lgcharpe commited on
Commit
c56dba2
1 Parent(s): 599422a

Uploading Baby LM 100M model

Browse files
__init__.py ADDED
File without changes
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "LtgBertForMaskedLM"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_ltgbert.LtgBertConfig",
8
+ "AutoModelForMaskedLM": "modeling_ltgbert.LtgBertForMaskedLM",
9
+ "AutoModelForSequenceClassification": "modeling_ltgbert.LtgBertForSequenceClassification"
10
+ },
11
+ "classifier_dropout": 0.2,
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "intermediate_size": 2048,
15
+ "layer_norm_eps": 1e-07,
16
+ "max_position_embeddings": 512,
17
+ "model_type": "ltgbert",
18
+ "num_attention_heads": 12,
19
+ "num_hidden_layers": 12,
20
+ "output_all_encoded_layers": true,
21
+ "pad_token_id": 4,
22
+ "position_bucket_size": 32,
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.26.0",
25
+ "vocab_size": 16384
26
+ }
configuration_ltgbert.py ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 Language Technology Group from University of Oslo and The HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ """ LTG-BERT configutation """
17
+
18
+
19
+ from transformers.configuration_utils import PretrainedConfig
20
+
21
+
22
+ LTG_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
23
+ "bnc-bert-span": "https://huggingface.co/ltg/bnc-bert-span",
24
+ "bnc-bert-span-2x": "https://huggingface.co/ltg/bnc-bert-span-2x",
25
+ "bnc-bert-span-0.5x": "https://huggingface.co/ltg/bnc-bert-span-0.5x",
26
+ "bnc-bert-span-0.25x": "https://huggingface.co/ltg/bnc-bert-span-0.25x",
27
+ "bnc-bert-span-order": "https://huggingface.co/ltg/bnc-bert-span-order",
28
+ "bnc-bert-span-document": "https://huggingface.co/ltg/bnc-bert-span-document",
29
+ "bnc-bert-span-word": "https://huggingface.co/ltg/bnc-bert-span-word",
30
+ "bnc-bert-span-subword": "https://huggingface.co/ltg/bnc-bert-span-subword",
31
+
32
+ "norbert3-xs": "https://huggingface.co/ltg/norbert3-xs/config.json",
33
+ "norbert3-small": "https://huggingface.co/ltg/norbert3-small/config.json",
34
+ "norbert3-base": "https://huggingface.co/ltg/norbert3-base/config.json",
35
+ "norbert3-large": "https://huggingface.co/ltg/norbert3-large/config.json",
36
+
37
+ "norbert3-oversampled-base": "https://huggingface.co/ltg/norbert3-oversampled-base/config.json",
38
+ "norbert3-ncc-base": "https://huggingface.co/ltg/norbert3-ncc-base/config.json",
39
+ "norbert3-nak-base": "https://huggingface.co/ltg/norbert3-nak-base/config.json",
40
+ "norbert3-nb-base": "https://huggingface.co/ltg/norbert3-nb-base/config.json",
41
+ "norbert3-wiki-base": "https://huggingface.co/ltg/norbert3-wiki-base/config.json",
42
+ "norbert3-c4-base": "https://huggingface.co/ltg/norbert3-c4-base/config.json"
43
+ }
44
+
45
+
46
+ class LtgBertConfig(PretrainedConfig):
47
+ r"""
48
+ This is the configuration class to store the configuration of a [`LtgBertModel`]. It is used to
49
+ instantiate an LTG-BERT model according to the specified arguments, defining the model architecture.
50
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
51
+ documentation from [`PretrainedConfig`] for more information.
52
+ Args:
53
+ vocab_size (`int`, *optional*, defaults to 16384):
54
+ Vocabulary size of the LTG-BERT model. Defines the number of different tokens that can be represented by the
55
+ `inputs_ids` passed when calling [`LtgBertModel`].
56
+ hidden_size (`int`, *optional*, defaults to 768):
57
+ Dimensionality of the encoder layers and the pooler layer.
58
+ num_hidden_layers (`int`, *optional*, defaults to 12):
59
+ Number of hidden layers in the Transformer encoder.
60
+ num_attention_heads (`int`, *optional*, defaults to 12):
61
+ Number of attention heads for each attention layer in the Transformer encoder.
62
+ intermediate_size (`int`, *optional*, defaults to 2048):
63
+ Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
64
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
65
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
66
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
67
+ The dropout ratio for the attention probabilities.
68
+ max_position_embeddings (`int`, *optional*, defaults to 512):
69
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
70
+ just in case (e.g., 512 or 1024 or 2048).
71
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
72
+ The epsilon used by the layer normalization layers.
73
+ classifier_dropout (`float`, *optional*):
74
+ The dropout ratio for the classification head.
