leonard-pak commited on
Commit
b237803
1 Parent(s): 8c35e8e

more learn timesteps

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 8.64 +/- 174.61
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 276.22 +/- 24.75
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f625915be20>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f625915beb0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f625915bf40>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6259160040>", "_build": "<function ActorCriticPolicy._build at 0x7f62591600d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f6259160160>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f62591601f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6259160280>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6259160310>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f62591603a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6259160430>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f62591604c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f625915d680>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691054126439016350, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPo+Gb5PO0M+7bcePxMnDr880Sa+Dp9jPwAAAAAAAAAAyskAv+oggz+r5OI8p2KYvtSxir96m7+7AAAAAAAAAACL0KC+ZLmNP378KD2XGZO+SpBXv46RHD4AAAAAAAAAAFqfvr1oQaU/nQQ8PtAvCr8UilK/0KL5PgAAAAAAAAAAmvnlOkQfqj+Orw0+tMS/vDner730o70+AAAAAAAAAACGLAW+4l48Pz5job6mFb890WHfvi9AJr8AAAAAAAAAADNK8T0GYYc/vvIOv8/7Bb/tRzQ+liBYvwAAAAAAAAAAc5fDPa4hpLqLVTG2AOCSsJpyiLrdVlQ1AACAPwAAgD9m1lE9VKOBP2mPgj68cQU9RhAFP0NmKD8AAAAAAAAAAGZndj3naWs/Vqw5vdcV9L34anc/kTVBPwAAAAAAAAAAmtzgvDPdnz+FiaM+jjepvhbmi74D9xU/AAAAAAAAAACNdxm+OPCou5NFq7o05Q+4AYnuPPi3zTkAAIA/AACAP5rpILukEKs+iTs9OQ+rkL42RJQ/AlUHPgAAAAAAAAAAk4obPlLsmbtR9zY4XcWktUlC77xj/l+3AACAPwAAgD/I56O+CbYTPesT7TeS8Rq2YiA+vp60uLYAAIA/AACAP20PGj6aC3c/9wSLvOD6YL6/Gno/lx8HPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVKgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG9Q7lijL0WMAWyUTY0BjAF0lEdAhLCDohY/3XV9lChoBkdAcMugOSW7e2gHTVoBaAhHQISwm4oZydZ1fZQoaAZHwGoP5telbeNoB00XAWgIR0CEsNKTSsr/dX2UKGgGR8BrFtT72tdSaAdNMgFoCEdAhLQHL7oB73V9lChoBkfAa+HIAfdRBWgHTXEBaAhHQIS5qnNxEOR1fZQoaAZHQFmTXqZ+hGpoB03oA2gIR0CEumKfnOjZdX2UKGgGR8A7I2FWXC0oaAdNLQFoCEdAhLth4dIXj3V9lChoBkfAONxtHhCMP2gHS/NoCEdAhLty3solU3V9lChoBkdAXYd1U2kzoGgHTegDaAhHQIS8FxQzk6t1fZQoaAZHQGSDRg7YChhoB00LA2gIR0CEvVutOmBOdX2UKGgGR8BryVU83dbgaAdL9WgIR0CEvb4i5d4WdX2UKGgGR8A0nJDVpbljaAdNBwFoCEdAhMNfu1F6RnV9lChoBkdAcGIElE7W/mgHTUkBaAhHQITECR2bG3p1fZQoaAZHQGoKCEHt4RpoB02tAmgIR0CExU8274BWdX2UKGgGR8Bop6wbEP1+aAdL+2gIR0CExaT0xubadX2UKGgGR0BpfxpztCzDaAdNjANoCEdAhMbm1IAfdXV9lChoBkfAZprD63y7PWgHS/RoCEdAhOtjHfdhzHV9lChoBkdAItmcnVoYemgHS/1oCEdAhOvbWuoxYnV9lChoBkdAMRmIsRQJomgHS+xoCEdAhOyPf8/D+HV9lChoBkfAGWgOz6ab4WgHS+5oCEdAhO0TA31jAnV9lChoBkdAaz+U8mrsB2gHTakBaAhHQITtQNZvDP51fZQoaAZHwGcjsv7FbV1oB00lAWgIR0CE7VuQZGaydX2UKGgGR0BsJePaL4vfaAdN0AFoCEdAhO5SCe2/jHV9lChoBkfAZjZ++/QBxWgHTVsBaAhHQITvj5hz/6x1fZQoaAZHwD6/NcGC7K9oB0vbaAhHQITxzkhib2F1fZQoaAZHwGsX1Yp2