lesso11 commited on
Commit
67ca74b
·
verified ·
1 Parent(s): 67aed7c

End of training

Browse files
Files changed (2) hide show
  1. README.md +163 -0
  2. adapter_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,163 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: llama3.1
4
+ base_model: VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ model-index:
9
+ - name: d7dacba5-abc9-44d3-92a0-9deec81dc181
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
17
+ <details><summary>See axolotl config</summary>
18
+
19
+ axolotl version: `0.4.1`
20
+ ```yaml
21
+ adapter: lora
22
+ base_model: VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct
23
+ bf16: true
24
+ chat_template: llama3
25
+ datasets:
26
+ - data_files:
27
+ - 6d961e5ee0b627ef_train_data.json
28
+ ds_type: json
29
+ format: custom
30
+ path: /workspace/input_data/6d961e5ee0b627ef_train_data.json
31
+ type:
32
+ field_instruction: text
33
+ field_output: all_events
34
+ format: '{instruction}'
35
+ no_input_format: '{instruction}'
36
+ system_format: '{system}'
37
+ system_prompt: ''
38
+ debug: null
39
+ deepspeed: null
40
+ early_stopping_patience: null
41
+ eval_max_new_tokens: 128
42
+ eval_table_size: null
43
+ evals_per_epoch: 4
44
+ flash_attention: false
45
+ fp16: false
46
+ fsdp: null
47
+ fsdp_config: null
48
+ gradient_accumulation_steps: 2
49
+ gradient_checkpointing: true
50
+ group_by_length: false
51
+ hub_model_id: lesso11/d7dacba5-abc9-44d3-92a0-9deec81dc181
52
+ hub_repo: null
53
+ hub_strategy: checkpoint
54
+ hub_token: null
55
+ learning_rate: 0.0001
56
+ load_in_4bit: false
57
+ load_in_8bit: false
58
+ local_rank: null
59
+ logging_steps: 1
60
+ lora_alpha: 32
61
+ lora_dropout: 0.05
62
+ lora_fan_in_fan_out: null
63
+ lora_model_dir: null
64
+ lora_r: 16
65
+ lora_target_linear: true
66
+ lr_scheduler: cosine
67
+ max_memory:
68
+ 0: 77GiB
69
+ max_steps: 100
70
+ micro_batch_size: 8
71
+ mlflow_experiment_name: /tmp/6d961e5ee0b627ef_train_data.json
72
+ model_type: AutoModelForCausalLM
73
+ num_epochs: 3
74
+ optimizer: adamw_torch
75
+ output_dir: miner_id_24
76
+ pad_to_sequence_len: true
77
+ resume_from_checkpoint: null
78
+ s2_attention: null
79
+ sample_packing: false
80
+ save_steps: 25
81
+ save_strategy: steps
82
+ sequence_len: 1024
83
+ special_tokens:
84
+ pad_token: <|eot_id|>
85
+ strict: false
86
+ tf32: false
87
+ tokenizer_type: AutoTokenizer
88
+ train_on_inputs: false
89
+ trust_remote_code: true
90
+ val_set_size: 0.05
91
+ wandb_entity: null
92
+ wandb_mode: online
93
+ wandb_name: d7dacba5-abc9-44d3-92a0-9deec81dc181
94
+ wandb_project: Gradients-On-Demand
95
+ wandb_run: your_name
96
+ wandb_runid: d7dacba5-abc9-44d3-92a0-9deec81dc181
97
+ warmup_steps: 10
98
+ weight_decay: 0.01
99
+ xformers_attention: false
100
+
101
+ ```
102
+
103
+ </details><br>
104
+
105
+ # d7dacba5-abc9-44d3-92a0-9deec81dc181
106
+
107
+ This model is a fine-tuned version of [VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct](https://huggingface.co/VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct) on the None dataset.
108
+ It achieves the following results on the evaluation set:
109
+ - Loss: 0.3935
110
+
111
+ ## Model description
112
+
113
+ More information needed
114
+
115
+ ## Intended uses & limitations
116
+
117
+ More information needed
118
+
119
+ ## Training and evaluation data
120
+
121
+ More information needed
122
+
123
+ ## Training procedure
124
+
125
+ ### Training hyperparameters
126
+
127
+ The following hyperparameters were used during training:
128
+ - learning_rate: 0.0001
129
+ - train_batch_size: 8
130
+ - eval_batch_size: 8
131
+ - seed: 42
132
+ - gradient_accumulation_steps: 2
133
+ - total_train_batch_size: 16
134
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
135
+ - lr_scheduler_type: cosine
136
+ - lr_scheduler_warmup_steps: 10
137
+ - training_steps: 100
138
+
139
+ ### Training results
140
+
141
+ | Training Loss | Epoch | Step | Validation Loss |
142
+ |:-------------:|:------:|:----:|:---------------:|
143
+ | 9.198 | 0.0043 | 1 | 9.3554 |
144
+ | 6.0783 | 0.0384 | 9 | 4.6494 |
145
+ | 0.6006 | 0.0768 | 18 | 0.5950 |
146
+ | 0.5153 | 0.1151 | 27 | 0.4862 |
147
+ | 0.3418 | 0.1535 | 36 | 0.4629 |
148
+ | 0.4714 | 0.1919 | 45 | 0.4491 |
149
+ | 0.4336 | 0.2303 | 54 | 0.4504 |
150
+ | 0.4175 | 0.2687 | 63 | 0.4280 |
151
+ | 0.4615 | 0.3070 | 72 | 0.4183 |
152
+ | 0.4817 | 0.3454 | 81 | 0.3979 |
153
+ | 0.2554 | 0.3838 | 90 | 0.3939 |
154
+ | 0.4791 | 0.4222 | 99 | 0.3935 |
155
+
156
+
157
+ ### Framework versions
158
+
159
+ - PEFT 0.13.2
160
+ - Transformers 4.46.0
161
+ - Pytorch 2.5.0+cu124
162
+ - Datasets 3.0.1
163
+ - Tokenizers 0.20.1
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c0a977ef815e4d9d19b214a92bb8c2e74c3413f8bad9a6d3e1504cf83eca72c
3
+ size 167934026