update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- common_voice
|
7 |
+
model-index:
|
8 |
+
- name: wav2vec2-large-xlsr-coraa-portuguese-cv7
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# wav2vec2-large-xlsr-coraa-portuguese-cv7
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [Edresson/wav2vec2-large-xlsr-coraa-portuguese](https://huggingface.co/Edresson/wav2vec2-large-xlsr-coraa-portuguese) on the common_voice dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.1777
|
20 |
+
- Wer: 0.1339
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 0.0001
|
40 |
+
- train_batch_size: 8
|
41 |
+
- eval_batch_size: 8
|
42 |
+
- seed: 42
|
43 |
+
- gradient_accumulation_steps: 2
|
44 |
+
- total_train_batch_size: 16
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- lr_scheduler_warmup_steps: 100
|
48 |
+
- training_steps: 5000
|
49 |
+
|
50 |
+
### Training results
|
51 |
+
|
52 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
53 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
54 |
+
| 0.4779 | 0.13 | 100 | 0.2620 | 0.2020 |
|
55 |
+
| 0.4505 | 0.26 | 200 | 0.2339 | 0.1998 |
|
56 |
+
| 0.4285 | 0.39 | 300 | 0.2507 | 0.2109 |
|
57 |
+
| 0.4148 | 0.52 | 400 | 0.2311 | 0.2101 |
|
58 |
+
| 0.4072 | 0.65 | 500 | 0.2278 | 0.1899 |
|
59 |
+
| 0.388 | 0.78 | 600 | 0.2193 | 0.1898 |
|
60 |
+
| 0.3952 | 0.91 | 700 | 0.2108 | 0.1901 |
|
61 |
+
| 0.3851 | 1.04 | 800 | 0.2121 | 0.1788 |
|
62 |
+
| 0.3496 | 1.17 | 900 | 0.2154 | 0.1776 |
|
63 |
+
| 0.3063 | 1.3 | 1000 | 0.2095 | 0.1730 |
|
64 |
+
| 0.3376 | 1.43 | 1100 | 0.2129 | 0.1801 |
|
65 |
+
| 0.3273 | 1.56 | 1200 | 0.2132 | 0.1776 |
|
66 |
+
| 0.3347 | 1.69 | 1300 | 0.2054 | 0.1698 |
|
67 |
+
| 0.323 | 1.82 | 1400 | 0.1986 | 0.1724 |
|
68 |
+
| 0.3079 | 1.95 | 1500 | 0.2005 | 0.1701 |
|
69 |
+
| 0.3029 | 2.08 | 1600 | 0.2159 | 0.1644 |
|
70 |
+
| 0.2694 | 2.21 | 1700 | 0.1992 | 0.1678 |
|
71 |
+
| 0.2733 | 2.34 | 1800 | 0.2032 | 0.1657 |
|
72 |
+
| 0.269 | 2.47 | 1900 | 0.2056 | 0.1592 |
|
73 |
+
| 0.2869 | 2.6 | 2000 | 0.2058 | 0.1616 |
|
74 |
+
| 0.2813 | 2.73 | 2100 | 0.1868 | 0.1584 |
|
75 |
+
| 0.2616 | 2.86 | 2200 | 0.1841 | 0.1550 |
|
76 |
+
| 0.2809 | 2.99 | 2300 | 0.1902 | 0.1577 |
|
77 |
+
| 0.2598 | 3.12 | 2400 | 0.1910 | 0.1514 |
|
78 |
+
| 0.24 | 3.25 | 2500 | 0.1971 | 0.1555 |
|
79 |
+
| 0.2481 | 3.38 | 2600 | 0.1853 | 0.1537 |
|
80 |
+
| 0.2437 | 3.51 | 2700 | 0.1897 | 0.1496 |
|
81 |
+
| 0.2384 | 3.64 | 2800 | 0.1842 | 0.1495 |
|
82 |
+
| 0.2405 | 3.77 | 2900 | 0.1884 | 0.1500 |
|
83 |
+
| 0.2372 | 3.9 | 3000 | 0.1950 | 0.1548 |
|
84 |
+
| 0.229 | 4.03 | 3100 | 0.1928 | 0.1477 |
|
85 |
+
| 0.2047 | 4.16 | 3200 | 0.1891 | 0.1472 |
|
86 |
+
| 0.2102 | 4.29 | 3300 | 0.1930 | 0.1473 |
|
87 |
+
| 0.199 | 4.42 | 3400 | 0.1914 | 0.1456 |
|
88 |
+
| 0.2121 | 4.55 | 3500 | 0.1840 | 0.1437 |
|
89 |
+
| 0.211 | 4.67 | 3600 | 0.1843 | 0.1403 |
|
90 |
+
| 0.2072 | 4.8 | 3700 | 0.1836 | 0.1428 |
|
91 |
+
| 0.2224 | 4.93 | 3800 | 0.1747 | 0.1412 |
|
92 |
+
| 0.1974 | 5.06 | 3900 | 0.1813 | 0.1416 |
|
93 |
+
| 0.1895 | 5.19 | 4000 | 0.1869 | 0.1406 |
|
94 |
+
| 0.1763 | 5.32 | 4100 | 0.1830 | 0.1394 |
|
95 |
+
| 0.2001 | 5.45 | 4200 | 0.1775 | 0.1394 |
|
96 |
+
| 0.1909 | 5.58 | 4300 | 0.1806 | 0.1373 |
|
97 |
+
| 0.1812 | 5.71 | 4400 | 0.1784 | 0.1359 |
|
98 |
+
| 0.1737 | 5.84 | 4500 | 0.1778 | 0.1353 |
|
99 |
+
| 0.1915 | 5.97 | 4600 | 0.1777 | 0.1349 |
|
100 |
+
| 0.1921 | 6.1 | 4700 | 0.1784 | 0.1359 |
|
101 |
+
| 0.1805 | 6.23 | 4800 | 0.1757 | 0.1348 |
|
102 |
+
| 0.1742 | 6.36 | 4900 | 0.1771 | 0.1341 |
|
103 |
+
| 0.1709 | 6.49 | 5000 | 0.1777 | 0.1339 |
|
104 |
+
|
105 |
+
|
106 |
+
### Framework versions
|
107 |
+
|
108 |
+
- Transformers 4.16.1
|
109 |
+
- Pytorch 1.10.0+cu111
|
110 |
+
- Datasets 1.18.2
|
111 |
+
- Tokenizers 0.11.0
|