
# print("AllenNLP function", logits.size(-1))
|
91 |
+
# Could consider passing ignore_index as 0 (pad index) for minor optimization
|
92 |
+
loss = nn.CrossEntropyLoss(ignore_index=-100)(
|
93 |
+
logits.view(-1, self.num_labels), labels.view(-1)
|
94 |
+
)
|
95 |
+
output_dict["loss"] = loss
|
96 |
+
return output_dict
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ed69dae877e6013b39aa4d708aa65c14dc0cd0b8202b63573df7318a8aae5da1
|
3 |
+
size 435905116
|