EChoB01tAWgIR0CE8k6jFhoedX2UKGgGR8BJhnRsuWa+aAdNIgFoCEdAhPdHeSB9TnV9lChoBkfARYqQ5myxA2gHTT4BaAhHQIT3vZ5AyEd1fZQoaAZHQGx0t9ph4MZoB028AmgIR0CE9+1E3KjjdX2UKGgGR8Bt+ZaxHG0eaAdNlAFoCEdAhPrhacI7eXV9lChoBkfAZ+tT/hl182gHTSkBaAhHQIT8J+KCQLh1fZQoaAZHQCFURL9MsYloB00YAWgIR0CE/OgYgq3FdX2UKGgGR8BHjqO1fE4vaAdNPAFoCEdAhP3rwF1SwXV9lChoBkfAZKrI1cdHUmgHTUABaAhHQIT/A0ZWJad1fZQoaAZHwGVRrGBFuvVoB001AWgIR0CE/xYJVsDXdX2UKGgGR8A8904iosI3aAdL7WgIR0CFABbHp8nedX2UKGgGR8BA1HfuTibVaAdNRgFoCEdAhQAvE0iyIHV9lChoBkfARd4azeGfw2gHTUsBaAhHQIUDMZrHlwN1fZQoaAZHwDL1UsFt8/loB0v1aAhHQIUHpAjY7JZ1fZQoaAZHwDhzB1s+FDhoB0v8aAhHQIUIUxM36yl1fZQoaAZHQG3SSV4X40xoB03AAWgIR0CFCaweNkvsdX2UKGgGR8BptIAMlTm5aAdL/WgIR0CFC4ZRbbDedX2UKGgGR8ATiMqBmPHUaAdNGwFoCEdAhRAJxvNu+HV9lChoBkdAZsl8k2P1c2gHTc0CaAhHQIUQob83uNR1fZQoaAZHQFG49K28Zk1oB03oA2gIR0CFEQlHjIaMdX2UKGgGR0Bxq7UhFEy+aAdNNQFoCEdAhRELIHTqjnV9lChoBkfAMTXIEKVpsWgHTTUBaAhHQIUToy6+WW11fZQoaAZHwDViIFeOXE9oB00gAWgIR0CFFrlrdnCgdX2UKGgGR8BkihQ+EAYIaAdL92gIR0CFId3s5XEJdX2UKGgGR0Bt9f+4smOVaAdN+wFoCEdAhSQvQF9roHV9lChoBkdAbw+qioKlYWgHTYsBaAhHQIUlEWdmQKd1fZQoaAZHQG2yRR/EwWZoB02aAWgIR0CFJXSXMQmNdX2UKGgGR0BvGafxtpEhaAdNbgFoCEdAhSZ+5OJtSHV9lChoBkdAbqmlImPYF2gHTToCaAhHQIUo90HQhOh1fZQoaAZHwGmOtsvZh8ZoB01RAWgIR0CFKehGH58CdX2UKGgGR8Bq0wB1cMVlaAdNJAFoCEdAhU3MibDuSnV9lChoBkdAb7KE1VHWjGgHTYkBaAhHQIVODeCTUy51fZQoaAZHQG8g08FINExoB02HAWgIR0CFTk0/GEPEdX2UKGgGR0BubH1nM+vAaAdNgQFoCEdAhVBtuUD+znV9lChoBkdAZ9m6J66as2gHTbYCaAhHQIVQf2Xb/Ot1fZQoaAZHwDflTtLL6k9oB0vxaAhHQIVVYwVTJhh1fZQoaAZHQFGPSjgydnVoB03oA2gIR0CFVjS8an76dX2UKGgGR8AlRudf9gndaAdNAgFoCEdAhVbd0ihWYHV9lChoBkfAQbwQlKK51GgHTSoBaAhHQIVYinivPkd1fZQoaAZHwGQmUGNaQmxoB004AWgIR0CFW6e7tiQUdX2UKGgGR0Bh2pa5f+juaAdN6ANoCEdAhVxwlKK51HV9lChoBkfANa0Ao5PuX2gHS+5oCEdAhVzmSZBsynV9lChoBkfAZg01Z1V5r2gHS9FoCEdAhV39Zid8RnV9lChoBkfAL720iQkonmgHS/xoCEdAhV4fLLZBcHV9lChoBkdAby72Bas6rGgHTb0BaAhHQIVg3wZwXIl1fZQoaAZHwEUc/336AOJoB00EAWgIR0CFYaHRkVesdX2UKGgGR0BayxsEaESNaAdN6ANoCEdAhWN3OGCZnnV9lChoBkfAZ1+zPa+N+GgHS/ZoCEdAhWcQQ176YXV9lChoBkc/9gjeKsMiKWgHS7poCEdAhWj2n889wHV9lChoBkdAbzfUm2LHdWgHTesBaAhHQIVqSmXPZ7J1fZQoaAZHwDTV1/2Cdz5oB00zAWgIR0CFaomEXcgydX2UKGgGR0Bt9xvNu+AVaAdNswFoCEdAhWsEsz2vjnV9lChoBkfAarNa/yoXK2gHTT4BaAhHQIVs2YhMajx1fZQoaAZHwEYhmPo3aSNoB00RAWgIR0CFcG23KB/adX2UKGgGR0AbNOqNp/PPaAdNAAFoCEdAhXB+bd8ArHV9lChoBkdAW3kqBmPHUGgHTegDaAhHQIVwi+zt1IR1fZQoaAZHwGG8RXXAdn1oB0vjaAhHQIVw/4oJAt51fZQoaAZHQG6zI065oXdoB018AWgIR0CFcpWwu/UOdX2UKGgGR8BM5KLsKLKnaAdNPgFoCEdAhXN2X9itrHV9lChoBkfAZ/W4Ds+mnGgHS/NoCEdAhXl1dPci4nV9lChoBkfAXWz8gpz90mgHTdIBaAhHQIV6Oso2GZh1fZQoaAZHwGm1Q9RrJsBoB00qAWgIR0CFekuscQyzdX2UKGgGR8BnMiK3uuzQaAdL+mgIR0CFerCJoCdSdX2UKGgGR8BmfOrKeTV2aAdL7WgIR0CFfef0VafSdX2UKGgGR8BjhOKTB68haAdL+WgIR0CFfsKCQLeAdX2UKGgGR0BwFX1xsEaEaAdNDwJoCEdAhYQNmDlHSXV9lChoBkfATu/WpZOi4GgHTUcBaAhHQIWJ577bcoJ1fZQoaAZHwEib8aXKKYRoB01aAWgIR0CFigq6OHWSdX2UKGgGR8AkWuPmxMWXaAdL4GgIR0CFip9CNS62dX2UKGgGR0BsU8hLXcxkaAdNTwJoCEdAhYufGMn7YXV9lChoBkdAAMCuloDgZWgHS/1oCEdAhYu+TNdJKHV9lChoBkdAcDJVZcLSeGgHTe0BaAhHQIWLzVH4Glh1fZQoaAZHwA0x+KCQLeBoB00EAWgIR0CFjRMGorFwdX2UKGgGR0BgAKjYZl4DaAdN6ANoCEdAhY0hczImxHV9lChoBkdAcEi0svqTr2gHTRsCaAhHQIWNOk56t1Z1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.4, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.90.1-microsoft-standard-WSL2-x86_64-with-glibc2.31 # 1 SMP Fri Jan 27 02:56:13 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ba9f101d480>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ba9f101d510>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ba9f101d5a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ba9f101d630>", "_build": "<function ActorCriticPolicy._build at 0x7ba9f101d6c0>", "forward": "<function ActorCriticPolicy.forward at 0x7ba9f101d750>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ba9f101d7e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ba9f101d870>", "_predict": "<function ActorCriticPolicy._predict at 0x7ba9f101d900>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ba9f101d990>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ba9f101da20>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ba9f101dab0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ba9f10163c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 5017600, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691160382419627950, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVtQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAQAAAAAAANromr1A0Js/DWjlvp8PFb9Apo69Wjx3vgAAAAAAAAAA5ilvPRVDNT5Yuoq75V3dvjiilT0GqWw9AAAAAAAAAADmeK29XFNzuhaK2rsaA0A3lmkQOiZTrbYAAAAAAAAAAGbbMD24q9m7FociPHGsRzzAWye9IyIsPQAAgD8AAIA/WhDSvvHBXr1wYn88/7q5OfRgj7wc7pA8AAAAAAAAAAAz0my9w4l1un39UbFRC3MvswzRumRQIDMAAIA/AACAPwAOSLxcnx05rj5kM4LbMa9sB8G6hmDPswAAgD8AAIA/pmfZPfY0GrpdSn27/K+QtRlbu7p8qJQ6AAAAAAAAgD8AEAM9oU3dvPaC3j1q8ig8C296vfoD7T0AAIA/AACAPxrQSL3SL9E8EChlPkNFub7GpRI+PqSKPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksKSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVfQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYKAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwqFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0035199999999999676, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV5QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHNIouPFNtaMAWyUS86MAXSUR0CywSsTewcHdX2UKGgGR0BzaOyHEdeZaAdL0GgIR0CywbaBNEgGdX2UKGgGR0BxuTu1F6RhaAdLxGgIR0CywhVzdUKidX2UKGgGR0ByBaKP4mCzaAdL42gIR0Cywhxd+ocadX2UKGgGR0BwSmepXIU8aAdLy2gIR0CywjHaews5dX2UKGgGR0Bw0fIp6QeWaAdLw2gIR0CywnCAYpDvdX2UKGgGR0ByhDnkkrwwaAdL5GgIR0CywoTgl4TsdX2UKGgGR0BzEqNrCWNWaAdLxmgIR0Cywq9Gd7OWdX2UKGgGR0ByvQbOu7pWaAdL1WgIR0CywsBnOB1+dX2UKGgGR0Bz8MYO2AoYaAdL1mgIR0CywsFpfx+bdX2UKGgGR0BzRUo2GZeBaAdL9WgIR0CywuvlZHNHdX2UKGgGR0BzuMJpnHvMaAdL2WgIR0Cywxtr9EThdX2UKGgGR0BxWTaWX1J2aAdLxWgIR0Cyw1y6UaAGdX2UKGgGR0ByZ/DDTBqLaAdLyGgIR0Cyw3hdUsFudX2UKGgGR0BxBcXuVopQaAdL4GgIR0Cyw4ZZB9kSdX2UKGgGR0BycjpwCKaYaAdL0mgIR0Cyw8obn5i3dX2UKGgGR0BzIJA/s3Q2aAdLs2gIR0Cyw9TNQj2SdX2UKGgGR0BwB7FaSs8xaAdLzmgIR0Cyw9dwaR6odX2UKGgGR0Bw7TNzKcNIaAdL1GgIR0CyxBjIJZ4fdX2UKGgGR0Bx32gXdj5LaAdL52gIR0CyxDkMG5c1dX2UKGgGR0BwJ5M9KVY7aAdLvWgIR0