75
+ """
76
+ model_type = "ltgbert"
77
+ def __init__(
78
+ self,
79
+ vocab_size=16384,
80
+ attention_probs_dropout_prob=0.1,
81
+ hidden_dropout_prob=0.1,
82
+ hidden_size=768,
83
+ intermediate_size=2048,
84
+ max_position_embeddings=512,
85
+ position_bucket_size=32,
86
+ num_attention_heads=12,
87
+ num_hidden_layers=12,
88
+ layer_norm_eps=1.0e-7,
89
+ pad_token_id=4,
90
+ output_all_encoded_layers=True,
91
+ classifier_dropout=None,
92
+ **kwargs,
93
+ ):
94
+ super().__init__(pad_token_id=pad_token_id, **kwargs)
95
+
96
+ self.vocab_size = vocab_size
97
+ self.hidden_size = hidden_size
98
+ self.num_hidden_layers = num_hidden_layers
99
+ self.num_attention_heads = num_attention_heads
100
+ self.intermediate_size = intermediate_size
101
+ self.hidden_dropout_prob = hidden_dropout_prob
102
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
103
+ self.max_position_embeddings = max_position_embeddings
104
+ self.output_all_encoded_layers = output_all_encoded_layers
105
+ self.position_bucket_size = position_bucket_size
106
+ self.layer_norm_eps = layer_norm_eps
107
+ self.classifier_dropout = classifier_dropout
modeling_ltgbert.py ADDED
@@ -0,0 +1,802 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 Language Technology Group from University of Oslo and The HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ """ PyTorch LTG-BERT model."""
17
+
18
+
19
+ import math
20
+ from typing import List, Optional, Tuple, Union
21
+
22
+ import torch
23
+ import torch.nn as nn
24
+ import torch.nn.functional as F
25
+ from torch.utils import checkpoint
26
+
27
+ from .configuration_ltgbert import LtgBertConfig
28
+ from transformers.modeling_utils import PreTrainedModel
29
+ from transformers.activations import gelu_new
30
+ from transformers.modeling_outputs import (
31
+ MaskedLMOutput,
32
+ MultipleChoiceModelOutput,
33
+ QuestionAnsweringModelOutput,
34
+ SequenceClassifierOutput,
35
+ TokenClassifierOutput,
36
+ BaseModelOutput
37
+ )
38
+ from transformers.pytorch_utils import softmax_backward_data
39
+ from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward
40
+
41
+
42
+ _CHECKPOINT_FOR_DOC = "ltg/bnc-bert-span"
43
+ _CONFIG_FOR_DOC = "LtgBertConfig"
44
+
45
+
46
+ LTG_BERT_PRETRAINED_MODEL_ARCHIVE_LIST = [
47
+ "bnc-bert-span",
48
+ "bnc-bert-span-2x",
49
+ "bnc-bert-span-0.5x",
50
+ "bnc-bert-span-0.25x",
51
+ "bnc-bert-span-order",
52
+ "bnc-bert-span-document",
53
+ "bnc-bert-span-word",
54
+ "bnc-bert-span-subword",
55
+
56
+ "norbert3-xs",
57
+ "norbert3-small",
58
+ "norbert3-base",
59
+ "norbert3-large",
60
+
61
+ "norbert3-oversampled-base",
62
+ "norbert3-ncc-base",
63
+ "norbert3-nak-base",
64
+ "norbert3-nb-base",
65
+ "norbert3-wiki-base",
66
+ "norbert3-c4-base"
67
+ ]
68
+
69
+
70
+ class Encoder(nn.Module):
71
+ def __init__(self, config, activation_checkpointing=False):
72
+ super().__init__()
73
+ self.layers = nn.ModuleList([EncoderLayer(config, i) for i in range(config.num_hidden_layers)])
74
+
75
+ for i, layer in enumerate(self.layers):
76
+ layer.mlp.mlp[1].weight.data *= math.sqrt(1.0 / (2.0 * (1 + i)))
77
+ layer.mlp.mlp[-2].weight.data *= math.sqrt(1.0 / (2.0 * (1 + i)))
78
+
79
+ self.activation_checkpointing = activation_checkpointing
80
+
81
+ def forward(self, hidden_states, attention_mask, relative_embedding):
82
+ hidden_states, attention_probs = [hidden_states], []
83
+
84
+ for layer in self.layers:
85
+ if self.activation_checkpointing:
86
+ hidden_state, attention_p = checkpoint.checkpoint(layer, hidden_states, attention_mask, relative_embedding)
87
+ else:
88
+ hidden_state, attention_p = layer(hidden_states, attention_mask, relative_embedding)
89
+
90
+ hidden_states.append(hidden_state)
91
+ attention_probs.append(attention_p)
92
+
93
+ return hidden_states, attention_probs
94
+
95
+
96
+ class MaskClassifier(nn.Module):
97
+ def __init__(self, config, subword_embedding):
98
+ super().__init__()
99
+ self.nonlinearity = nn.Sequential(
100
+ nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False),
101
+ nn.Linear(config.hidden_size, config.hidden_size),
102
+ nn.GELU(),
103
+ nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False),
104
+ nn.Dropout(config.hidden_dropout_prob),
105
+ nn.Linear(subword_embedding.size(1), subword_embedding.size(0))
106
+ )
107
+ self.initialize(config.hidden_size, subword_embedding)
108
+
109
+ def initialize(self, hidden_size, embedding):
110
+ std = math.sqrt(2.0 / (5.0 * hidden_size))
111
+ nn.init.trunc_normal_(self.nonlinearity[1].weight, mean=0.0, std=std, a=-2*std, b=2*std)
112
+ self.nonlinearity[-1].weight = embedding
113
+ self.nonlinearity[1].bias.data.zero_()
114
+ self.nonlinearity[-1].bias.data.zero_()
115
+
116
+ def forward(self, x, masked_lm_labels=None):
117
+ if masked_lm_labels is not None:
