arubenruben commited on
Commit
3b16337
1 Parent(s): 11dd1ba

End of training

Browse files
Files changed (2) hide show
  1. README.md +33 -27
  2. model.safetensors +1 -1
README.md CHANGED
@@ -1,6 +1,6 @@
1
  ---
2
  license: mit
3
- base_model: neuralmind/bert-large-portuguese-cased
4
  tags:
5
  - generated_from_trainer
6
  datasets:
@@ -11,7 +11,7 @@ metrics:
11
  - f1
12
  - accuracy
13
  model-index:
14
- - name: NER_harem_bert-large-portuguese-cased
15
  results:
16
  - task:
17
  name: Token Classification
@@ -25,30 +25,30 @@ model-index:
25
  metrics:
26
  - name: Precision
27
  type: precision
28
- value: 0.7077353867693384
29
  - name: Recall
30
  type: recall
31
- value: 0.7553231228987672
32
  - name: F1
33
  type: f1
34
- value: 0.7307553306830503
35
  - name: Accuracy
36
  type: accuracy
37
- value: 0.9551379448220711
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
41
  should probably proofread and complete it, then remove this comment. -->
42
 
43
- # NER_harem_bert-large-portuguese-cased
44
 
45
- This model is a fine-tuned version of [neuralmind/bert-large-portuguese-cased](https://huggingface.co/neuralmind/bert-large-portuguese-cased) on the harem dataset.
46
  It achieves the following results on the evaluation set:
47
- - Loss: 0.2487
48
- - Precision: 0.7077
49
- - Recall: 0.7553
50
- - F1: 0.7308
51
- - Accuracy: 0.9551
52
 
53
  ## Model description
54
 
@@ -79,20 +79,26 @@ The following hyperparameters were used during training:
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
- | No log | 1.0 | 16 | 0.6334 | 0.0163 | 0.0078 | 0.0106 | 0.8468 |
83
- | No log | 2.0 | 32 | 0.4537 | 0.2614 | 0.3112 | 0.2841 | 0.8826 |
84
- | No log | 3.0 | 48 | 0.3117 | 0.5262 | 0.5671 | 0.5458 | 0.9231 |
85
- | No log | 4.0 | 64 | 0.2421 | 0.5852 | 0.6631 | 0.6217 | 0.9385 |
86
- | No log | 5.0 | 80 | 0.2099 | 0.5950 | 0.6855 | 0.6370 | 0.9479 |
87
- | No log | 6.0 | 96 | 0.2153 | 0.6810 | 0.7464 | 0.7122 | 0.9551 |
88
- | No log | 7.0 | 112 | 0.2270 | 0.6894 | 0.7198 | 0.7043 | 0.9546 |
89
- | No log | 8.0 | 128 | 0.2213 | 0.6918 | 0.7437 | 0.7168 | 0.9554 |
90
- | No log | 9.0 | 144 | 0.2299 | 0.7021 | 0.7564 | 0.7283 | 0.9545 |
91
- | No log | 10.0 | 160 | 0.2256 | 0.7002 | 0.7591 | 0.7284 | 0.9562 |
92
- | No log | 11.0 | 176 | 0.2169 | 0.7100 | 0.7736 | 0.7404 | 0.9568 |
93
- | No log | 12.0 | 192 | 0.2266 | 0.6981 | 0.7740 | 0.7341 | 0.9571 |
94
- | No log | 13.0 | 208 | 0.2322 | 0.7093 | 0.7620 | 0.7347 | 0.9570 |
95
- | No log | 14.0 | 224 | 0.2487 | 0.7077 | 0.7553 | 0.7308 | 0.9551 |
 
 
 
 
 
 
96
 
97
 
98
  ### Framework versions
 
1
  ---
2
  license: mit
3
+ base_model: PORTULAN/albertina-100m-portuguese-ptpt-encoder
4
  tags:
5
  - generated_from_trainer
6
  datasets:
 
11
  - f1
12
  - accuracy
13
  model-index:
14
+ - name: NER_harem_albertina-100m-portuguese-ptpt-encoder
15
  results:
16
  - task:
17
  name: Token Classification
 
