lewtun HF staff commited on
Commit
9402a36
1 Parent(s): 6b77bc4

commit files to HF hub

Browse files
Files changed (4) hide show
  1. .gitattributes +1 -0
  2. README.md +11 -0
  3. model.ckpt +3 -0
  4. model.py +90 -0
.gitattributes CHANGED
@@ -15,3 +15,4 @@
15
  *.pt filter=lfs diff=lfs merge=lfs -text
16
  *.pth filter=lfs diff=lfs merge=lfs -text
17
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
15
  *.pt filter=lfs diff=lfs merge=lfs -text
16
  *.pth filter=lfs diff=lfs merge=lfs -text
17
  *tfevents* filter=lfs diff=lfs merge=lfs -text
18
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: superb
3
+ tags:
4
+ - superb
5
+ - automatic-speech-recognition
6
+ widget:
7
+ - label: Librispeech sample 1
8
+ src: https://cdn-media.huggingface.co/speech_samples/sample1.flac
9
+ ---
10
+
11
+ # Test for s3prl push to hub after fine-tuning
model.ckpt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:36c592258dc00fcdff4c828b38415a567db4f48402fa940789e6e4b91840cb45
3
+ size 513965647
model.py ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This is just an example of what people would submit for
3
+ inference.
4
+ """
5
+
6
+ from s3prl.downstream.runner import Runner
7
+ from typing import Dict
8
+ import torch
9
+ import os
10
+
11
+
12
+ class PreTrainedModel(Runner):
13
+ def __init__(self, path=""):
14
+ """
15
+ Initialize downstream model.
16
+ """
17
+ ckp_file = os.path.join(path, "model.ckpt")
18
+ ckp = torch.load(ckp_file, map_location='cpu')
19
+ ckp["Args"].init_ckpt = ckp_file
20
+ ckp["Args"].mode = "inference"
21
+ ckp["Args"].device = "cpu" # Just to try in my computer
22
+ ckp["Config"]["downstream_expert"]["datarc"]["dict_path"]=os.path.join(path,'char.dict')
23
+
24
+ Runner.__init__(self, ckp["Args"], ckp["Config"])
25
+
26
+ def __call__(self, inputs)-> Dict[str, str]:
27
+ """
28
+ Args:
29
+ inputs (:obj:`np.array`):
30
+ The raw waveform of audio received. By default at 16KHz.
31
+ Return:
32
+ A :obj:`dict`:. The object return should be liked {"text": "XXX"} containing
33
+ the detected text from the input audio.
34
+ """
35
+ for entry in self.all_entries:
36
+ entry.model.eval()
37
+
38
+ inputs = [torch.FloatTensor(inputs)]
39
+
40
+ with torch.no_grad():
41
+ features = self.upstream.model(inputs)
42
+ features = self.featurizer.model(inputs, features)
43
+ preds = self.downstream.model.inference(features, [])
44
+ return {"text": preds[0]}
45
+
46
+
47
+ """
48
+ import subprocess
49
+ import numpy as np
50
+ from datasets import load_dataset
51
+ # This is already done in the Inference API
52
+ def ffmpeg_read(bpayload: bytes, sampling_rate: int) -> np.array:
53
+ ar = f"{sampling_rate}"
54
+ ac = "1"
55
+ format_for_conversion = "f32le"
56
+ ffmpeg_command = [
57
+ "ffmpeg",
58
+ "-i",
59
+ "pipe:0",
60
+ "-ac",
61
+ ac,
62
+ "-ar",
63
+ ar,
64
+ "-f",
65
+ format_for_conversion,
66
+ "-hide_banner",
67
+ "-loglevel",
68
+ "quiet",
69
+ "pipe:1",
70
+ ]
71
+
72
+ ffmpeg_process = subprocess.Popen(
73
+ ffmpeg_command, stdin=subprocess.PIPE, stdout=subprocess.PIPE
74
+ )
75
+ output_stream = ffmpeg_process.communicate(bpayload)
76
+ out_bytes = output_stream[0]
77
+
78
+ audio = np.frombuffer(out_bytes, np.float32).copy()
79
+ if audio.shape[0] == 0:
80
+ raise ValueError("Malformed soundfile")
81
+ return audio
82
+
83
+
84
+ model = PreTrainedModel()
85
+ ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
86
+ filename = ds[0]["file"]
87
+ with open(filename, "rb") as f:
88
+ data = ffmpeg_read(f.read(), 16000)
89
+ print(model(data))
90
+ """