118
+ x = torch.index_select(x.flatten(0, 1), 0, torch.nonzero(masked_lm_labels.flatten() != -100).squeeze())
119
+ x = self.nonlinearity(x)
120
+ return x
121
+
122
+
123
+ class EncoderLayer(nn.Module):
124
+ def __init__(self, config, layer_num):
125
+ super().__init__()
126
+ self.attention = Attention(config)
127
+ self.mlp = FeedForward(config)
128
+ temp = torch.zeros(layer_num+1)
129
+ temp[-1] = 1
130
+ self.prev_layer_weights = nn.Parameter(temp)
131
+
132
+ def forward(self, hidden_states, padding_mask, relative_embedding):
133
+ prev_layer_weights = F.softmax(self.prev_layer_weights, dim=-1)
134
+ x = prev_layer_weights[0] * hidden_states[0]
135
+ for i, hidden_state in enumerate(hidden_states[1:]):
136
+ x = x + prev_layer_weights[i+1] * hidden_state
137
+ attention_output, attention_probs = self.attention(x, padding_mask, relative_embedding)
138
+ x = attention_output
139
+ x = x + self.mlp(x)
140
+ return x, attention_probs
141
+
142
+
143
+ class GeGLU(nn.Module):
144
+ def forward(self, x):
145
+ x, gate = x.chunk(2, dim=-1)
146
+ x = x * gelu_new(gate)
147
+ return x
148
+
149
+
150
+ class FeedForward(nn.Module):
151
+ def __init__(self, config):
152
+ super().__init__()
153
+ self.mlp = nn.Sequential(
154
+ nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False),
155
+ nn.Linear(config.hidden_size, 2*config.intermediate_size, bias=False),
156
+ GeGLU(),
157
+ nn.LayerNorm(config.intermediate_size, eps=config.layer_norm_eps, elementwise_affine=False),
158
+ nn.Linear(config.intermediate_size, config.hidden_size, bias=False),
159
+ nn.Dropout(config.hidden_dropout_prob)
160
+ )
161
+ self.initialize(config.hidden_size)
162
+
163
+ def initialize(self, hidden_size):
164
+ std = math.sqrt(2.0 / (5.0 * hidden_size))
165
+ nn.init.trunc_normal_(self.mlp[1].weight, mean=0.0, std=std, a=-2*std, b=2*std)
166
+ nn.init.trunc_normal_(self.mlp[-2].weight, mean=0.0, std=std, a=-2*std, b=2*std)
167
+
168
+ def forward(self, x):
169
+ return self.mlp(x)
170
+
171
+
172
+ class MaskedSoftmax(torch.autograd.Function):
173
+ @staticmethod
174
+ def forward(self, x, mask, dim):
175
+ self.dim = dim
176
+ x.masked_fill_(mask, float('-inf'))
177
+ x = torch.softmax(x, self.dim)
178
+ x.masked_fill_(mask, 0.0)
179
+ self.save_for_backward(x)
180
+ return x
181
+
182
+ @staticmethod
183
+ def backward(self, grad_output):
184
+ output, = self.saved_tensors
185
+ input_grad = softmax_backward_data(self, grad_output, output, self.dim, output)
186
+ return input_grad, None, None
187
+
188
+
189
+ class Attention(nn.Module):
190
+ def __init__(self, config):
191
+ super().__init__()
192
+
193
+ self.config = config
194
+
195
+ if config.hidden_size % config.num_attention_heads != 0:
196
+ raise ValueError(f"The hidden size {config.hidden_size} is not a multiple of the number of attention heads {config.num_attention_heads}")
197
+
198
+ self.hidden_size = config.hidden_size
199
+ self.num_heads = config.num_attention_heads
200
+ self.head_size = config.hidden_size // config.num_attention_heads
201
+
202
+ self.in_proj_qk = nn.Linear(config.hidden_size, 2*config.hidden_size, bias=True)
203
+ self.in_proj_v = nn.Linear(config.hidden_size, config.hidden_size, bias=True)
204
+ self.out_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=True)
205
+
206
+ self.pre_layer_norm = nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False)
207
+ self.post_layer_norm = nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=True)
208
+
209
+ position_indices = torch.arange(config.max_position_embeddings, dtype=torch.long).unsqueeze(1) \
210
+ - torch.arange(config.max_position_embeddings, dtype=torch.long).unsqueeze(0)
211
+ position_indices = self.make_log_bucket_position(position_indices, config.position_bucket_size, config.max_position_embeddings)
212
+ position_indices = config.position_bucket_size - 1 + position_indices
213
+ self.register_buffer("position_indices", position_indices, persistent=True)
214
+
215
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
216
+ self.scale = 1.0 / math.sqrt(3 * self.head_size)
217
+ self.initialize()
218
+
219
+ def make_log_bucket_position(self, relative_pos, bucket_size, max_position):
220
+ sign = torch.sign(relative_pos)
221
+ mid = bucket_size // 2
222
+ abs_pos = torch.where((relative_pos < mid) & (relative_pos > -mid), mid - 1, torch.abs(relative_pos).clamp(max=max_position - 1))
223
+ log_pos = torch.ceil(torch.log(abs_pos / mid) / math.log((max_position-1) / mid) * (mid - 1)).int() + mid
224
+ bucket_pos = torch.where(abs_pos <= mid, relative_pos, log_pos * sign).long()
225
+ return bucket_pos
226
+
227
+ def initialize(self):
228
+ std = math.sqrt(2.0 / (5.0 * self.hidden_size))
229
+ nn.init.trunc_normal_(self.in_proj_qk.weight, mean=0.0, std=std, a=-2*std, b=2*std)