CyybDRMN+cdX2UKGgGR0BwbEA93bEhaAdL3WgIR0CyybM1fmcOdX2UKGgGR0BxFR1yNn5BaAdL02gIR0CyygJu/DcedX2UKGgGR0BxEq27Wd3CaAdL2WgIR0CyyhJEhJRPdX2UKGgGR0BxyUYekpI+aAdLxGgIR0CyyjSUTtb+dX2UKGgGR0BzHlgRbr1NaAdLzWgIR0CyyjYmXw9adX2UKGgGR0BuPHkDIRywaAdLzmgIR0Cyyj7hzeXSdX2UKGgGR0ByMyuIRAbAaAdLzWgIR0Cyym/ppvgndX2UKGgGR0BwuFjH4oJBaAdL5GgIR0CyyqN6Tnq3dX2UKGgGR0Byw0lPacqfaAdL4WgIR0CyyrKtHQQddX2UKGgGR0By2rnp0OmSaAdL42gIR0CyyreGXXyzdX2UKGgGR0BziB54W1twaAdLx2gIR0CyyvAR9PUKdX2UKGgGR0ByW2C8OCoTaAdL32gIR0CyyyAw9JSSdX2UKGgGR0BxcR6By0a7aAdLxGgIR0CyyyOlbeMydX2UKGgGR0BukfYraufVaAdL5WgIR0Cyy0yJwbVCdX2UKGgGR0Bz3v1g6U7kaAdL4WgIR0Cyy1LQLNOedX2UKGgGR0BzBxapxWDIaAdL42gIR0Cyy4e3lS0jdX2UKGgGR0BwRXm/336AaAdLz2gIR0Cyy6LkXDWLdX2UKGgGR0BytKv3ai9JaAdLz2gIR0Cyy7Hmig01dX2UKGgGR0ByVzhGYrrgaAdNFQFoCEdAsswQ8wHqvHV9lChoBkdAcI7YfnwG4mgHS8BoCEdAsswVVKf4AXV9lChoBkdAcqIO7QLNOmgHS9xoCEdAssw3asZHeHV9lChoBkdAc2/mOlwcYWgHS9BoCEdAssxa+10DEHV9lChoBkdAcPYjMmnfmGgHS+xoCEdAssx8mplz2nV9lChoBkdAcQNpZwGW2WgHS99oCEdAssysgmqo63V9lChoBkdAcSvbs4T9KmgHS9doCEdAsszQokRjBnV9lChoBkdAciOYcvM8o2gHS+poCEdAsszaCAc1fnV9lChoBkdAclZyuZCv5mgHS9FoCEdAss0x7OVxCXV9lChoBkdAcwn/jKgZj2gHS+RoCEdAss191RtP6HV9lChoBkdAb3slt0mtyWgHS9NoCEdAss2M4cWCVnV9lChoBkdAcqODjBEa2mgHTQgBaAhHQLLNjeyAxzt1fZQoaAZHQHEsoLb5/LFoB0voaAhHQLLNyldkauR1fZQoaAZHQGWo0bDMvAZoB03oA2gIR0Cyzfn/kvK2dX2UKGgGR0BzcGXiR4hVaAdL6WgIR0Cyzf2cvugIdX2UKGgGR0Buuzebd8AraAdLzGgIR0CyzgKZ2IO6dX2UKGgGR0Byij2exwAEaAdL4GgIR0CyzhIKYzBRdX2UKGgGR0BxmWEoOQQuaAdLyGgIR0CyzkO7pV0cdX2UKGgGR0ByloIOYplSaAdLw2gIR0CyzoUyHmA9dX2UKGgGR0BzPTGaQV9GaAdL1mgIR0CyzpA9A5aNdX2UKGgGR0BxMPKq4pc5aAdL0GgIR0CyzpXGKhtcdX2UKGgGR0BwtMRL9MsZaAdLy2gIR0CyzsZaiblSdX2UKGgGR0BxenbXYlIFaAdLxmgIR0CyzvDYNAkcdX2UKGgGR0BxBMCjk+5faAdL2WgIR0CyzwE078vVdX2UKGgGR0By8UW69TP0aAdL5WgIR0CyzxIWUKRddX2UKGgGR0BzQH127nPnaAdL3WgIR0Cyzx00SAYpdX2UKGgGR0Bxt7c2zfJnaAdL6WgIR0Cyz41efI0ZdX2UKGgGR0By9aeJ53TvaAdL5GgIR0Cyz/7i6xxDdX2UKGgGR0BwefNY8uBdaAdL9mgIR0Cy0BKI7/4qdX2UKGgGR0BxSbWkJrtWaAdL6mgIR0Cy0BauwHJLdX2UKGgGR0BxJAf+0gKXaAdL4mgIR0Cy0FFLzwtrdX2UKGgGR0BzFrGhmGucaAdLwWgIR0Cy0FcV+I/JdX2UKGgGR0Bl15mh/RVqaAdN6ANoCEdAstCKk+HJtHV9lChoBkdActqTUiILxGgHS9JoCEdAstCPcVQAMnV9lChoBkdAcpMlGwzLwGgHS91oCEdAstCzQ+lj3HV9lChoBkdAcn6MqjJuEWgHS+loCEdAstDT7TDwY3V9lChoBkdAcGvDPGACn2gHS+JoCEdAstEbJIUah3V9lChoBkdAbzWMAFPi1mgHS8loCEdAstFdY3eenXV9lChoBkdAdAOwJw84gmgHS/FoCEdAstGUc7yQP3V9lChoBkdAcqhqYJE6UGgHS89oCEdAstGqJZW7v3V9lChoBkdAcSQeC04R3GgHS9xoCEdAstG9JCjUNXV9lChoBkdAb67AyEcsDmgHS85oCEdAstHeA5JbuHV9lChoBkdAcdkDYRNAT2gHS8FoCEdAstHxh9b5dnV9lChoBkdAcjh6j3225WgHS+VoCEdAstIBR2r4nHV9lChoBkdAcoGus90RvmgHS9poCEdAstI+IKtxMnV9lChoBkdAcRcM/QjUu2gHS9RoCEdAstLZWwNb1XV9lChoBkdAdCdZ/0/W2GgHTQkBaAhHQLLS84jbBXV1fZQoaAZHQHIL6j8DSw5oB0vEaAhHQLLS98+zMRp1fZQoaAZHQHFUGrwOOKhoB0u9aAhHQLLTEH9m6Gx1fZQoaAZHQG/zFGXokiVoB0vNaAhHQLLTT8tf5UN1fZQoaAZHQHL/5qqOtGNoB0u9aAhHQLLTWYyO7xx1fZQoaAZHQHM8hWDHwPRoB0vvaAhHQLLTWxTsIE91fZQoaAZHQHG79oJzDGdoB0vVaAhHQLLTdQoTfzl1fZQoaAZHQHCRl85S3spoB0vCaAhHQLLUWuIyj591fZQoaAZHQHD5neizsyBoB0u6aAhHQLLUiyO7xut1fZQoaAZHQHD4cWCVbA1oB0vhaAhHQLLUw5tFa0R1fZQoaAZHQHNU978ejmFoB0vHaAhHQLLU/lgtvn91fZQoaAZHQHHj4JqqOtJoB0vKaAhHQLLVED/2kBV1fZQoaAZHQHKlNeY2Kl5oB0u+aAhHQLLVFFdszl91fZQoaAZHQHNBGUnogV5oB0vvaAhHQLLVRSGrS3N1fZQoaAZHQHGbSDVYp2FoB0vUaAhHQLLV44z7/GV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 980, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 10, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.99, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b796205ab601da2faee689ab7377b2c5b5089f23661696cff147031312385ef3
3
- size 146745
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c62e06e7562372bada2de5a9f6f3b19d26cc03769b23fcb423b8a0268e9ceba
3
+ size 146367
ppo-LunarLander-v2/data CHANGED
@@ -4,54 +4,54 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7f625915be20>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f625915beb0>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f625915bf40>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6259160040>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7f62591600d0>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7f6259160160>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f62591601f0>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6259160280>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7f6259160310>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f62591603a0>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6259160430>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f62591604c0>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x7f625915d680>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
- "num_timesteps": 1015808,
25
- "_total_timesteps": 1000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
- "start_time": 1691054126439016350,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPo+Gb5PO0M+7bcePxMnDr880Sa+Dp9jPwAAAAAAAAAAyskAv+oggz+r5OI8p2KYvtSxir96m7+7AAAAAAAAAACL0KC+ZLmNP378KD2XGZO+SpBXv46RHD4AAAAAAAAAAFqfvr1oQaU/nQQ8PtAvCr8UilK/0KL5PgAAAAAAAAAAmvnlOkQfqj+Orw0+tMS/vDner730o70+AAAAAAAAAACGLAW+4l48Pz5job6mFb890WHfvi9AJr8AAAAAAAAAADNK8T0GYYc/vvIOv8/7Bb/tRzQ+liBYvwAAAAAAAAAAc5fDPa4hpLqLVTG2AOCSsJpyiLrdVlQ1AACAPwAAgD9m1lE9VKOBP2mPgj68cQU9RhAFP0NmKD8AAAAAAAAAAGZndj3naWs/Vqw5vdcV9L34anc/kTVBPwAAAAAAAAAAmtzgvDPdnz+FiaM+jjepvhbmi74D9xU/AAAAAAAAAACNdxm+OPCou5NFq7o05Q+4AYnuPPi3zTkAAIA/AACAP5rpILukEKs+iTs9OQ+rkL42RJQ/AlUHPgAAAAAAAAAAk4obPlLsmbtR9zY4XcWktUlC77xj/l+3AACAPwAAgD/I56O+CbYTPesT7TeS8Rq2YiA+vp60uLYAAIA/AACAP20PGj6aC3c/9wSLvOD6YL6/Gno/lx8HPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
38
- ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
  },
40
  "_last_original_obs": null,
41
  "_episode_num": 0,
42
  "use_sde": false,
43
  "sde_sample_freq": -1,
44
- "_current_progress_remaining": -0.015808000000000044,
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