25
  metrics:
26
  - name: Precision
27
  type: precision
28
+ value: 0.67216673903604
29
  - name: Recall
30
  type: recall
31
+ value: 0.725398313027179
32
  - name: F1
33
  type: f1
34
+ value: 0.6977687626774848
35
  - name: Accuracy
36
  type: accuracy
37
+ value: 0.9532056132627089
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
41
  should probably proofread and complete it, then remove this comment. -->
42
 
43
+ # NER_harem_albertina-100m-portuguese-ptpt-encoder
44
 
45
+ This model is a fine-tuned version of [PORTULAN/albertina-100m-portuguese-ptpt-encoder](https://huggingface.co/PORTULAN/albertina-100m-portuguese-ptpt-encoder) on the harem dataset.
46
  It achieves the following results on the evaluation set:
47
+ - Loss: 0.2583
48
+ - Precision: 0.6722
49
+ - Recall: 0.7254
50
+ - F1: 0.6978
51
+ - Accuracy: 0.9532
52
 
53
  ## Model description
54
 
 
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | No log | 1.0 | 16 | 0.5322 | 0.0212 | 0.0117 | 0.0151 | 0.8615 |
83
+ | No log | 2.0 | 32 | 0.3238 | 0.4230 | 0.4981 | 0.4575 | 0.9110 |
84
+ | No log | 3.0 | 48 | 0.2460 | 0.5006 | 0.6007 | 0.5461 | 0.9369 |
85
+ | No log | 4.0 | 64 | 0.2240 | 0.5526 | 0.6396 | 0.5930 | 0.9414 |
86
+ | No log | 5.0 | 80 | 0.2088 | 0.5498 | 0.6340 | 0.5889 | 0.9492 |
87
+ | No log | 6.0 | 96 | 0.2068 | 0.5884 | 0.6645 | 0.6241 | 0.9496 |
88
+ | No log | 7.0 | 112 | 0.2253 | 0.5906 | 0.6720 | 0.6287 | 0.9481 |
89
+ | No log | 8.0 | 128 | 0.2115 | 0.6245 | 0.6874 | 0.6545 | 0.9516 |
90
+ | No log | 9.0 | 144 | 0.2187 | 0.6546 | 0.7062 | 0.6794 | 0.9533 |
91
+ | No log | 10.0 | 160 | 0.2398 | 0.6432 | 0.7020 | 0.6713 | 0.9495 |
92
+ | No log | 11.0 | 176 | 0.2554 | 0.6653 | 0.7043 | 0.6843 | 0.9526 |
93
+ | No log | 12.0 | 192 | 0.2397 | 0.6777 | 0.7212 | 0.6988 | 0.9529 |
94
+ | No log | 13.0 | 208 | 0.2565 | 0.6778 | 0.7207 | 0.6986 | 0.9531 |
95
+ | No log | 14.0 | 224 | 0.2700 | 0.6586 | 0.7142 | 0.6853 | 0.9506 |
96
+ | No log | 15.0 | 240 | 0.2700 | 0.7009 | 0.7259 | 0.7132 | 0.9544 |
97
+ | No log | 16.0 | 256 | 0.2688 | 0.6761 | 0.7240 | 0.6993 | 0.9532 |
98
+ | No log | 17.0 | 272 | 0.2741 | 0.7132 | 0.7343 | 0.7236 | 0.9558 |
99
+ | No log | 18.0 | 288 | 0.2732 | 0.6740 | 0.7132 | 0.6931 | 0.9530 |
100
+ | No log | 19.0 | 304 | 0.2745 | 0.7094 | 0.7310 | 0.7201 | 0.9550 |
101
+ | No log | 20.0 | 320 | 0.2583 | 0.6722 | 0.7254 | 0.6978 | 0.9532 |
102
 
103
 
104
  ### Framework versions
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:86ed7b23afb6f463563ca0addd505ca2172710d3ba280aa1786b426752111596
3
  size 554495468
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:43504c161f091bf9e3279939b05b4016da6b1d351061df38859231713d3a96d9
3
  size 554495468