230
+ nn.init.trunc_normal_(self.in_proj_v.weight, mean=0.0, std=std, a=-2*std, b=2*std)
231
+ nn.init.trunc_normal_(self.out_proj.weight, mean=0.0, std=std, a=-2*std, b=2*std)
232
+ self.in_proj_qk.bias.data.zero_()
233
+ self.in_proj_v.bias.data.zero_()
234
+ self.out_proj.bias.data.zero_()
235
+
236
+ def compute_attention_scores(self, hidden_states, relative_embedding):
237
+ key_len, batch_size, _ = hidden_states.size()
238
+ query_len = key_len
239
+
240
+ if self.position_indices.size(0) < query_len:
241
+ position_indices = torch.arange(query_len, dtype=torch.long).unsqueeze(1) \
242
+ - torch.arange(query_len, dtype=torch.long).unsqueeze(0)
243
+ position_indices = self.make_log_bucket_position(position_indices, self.position_bucket_size, 512)
244
+ position_indices = self.position_bucket_size - 1 + position_indices
245
+ self.position_indices = position_indices.to(hidden_states.device)
246
+
247
+ hidden_states = self.pre_layer_norm(hidden_states)
248
+
249
+ query, key = self.in_proj_qk(hidden_states).chunk(2, dim=2) # shape: [T, B, D]
250
+ value = self.in_proj_v(hidden_states) # shape: [T, B, D]
251
+
252
+ query = query.reshape(query_len, batch_size * self.num_heads, self.head_size).transpose(0, 1)
253
+ key = key.reshape(key_len, batch_size * self.num_heads, self.head_size).transpose(0, 1)
254
+ value = value.view(key_len, batch_size * self.num_heads, self.head_size).transpose(0, 1)
255
+
256
+ attention_scores = torch.bmm(query, key.transpose(1, 2) * self.scale)
257
+
258
+ query_pos, key_pos = self.in_proj_qk(self.dropout(relative_embedding)).chunk(2, dim=-1) # shape: [2T-1, D]
259
+ query_pos = query_pos.view(-1, self.num_heads, self.head_size) # shape: [2T-1, H, D]
260
+ key_pos = key_pos.view(-1, self.num_heads, self.head_size) # shape: [2T-1, H, D]
261
+
262
+ query = query.view(batch_size, self.num_heads, query_len, self.head_size)
263
+ key = key.view(batch_size, self.num_heads, query_len, self.head_size)
264
+
265
+ attention_c_p = torch.einsum("bhqd,khd->bhqk", query, key_pos.squeeze(1) * self.scale)
266
+ attention_p_c = torch.einsum("bhkd,qhd->bhqk", key * self.scale, query_pos.squeeze(1))
267
+
268
+ position_indices = self.position_indices[:query_len, :key_len].expand(batch_size, self.num_heads, -1, -1)
269
+ attention_c_p = attention_c_p.gather(3, position_indices)
270
+ attention_p_c = attention_p_c.gather(2, position_indices)
271
+
272
+ attention_scores = attention_scores.view(batch_size, self.num_heads, query_len, key_len)
273
+ attention_scores.add_(attention_c_p)
274
+ attention_scores.add_(attention_p_c)
275
+
276
+ return attention_scores, value
277
+
278
+ def compute_output(self, attention_probs, value):
279
+ attention_probs = self.dropout(attention_probs)
280
+ context = torch.bmm(attention_probs.flatten(0, 1), value) # shape: [B*H, Q, D]
281
+ context = context.transpose(0, 1).reshape(context.size(1), -1, self.hidden_size) # shape: [Q, B, H*D]
282
+ context = self.out_proj(context)
283
+ context = self.post_layer_norm(context)
284
+ context = self.dropout(context)
285
+ return context
286
+
287
+ def forward(self, hidden_states, attention_mask, relative_embedding):
288
+ attention_scores, value = self.compute_attention_scores(hidden_states, relative_embedding)
289
+ attention_probs = MaskedSoftmax.apply(attention_scores, attention_mask, -1)
290
+ return self.compute_output(attention_probs, value), attention_probs.detach()
291
+
292
+
293
+ class Embedding(nn.Module):
294
+ def __init__(self, config):
295
+ super().__init__()
296
+ self.hidden_size = config.hidden_size
297
+
298
+ self.word_embedding = nn.Embedding(config.vocab_size, config.hidden_size)
299
+ self.word_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False)
300
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
301
+
302
+ self.relative_embedding = nn.Parameter(torch.empty(2 * config.position_bucket_size - 1, config.hidden_size))
303
+ self.relative_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
304
+
305
+ self.initialize()
306
+
307
+ def initialize(self):
308
+ std = math.sqrt(2.0 / (5.0 * self.hidden_size))
309
+ nn.init.trunc_normal_(self.relative_embedding, mean=0.0, std=std, a=-2*std, b=2*std)
310
+ nn.init.trunc_normal_(self.word_embedding.weight, mean=0.0, std=std, a=-2*std, b=2*std)
311
+
312
+ def forward(self, input_ids):
313
+ word_embedding = self.dropout(self.word_layer_norm(self.word_embedding(input_ids)))
314
+ relative_embeddings = self.relative_layer_norm(self.relative_embedding)
315
+ return word_embedding, relative_embeddings
316
+
317
+
318
+ #
319
+ # HuggingFace wrappers
320
+ #
321
+
322
+ class LtgBertPreTrainedModel(PreTrainedModel):
323
+ """
324
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
325
+ models.