- ":serialized:": "gAWVKgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG9Q7lijL0WMAWyUTY0BjAF0lEdAhLCDohY/3XV9lChoBkdAcMugOSW7e2gHTVoBaAhHQISwm4oZydZ1fZQoaAZHwGoP5telbeNoB00XAWgIR0CEsNKTSsr/dX2UKGgGR8BrFtT72tdSaAdNMgFoCEdAhLQHL7oB73V9lChoBkfAa+HIAfdRBWgHTXEBaAhHQIS5qnNxEOR1fZQoaAZHQFmTXqZ+hGpoB03oA2gIR0CEumKfnOjZdX2UKGgGR8A7I2FWXC0oaAdNLQFoCEdAhLth4dIXj3V9lChoBkfAONxtHhCMP2gHS/NoCEdAhLty3solU3V9lChoBkdAXYd1U2kzoGgHTegDaAhHQIS8FxQzk6t1fZQoaAZHQGSDRg7YChhoB00LA2gIR0CEvVutOmBOdX2UKGgGR8BryVU83dbgaAdL9WgIR0CEvb4i5d4WdX2UKGgGR8A0nJDVpbljaAdNBwFoCEdAhMNfu1F6RnV9lChoBkdAcGIElE7W/mgHTUkBaAhHQITECR2bG3p1fZQoaAZHQGoKCEHt4RpoB02tAmgIR0CExU8274BWdX2UKGgGR8Bop6wbEP1+aAdL+2gIR0CExaT0xubadX2UKGgGR0BpfxpztCzDaAdNjANoCEdAhMbm1IAfdXV9lChoBkfAZprD63y7PWgHS/RoCEdAhOtjHfdhzHV9lChoBkdAItmcnVoYemgHS/1oCEdAhOvbWuoxYnV9lChoBkdAMRmIsRQJomgHS+xoCEdAhOyPf8/D+HV9lChoBkfAGWgOz6ab4WgHS+5oCEdAhO0TA31jAnV9lChoBkdAaz+U8mrsB2gHTakBaAhHQITtQNZvDP51fZQoaAZHwGcjsv7FbV1oB00lAWgIR0CE7VuQZGaydX2UKGgGR0BsJePaL4vfaAdN0AFoCEdAhO5SCe2/jHV9lChoBkfAZjZ++/QBxWgHTVsBaAhHQITvj5hz/6x1fZQoaAZHwD6/NcGC7K9oB0vbaAhHQITxzkhib2F1fZQoaAZHwGsX1Yp2EChoB01tAWgIR0CE8k6jFhoedX2UKGgGR8BJhnRsuWa+aAdNIgFoCEdAhPdHeSB9TnV9lChoBkfARYqQ5myxA2gHTT4BaAhHQIT3vZ5AyEd1fZQoaAZHQGx0t9ph4MZoB028AmgIR0CE9+1E3KjjdX2UKGgGR8Bt+ZaxHG0eaAdNlAFoCEdAhPrhacI7eXV9lChoBkfAZ+tT/hl182gHTSkBaAhHQIT8J+KCQLh1fZQoaAZHQCFURL9MsYloB00YAWgIR0CE/OgYgq3FdX2UKGgGR8BHjqO1fE4vaAdNPAFoCEdAhP3rwF1SwXV9lChoBkfAZKrI1cdHUmgHTUABaAhHQIT/A0ZWJad1fZQoaAZHwGVRrGBFuvVoB001AWgIR0CE/xYJVsDXdX2UKGgGR8A8904iosI3aAdL7WgIR0CFABbHp8nedX2UKGgGR8BA1HfuTibVaAdNRgFoCEdAhQAvE0iyIHV9lChoBkfARd4azeGfw2gHTUsBaAhHQIUDMZrHlwN1fZQoaAZHwDL1UsFt8/loB0v1aAhHQIUHpAjY7JZ1fZQoaAZHwDhzB1s+FDhoB0v8aAhHQIUIUxM36yl1fZQoaAZHQG3SSV4X40xoB03AAWgIR0CFCaweNkvsdX2UKGgGR8BptIAMlTm5aAdL/WgIR0CFC4ZRbbDedX2UKGgGR8ATiMqBmPHUaAdNGwFoCEdAhRAJxvNu+HV9lChoBkdAZsl8k2P1c2gHTc0CaAhHQIUQob83uNR1fZQoaAZHQFG49K28Zk1oB03oA2gIR0CFEQlHjIaMdX2UKGgGR0Bxq7UhFEy+aAdNNQFoCEdAhRELIHTqjnV9lChoBkfAMTXIEKVpsWgHTTUBaAhHQIUToy6+WW11fZQoaAZHwDViIFeOXE9oB00gAWgIR0CFFrlrdnCgdX2UKGgGR8BkihQ+EAYIaAdL92gIR0CFId3s5XEJdX2UKGgGR0Bt9f+4smOVaAdN+wFoCEdAhSQvQF9roHV9lChoBkdAbw+qioKlYWgHTYsBaAhHQIUlEWdmQKd1fZQoaAZHQG2yRR/EwWZoB02aAWgIR0CFJXSXMQmNdX2UKGgGR0BvGafxtpEhaAdNbgFoCEdAhSZ+5OJtSHV9lChoBkdAbqmlImPYF2gHTToCaAhHQIUo90HQhOh1fZQoaAZHwGmOtsvZh8ZoB01RAWgIR0CFKehGH58CdX2UKGgGR8Bq0wB1cMVlaAdNJAFoCEdAhU3MibDuSnV9lChoBkdAb7KE1VHWjGgHTYkBaAhHQIVODeCTUy51fZQoaAZHQG8g08FINExoB02HAWgIR0CFTk0/GEPEdX2UKGgGR0BubH1nM+vAaAdNgQFoCEdAhVBtuUD+znV9lChoBkdAZ9m6J66as2gHTbYCaAhHQIVQf2Xb/Ot1fZQoaAZHwDflTtLL6k9oB0vxaAhHQIVVYwVTJhh1fZQoaAZHQFGPSjgydnVoB03oA2gIR0CFVjS8an76dX2UKGgGR8AlRudf9gndaAdNAgFoCEdAhVbd0ihWYHV9lChoBkfAQbwQlKK51GgHTSoBaAhHQIVYinivPkd1fZQoaAZHwGQmUGNaQmxoB004AWgIR0CFW6e7tiQUdX2UKGgGR0Bh2pa5f+juaAdN6ANoCEdAhVxwlKK51HV9lChoBkfANa0Ao5PuX2gHS+5oCEdAhVzmSZBsynV9lChoBkfAZg01Z1V5r2gHS9FoCEdAhV39Zid8RnV9lChoBkfAL720iQkonmgHS/xoCEdAhV4fLLZBcHV9lChoBkdAby72Bas6rGgHTb0BaAhHQIVg3wZwXIl1fZQoaAZHwEUc/336AOJoB00EAWgIR0CFYaHRkVesdX2UKGgGR0BayxsEaESNaAdN6ANoCEdAhWN3OGCZnnV9lChoBkfAZ1+zPa+N+GgHS/ZoCEdAhWcQQ176YXV9lChoBkc/9gjeKsMiKWgHS7poCEdAhWj2n889wHV9lChoBkdAbzfUm2LHdWgHTesBaAhHQIVqSmXPZ7J1fZQoaAZHwDTV1/2Cdz5oB00zAWgIR0CFaomEXcgydX2UKGgGR0Bt9xvNu+AVaAdNswFoCEdAhWsEsz2vjnV9lChoBkfAarNa/yoXK2gHTT4BaAhHQIVs2YhMajx1fZQoaAZHwEYhmPo3aSNoB00RAWgIR0CFcG23KB/adX2UKGgGR0AbNOqNp/PPaAdNAAFoCEdAhXB+bd8ArHV9lChoBkdAW3kqBmPHUGgHTegDaAhHQIVwi+zt1IR1fZQoaAZHwGG8RXXAdn1oB0vjaAhHQIVw/4oJAt51fZQoaAZHQG6zI065oXdoB018AWgIR0CFcpWwu/UOdX2UKGgGR8BM5KLsKLKnaAdNPgFoCEdAhXN2X9itrHV9lChoBkfAZ/W4Ds+mnGgHS/NoCEdAhXl1dPci4nV9lChoBkfAXWz8gpz90mgHTdIBaAhHQIV6Oso2GZh1fZQoaAZHwGm1Q9RrJsBoB00qAWgIR0CFekuscQyzdX2UKGgGR8BnMiK3uuzQaAdL+mgIR0CFerCJoCdSdX2UKGgGR8BmfOrKeTV2aAdL7WgIR0CFfef0VafSdX2UKGgGR8BjhOKTB68haAdL+WgIR0CFfsKCQLeAdX2UKGgGR0BwFX1xsEaEaAdNDwJoCEdAhYQNmDlHSXV9lChoBkfATu/WpZOi4GgHTUcBaAhHQIWJ577bcoJ1fZQoaAZHwEib8aXKKYRoB01aAWgIR0CFigq6OHWSdX2UKGgGR8AkWuPmxMWXaAdL4GgIR0CFip9CNS62dX2UKGgGR0BsU8hLXcxkaAdNTwJoCEdAhYufGMn7YXV9lChoBkdAAMCuloDgZWgHS/1oCEdAhYu+TNdJKHV9lChoBkdAcDJVZcLSeGgHTe0BaAhHQIWLzVH4Glh1fZQoaAZHwA0x+KCQLeBoB00EAWgIR0CFjRMGorFwdX2UKGgGR0BgAKjYZl4DaAdN6ANoCEdAhY0hczImxHV9lChoBkdAcEi0svqTr2gHTRsCaAhHQIWNOk56t1Z1ZS4="
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
- "_n_updates": 248,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
  ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
@@ -76,10 +76,10 @@
76
  "dtype": "int64",
77
  "_np_random": null
78
  },
79
- "n_envs": 16,
80
- "n_steps": 1024,
81
- "gamma": 0.4,
82
- "gae_lambda": 0.98,
83
  "ent_coef": 0.01,
84
  "vf_coef": 0.5,
85
  "max_grad_norm": 0.5,
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7ba9f101d480>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ba9f101d510>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ba9f101d5a0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ba9f101d630>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7ba9f101d6c0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7ba9f101d750>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ba9f101d7e0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ba9f101d870>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7ba9f101d900>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ba9f101d990>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ba9f101da20>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ba9f101dab0>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7ba9f10163c0>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
+ "num_timesteps": 5017600,
25
+ "_total_timesteps": 5000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
+ "start_time": 1691160382419627950,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVtQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAQAAAAAAANromr1A0Js/DWjlvp8PFb9Apo69Wjx3vgAAAAAAAAAA5ilvPRVDNT5Yuoq75V3dvjiilT0GqWw9AAAAAAAAAADmeK29XFNzuhaK2rsaA0A3lmkQOiZTrbYAAAAAAAAAAGbbMD24q9m7FociPHGsRzzAWye9IyIsPQAAgD8AAIA/WhDSvvHBXr1wYn88/7q5OfRgj7wc7pA8AAAAAAAAAAAz0my9w4l1un39UbFRC3MvswzRumRQIDMAAIA/AACAPwAOSLxcnx05rj5kM4LbMa9sB8G6hmDPswAAgD8AAIA/pmfZPfY0GrpdSn27/K+QtRlbu7p8qJQ6AAAAAAAAgD8AEAM9oU3dvPaC3j1q8ig8C296vfoD7T0AAIA/AACAPxrQSL3SL9E8EChlPkNFub7GpRI+PqSKPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksKSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVfQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYKAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwqFlIwBQ5R0lFKULg=="