326
+ """
327
+
328
+ config_class = LtgBertConfig
329
+ base_model_prefix = "bnc-bert"
330
+ supports_gradient_checkpointing = True
331
+
332
+ def _set_gradient_checkpointing(self, module, value=False):
333
+ if isinstance(module, Encoder):
334
+ module.activation_checkpointing = value
335
+
336
+ def _init_weights(self, _):
337
+ pass # everything is already initialized
338
+
339
+
340
+ LTG_BERT_START_DOCSTRING = r"""
341
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
342
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
343
+ etc.)
344
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
345
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
346
+ and behavior.
347
+ Parameters:
348
+ config ([`LtgBertConfig`]): Model configuration class with all the parameters of the model.
349
+ Initializing with a config file does not load the weights associated with the model, only the
350
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
351
+ """
352
+
353
+ LTG_BERT_INPUTS_DOCSTRING = r"""
354
+ Args:
355
+ input_ids (`torch.LongTensor` of shape `({0})`):
356
+ Indices of input sequence tokens in the vocabulary.
357
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
358
+ [`PreTrainedTokenizer.__call__`] for details.
359
+ [What are input IDs?](../glossary#input-ids)
360
+ attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
361
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
362
+ - 1 for tokens that are **not masked**,
363
+ - 0 for tokens that are **masked**.
364
+ [What are attention masks?](../glossary#attention-mask)
365
+ output_hidden_states (`bool`, *optional*):
366
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
367
+ more detail.
368
+ output_attentions (`bool`, *optional*):
369
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
370
+ tensors for more detail.
371
+ return_dict (`bool`, *optional*):
372
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
373
+ """
374
+
375
+
376
+ @add_start_docstrings(
377
+ "The bare LTG-BERT transformer outputting raw hidden-states without any specific head on top.",
378
+ LTG_BERT_START_DOCSTRING,
379
+ )
380
+ class LtgBertModel(LtgBertPreTrainedModel):
381
+ def __init__(self, config, add_mlm_layer=False):
382
+ super().__init__(config)
383
+ self.config = config
384
+
385
+ self.embedding = Embedding(config)
386
+ self.transformer = Encoder(config, activation_checkpointing=False)
387
+ self.classifier = MaskClassifier(config, self.embedding.word_embedding.weight) if add_mlm_layer else None
388
+
389
+ def get_input_embeddings(self):
390
+ return self.embedding.word_embedding
391
+
392
+ def set_input_embeddings(self, value):
393
+ self.embedding.word_embedding = value
394
+
395
+ def get_contextualized_embeddings(
396
+ self,
397
+ input_ids: Optional[torch.Tensor] = None,
398
+ attention_mask: Optional[torch.Tensor] = None
399
+ ) -> List[torch.Tensor]:
400
+ if input_ids is not None:
401
+ input_shape = input_ids.size()
402
+ else:
403
+ raise ValueError("You have to specify input_ids")
404
+
405
+ batch_size, seq_length = input_shape
406
+ device = input_ids.device
407
+
408
+ if attention_mask is None:
409
+ attention_mask = torch.zeros(batch_size, seq_length, dtype=torch.bool, device=device)
410
+ else:
411
+ attention_mask = ~attention_mask.bool()
412
+ attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
413
+
414
+ static_embeddings, relative_embedding = self.embedding(input_ids.t())
415
+ contextualized_embeddings, attention_probs = self.transformer(static_embeddings, attention_mask, relative_embedding)
416
+ contextualized_embeddings = [e.transpose(0, 1) for e in contextualized_embeddings]
417
+ last_layer = contextualized_embeddings[-1]
418
+ contextualized_embeddings = [contextualized_embeddings[0]] + [
419
+ contextualized_embeddings[i] - contextualized_embeddings[i - 1]
420
+ for i in range(1, len(contextualized_embeddings))
421
+ ]
422
+ return last_layer, contextualized_embeddings, attention_probs
423
+
424
+ @add_start_docstrings_to_model_forward(LTG_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
425
+ def forward(
426
+ self,
427
+ input_ids: Optional[torch.Tensor] = None,
428
+ attention_mask: Optional[torch.Tensor] = None,
429
+ output_hidden_states: Optional[bool] = None,
430
+ output_attentions: Optional[bool] = None,
431
+ return_dict: Optional[bool] = None,
432
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutput]:
433
+
434
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
435
+ output_hidden_states = (
436
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
437
+ )
438
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
439
+
440
+ sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(input_ids, attention_mask)
441
+
442
+ if not return_dict:
443
+ return (
444
+ sequence_output,
445
+ *([contextualized_embeddings] if output_hidden_states else []),
446
+ *([attention_probs] if output_attentions else [])
447
+ )
448
+
449
+ return BaseModelOutput(
450
+ last_hidden_state=sequence_output,
451
+ hidden_states=contextualized_embeddings if output_hidden_states else None,
452
+ attentions=attention_probs if output_attentions else None
453
+ )
454
+
455
+
456
+ @add_start_docstrings("""LTG-BERT model with a `language modeling` head on top.""", LTG_BERT_START_DOCSTRING)
457
+ class LtgBertForMaskedLM(LtgBertModel):
458
+ _keys_to_ignore_on_load_unexpected = ["head"]
459
+
460
+ def __init__(self, config):
461
+ super().__init__(config, add_mlm_layer=True)
462
+
463
+ def get_output_embeddings(self):
464
+ return self.classifier.nonlinearity[-1].weight
465
+
466
+ def set_output_embeddings(self, new_embeddings):
467
+ self.classifier.nonlinearity[-1].weight = new_embeddings
468
+
469
+ @add_start_docstrings_to_model_forward(LTG_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
470
+ def forward(
471
+ self,
472
+ input_ids: Optional[torch.Tensor] = None,
473
+ attention_mask: Optional[torch.Tensor] = None,
474
+ output_hidden_states: Optional[bool] = None,
475
+ output_attentions: Optional[bool] = None,
476
+ return_dict: Optional[bool] = None,
477
+ labels: Optional[torch.LongTensor] = None,
478
+ ) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
479
+ r"""
480
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
481
+ Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
482
+ config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
483
+ loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
484
+ """
485
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
486
+
487
+ sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(input_ids, attention_mask)
488
+ subword_prediction = self.classifier(sequence_output)
489
+
490
+ masked_lm_loss = None
491
+ if labels is not None:
492
+ masked_lm_loss = F.cross_entropy(subword_prediction.flatten(0, 1), labels.flatten())
493
+
494
+ if not return_dict:
495
+ output = (
496
+ subword_prediction,
497
+ *([contextualized_embeddings] if output_hidden_states else []),
498
+ *([attention_probs] if output_attentions else [])
499
+ )
500
+ return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
501
+
502
+ return MaskedLMOutput(
503
+ loss=masked_lm_loss,
504
+ logits=subword_prediction,
505
+ hidden_states=contextualized_embeddings if output_hidden_states else None,
506
+ attentions=attention_probs if output_attentions else None
507
+ )
508
+
509
+
510
+ class Classifier(nn.Module):
511
+ def __init__(self, config, num_labels: int):
512
+ super().__init__()
513
+
514
+ drop_out = getattr(config, "classifier_dropout", config.hidden_dropout_prob)
515
+
516
+ self.nonlinearity = nn.Sequential(
517
+ nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False),
518
+ nn.Linear(config.hidden_size, config.hidden_size),
519
+ nn.GELU(),
520
+ nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False),
521
+ nn.Dropout(drop_out),
522
+ nn.Linear(config.hidden_size, num_labels)
523
+ )
524
+ self.initialize(config.hidden_size)
525
+
526
+ def initialize(self, hidden_size):
527
+ std = math.sqrt(2.0 / (5.0 * hidden_size))
528
+ nn.init.trunc_normal_(self.nonlinearity[1].weight, mean=0.0, std=std, a=-2*std, b=2*std)
529
+ nn.init.trunc_normal_(self.nonlinearity[-1].weight, mean=0.0, std=std, a=-2*std, b=2*std)
530
+ self.nonlinearity[1].bias.data.zero_()
531
+ self.nonlinearity[-1].bias.data.zero_()
532
+
533
+ def forward(self, x):
534
+ x = self.nonlinearity(x)
535
+ return x
536
+
537
+
538
+ @add_start_docstrings(
539
+ """
540
+ LTG-BERT model with a sequence classification/regression head on top (a linear layer on top of the pooled
541
+ output) e.g. for GLUE tasks.
542
+ """,
543
+ LTG_BERT_START_DOCSTRING,
544
+ )
545
+ class LtgBertForSequenceClassification(LtgBertModel):
546
+ _keys_to_ignore_on_load_unexpected = ["classifier"]
547
+ _keys_to_ignore_on_load_missing = ["head"]
548
+
549
+ def __init__(self, config):
550
+ super().__init__(config, add_mlm_layer=False)
551
+
552
+ self.num_labels = config.num_labels
553
+ self.head = Classifier(config, self.num_labels)
554
+
555
+ @add_start_docstrings_to_model_forward(LTG_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
556
+ def forward(
557
+ self,
558
+ input_ids: Optional[torch.Tensor] = None,
559
+ attention_mask: Optional[torch.Tensor] = None,
560
+ output_attentions: Optional[bool] = None,
561
+ output_hidden_states: Optional[bool] = None,
562
+ return_dict: Optional[bool] = None,
563
+ labels: Optional[torch.LongTensor] = None,
564
+ ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
565
+ r"""
566
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
567
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
568
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
569
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
570
+ """
571
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
572
+
573
+ sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(input_ids, attention_mask)
574
+ logits = self.head(sequence_output[:, 0, :])
575
+
576
+ loss = None
577
+ if labels is not None:
578
+ if self.config.problem_type is None:
579
+ if self.num_labels == 1:
580
+ self.config.problem_type = "regression"
581
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
582
+ self.config.problem_type = "single_label_classification"
583
+ else:
584
+ self.config.problem_type = "multi_label_classification"
585
+
586
+ if self.config.problem_type == "regression":
587
+ loss_fct = nn.MSELoss()
588
+ if self.num_labels == 1:
589
+ loss = loss_fct(logits.squeeze(), labels.squeeze())
590
+ else:
591
+ loss = loss_fct(logits, labels)
592
+ elif self.config.problem_type == "single_label_classification":
593
+ loss_fct = nn.CrossEntropyLoss()
594
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
595
+ elif self.config.problem_type == "multi_label_classification":
596
+ loss_fct = nn.BCEWithLogitsLoss()
597
+ loss = loss_fct(logits, labels)
598
+
599
+ if not return_dict:
600
+ output = (
601
+ logits,
602
+ *([contextualized_embeddings] if output_hidden_states else []),
603
+ *([attention_probs] if output_attentions else [])
604
+ )
605
+ return ((loss,) + output) if loss is not None else output
606
+
607
+ return SequenceClassifierOutput(
608
+ loss=loss,
609
+ logits=logits,
610
+ hidden_states=contextualized_embeddings if output_hidden_states else None,
611
+ attentions=attention_probs if output_attentions else None
612
+ )
613
+
614
+
615
+ @add_start_docstrings(
616
+ """
617
+ LTG-BERT model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
618
+ Named-Entity-Recognition (NER) tasks.
619
+ """,
620
+ LTG_BERT_START_DOCSTRING,
621
+ )
622
+ class LtgBertForTokenClassification(LtgBertModel):
623
+ _keys_to_ignore_on_load_unexpected = ["classifier"]
624
+ _keys_to_ignore_on_load_missing = ["head"]
625
+
626
+ def __init__(self, config):
627
+ super().__init__(config, add_mlm_layer=False)
628
+
629
+ self.num_labels = config.num_labels
630
+ self.head = Classifier(config, self.num_labels)
631
+
632
+ @add_start_docstrings_to_model_forward(LTG_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
633
+ def forward(
634
+ self,
635
+ input_ids: Optional[torch.Tensor] = None,
636
+ attention_mask: Optional[torch.Tensor] = None,
637
+ token_type_ids: Optional[torch.Tensor] = None,
638
+ position_ids: Optional[torch.Tensor] = None,
639
+ output_attentions: Optional[bool] = None,
640
+ output_hidden_states: Optional[bool] = None,
641
+ return_dict: Optional[bool] = None,
642
+ labels: Optional[torch.LongTensor] = None,
643
+ ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
644
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
645
+
646
+ sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(input_ids, attention_mask)
647
+ logits = self.head(sequence_output)
648
+
649
+ loss = None
650
+ if labels is not None:
651
+ loss_fct = nn.CrossEntropyLoss()
652
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
653
+
654
+ if not return_dict:
655
+ output = (
656
+ logits,
657
+ *([contextualized_embeddings] if output_hidden_states else []),
658
+ *([attention_probs] if output_attentions else [])
659
+ )
660
+ return ((loss,) + output) if loss is not None else output
661
+
662
+ return TokenClassifierOutput(
663
+ loss=loss,
664
+ logits=logits,
665
+ hidden_states=contextualized_embeddings if output_hidden_states else None,
666
+ attentions=attention_probs if output_attentions else None
667
+ )
668
+
669
+
670
+ @add_start_docstrings(
671
+ """
672
+ LTG-BERT model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
673
+ layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
674
+ """,
675
+ LTG_BERT_START_DOCSTRING,
676
+ )
677
+ class LtgBertForQuestionAnswering(LtgBertModel):
678
+ _keys_to_ignore_on_load_unexpected = ["classifier"]
679
+ _keys_to_ignore_on_load_missing = ["head"]
680
+
681
+ def __init__(self, config):
682
+ super().__init__(config, add_mlm_layer=False)
683
+
684
+ self.num_labels = config.num_labels
685
+ self.head = Classifier(config, self.num_labels)
686
+
687
+ @add_start_docstrings_to_model_forward(LTG_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
688
+ def forward(
689
+ self,
690
+ input_ids: Optional[torch.Tensor] = None,
691
+ attention_mask: Optional[torch.Tensor] = None,
692
+ token_type_ids: Optional[torch.Tensor] = None,
693
+ position_ids: Optional[torch.Tensor] = None,
694
+ output_attentions: Optional[bool] = None,
695
+ output_hidden_states: Optional[bool] = None,
696
+ return_dict: Optional[bool] = None,
697
+ start_positions: Optional[torch.Tensor] = None,
698
+ end_positions: Optional[torch.Tensor] = None
699
+ ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
700
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
701
+
702
+ sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(input_ids, attention_mask)
703
+ logits = self.head(sequence_output)
704
+
705
+ start_logits, end_logits = logits.split(1, dim=-1)
706
+ start_logits = start_logits.squeeze(-1).contiguous()
707
+ end_logits = end_logits.squeeze(-1).contiguous()
708
+
709
+ total_loss = None
710
+ if start_positions is not None and end_positions is not None:
711
+ # If we are on multi-GPU, split add a dimension
712
+ if len(start_positions.size()) > 1:
713
+ start_positions = start_positions.squeeze(-1)
714
+ if len(end_positions.size()) > 1:
715
+ end_positions = end_positions.squeeze(-1)
716
+
717
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
718
+ ignored_index = start_logits.size(1)
719
+ start_positions = start_positions.clamp(0, ignored_index)
720
+ end_positions = end_positions.clamp(0, ignored_index)
721
+
722
+ loss_fct = nn.CrossEntropyLoss(ignore_index=ignored_index)
723
+ start_loss = loss_fct(start_logits, start_positions)
724
+ end_loss = loss_fct(end_logits, end_positions)
725
+ total_loss = (start_loss + end_loss) / 2
726
+
727
+ if not return_dict:
728
+ output = (
729
+ start_logits,
730
+ end_logits,
731
+ *([contextualized_embeddings] if output_hidden_states else []),
732
+ *([attention_probs] if output_attentions else [])
733
+ )
734
+ return ((total_loss,) + output) if total_loss is not None else output
735
+
736
+ return QuestionAnsweringModelOutput(
737
+ loss=total_loss,
738
+ start_logits=start_logits,
739
+ end_logits=end_logits,
740
+ hidden_states=contextualized_embeddings if output_hidden_states else None,
741
+ attentions=attention_probs if output_attentions else None
742
+ )
743
+
744
+
745
+ @add_start_docstrings(
746
+ """
747
+ LTG-BERT model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
748
+ softmax) e.g. for RocStories/SWAG tasks.
749
+ """,
750
+ LTG_BERT_START_DOCSTRING,
751
+ )
752
+ class LtgBertForMultipleChoice(LtgBertModel):
753
+ _keys_to_ignore_on_load_unexpected = ["classifier"]
754
+ _keys_to_ignore_on_load_missing = ["head"]
755
+
756
+ def __init__(self, config):
757
+ super().__init__(config, add_mlm_layer=False)
758
+
759
+ self.num_labels = getattr(config, "num_labels", 2)
760
+ self.head = Classifier(config, self.num_labels)
761
+
762
+ @add_start_docstrings_to_model_forward(LTG_BERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
763
+ def forward(
764
+ self,
765
+ input_ids: Optional[torch.Tensor] = None,
766
+ attention_mask: Optional[torch.Tensor] = None,
767
+ token_type_ids: Optional[torch.Tensor] = None,
768
+ position_ids: Optional[torch.Tensor] = None,
769
+ labels: Optional[torch.Tensor] = None,
770
+ output_attentions: Optional[bool] = None,
771
+ output_hidden_states: Optional[bool] = None,
772
+ return_dict: Optional[bool] = None
773
+ ) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
774
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
775
+ num_choices = input_ids.shape[1]
776
+
777
+ flat_input_ids = input_ids.view(-1, input_ids.size(-1))
778
+ flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
779
+
780
+ sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(flat_input_ids, flat_attention_mask)
781
+ logits = self.head(sequence_output)
782
+ reshaped_logits = logits.view(-1, num_choices)
783
+
784
+ loss = None
785
+ if labels is not None:
786
+ loss_fct = nn.CrossEntropyLoss()
787
+ loss = loss_fct(reshaped_logits, labels)
788
+
789
+ if not return_dict:
790
+ output = (
791
+ reshaped_logits,
792
+ *([contextualized_embeddings] if output_hidden_states else []),
793
+ *([attention_probs] if output_attentions else [])
794
+ )
795
+ return ((loss,) + output) if loss is not None else output
796
+
797
+ return MultipleChoiceModelOutput(
798
+ loss=loss,
799
+ logits=reshaped_logits,
800
+ hidden_states=contextualized_embeddings if output_hidden_states else None,
801
+ attentions=attention_probs if output_attentions else None
802
+ )
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c80b99177e6b4f6ea80f72862674b77557681a31185ad709d0b6035d99af5e9
3
+ size 418145897
special_tokens_map.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "[BOS]",
3
+ "cls_token": "[CLS]",
4
+ "eos_token": "[EOS]",
5
+ "mask_token": "[MASK]",
6
+ "pad_token": "[PAD]",
7
+ "sep_token": "[SEP]",
8
+ "unk_token": "[UNK]"
9
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "model_max_length": 1000000000000000019884624838656,
3
+ "tokenizer_class": "PreTrainedTokenizerFast"
4
+ }