39
  },
40
  "_last_original_obs": null,
41
  "_episode_num": 0,
42
  "use_sde": false,
43
  "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.0035199999999999676,
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV5QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHNIouPFNtaMAWyUS86MAXSUR0CywSsTewcHdX2UKGgGR0BzaOyHEdeZaAdL0GgIR0CywbaBNEgGdX2UKGgGR0BxuTu1F6RhaAdLxGgIR0CywhVzdUKidX2UKGgGR0ByBaKP4mCzaAdL42gIR0Cywhxd+ocadX2UKGgGR0BwSmepXIU8aAdLy2gIR0CywjHaews5dX2UKGgGR0Bw0fIp6QeWaAdLw2gIR0CywnCAYpDvdX2UKGgGR0ByhDnkkrwwaAdL5GgIR0CywoTgl4TsdX2UKGgGR0BzEqNrCWNWaAdLxmgIR0Cywq9Gd7OWdX2UKGgGR0ByvQbOu7pWaAdL1WgIR0CywsBnOB1+dX2UKGgGR0Bz8MYO2AoYaAdL1mgIR0CywsFpfx+bdX2UKGgGR0BzRUo2GZeBaAdL9WgIR0CywuvlZHNHdX2UKGgGR0BzuMJpnHvMaAdL2WgIR0Cywxtr9EThdX2UKGgGR0BxWTaWX1J2aAdLxWgIR0Cyw1y6UaAGdX2UKGgGR0ByZ/DDTBqLaAdLyGgIR0Cyw3hdUsFudX2UKGgGR0BxBcXuVopQaAdL4GgIR0Cyw4ZZB9kSdX2UKGgGR0BycjpwCKaYaAdL0mgIR0Cyw8obn5i3dX2UKGgGR0BzIJA/s3Q2aAdLs2gIR0Cyw9TNQj2SdX2UKGgGR0BwB7FaSs8xaAdLzmgIR0Cyw9dwaR6odX2UKGgGR0Bw7TNzKcNIaAdL1GgIR0CyxBjIJZ4fdX2UKGgGR0Bx32gXdj5LaAdL52gIR0CyxDkMG5c1dX2UKGgGR0BwJ5M9KVY7aAdLvWgIR0CyybDRMN+cdX2UKGgGR0BwbEA93bEhaAdL3WgIR0CyybM1fmcOdX2UKGgGR0BxFR1yNn5BaAdL02gIR0CyygJu/DcedX2UKGgGR0BxEq27Wd3CaAdL2WgIR0CyyhJEhJRPdX2UKGgGR0BxyUYekpI+aAdLxGgIR0CyyjSUTtb+dX2UKGgGR0BzHlgRbr1NaAdLzWgIR0CyyjYmXw9adX2UKGgGR0BuPHkDIRywaAdLzmgIR0Cyyj7hzeXSdX2UKGgGR0ByMyuIRAbAaAdLzWgIR0Cyym/ppvgndX2UKGgGR0BwuFjH4oJBaAdL5GgIR0CyyqN6Tnq3dX2UKGgGR0Byw0lPacqfaAdL4WgIR0CyyrKtHQQddX2UKGgGR0By2rnp0OmSaAdL42gIR0CyyreGXXyzdX2UKGgGR0BziB54W1twaAdLx2gIR0CyyvAR9PUKdX2UKGgGR0ByW2C8OCoTaAdL32gIR0CyyyAw9JSSdX2UKGgGR0BxcR6By0a7aAdLxGgIR0CyyyOlbeMydX2UKGgGR0BukfYraufVaAdL5WgIR0Cyy0yJwbVCdX2UKGgGR0Bz3v1g6U7kaAdL4WgIR0Cyy1LQLNOedX2UKGgGR0BzBxapxWDIaAdL42gIR0Cyy4e3lS0jdX2UKGgGR0BwRXm/336AaAdLz2gIR0Cyy6LkXDWLdX2UKGgGR0BytKv3ai9JaAdLz2gIR0Cyy7Hmig01dX2UKGgGR0ByVzhGYrrgaAdNFQFoCEdAsswQ8wHqvHV9lChoBkdAcI7YfnwG4mgHS8BoCEdAsswVVKf4AXV9lChoBkdAcqIO7QLNOmgHS9xoCEdAssw3asZHeHV9lChoBkdAc2/mOlwcYWgHS9BoCEdAssxa+10DEHV9lChoBkdAcPYjMmnfmGgHS+xoCEdAssx8mplz2nV9lChoBkdAcQNpZwGW2WgHS99oCEdAssysgmqo63V9lChoBkdAcSvbs4T9KmgHS9doCEdAsszQokRjBnV9lChoBkdAciOYcvM8o2gHS+poCEdAsszaCAc1fnV9lChoBkdAclZyuZCv5mgHS9FoCEdAss0x7OVxCXV9lChoBkdAcwn/jKgZj2gHS+RoCEdAss191RtP6HV9lChoBkdAb3slt0mtyWgHS9NoCEdAss2M4cWCVnV9lChoBkdAcqODjBEa2mgHTQgBaAhHQLLNjeyAxzt1fZQoaAZHQHEsoLb5/LFoB0voaAhHQLLNyldkauR1fZQoaAZHQGWo0bDMvAZoB03oA2gIR0Cyzfn/kvK2dX2UKGgGR0BzcGXiR4hVaAdL6WgIR0Cyzf2cvugIdX2UKGgGR0Buuzebd8AraAdLzGgIR0CyzgKZ2IO6dX2UKGgGR0Byij2exwAEaAdL4GgIR0CyzhIKYzBRdX2UKGgGR0BxmWEoOQQuaAdLyGgIR0CyzkO7pV0cdX2UKGgGR0ByloIOYplSaAdLw2gIR0CyzoUyHmA9dX2UKGgGR0BzPTGaQV9GaAdL1mgIR0CyzpA9A5aNdX2UKGgGR0BxMPKq4pc5aAdL0GgIR0CyzpXGKhtcdX2UKGgGR0BwtMRL9MsZaAdLy2gIR0CyzsZaiblSdX2UKGgGR0BxenbXYlIFaAdLxmgIR0CyzvDYNAkcdX2UKGgGR0BxBMCjk+5faAdL2WgIR0CyzwE078vVdX2UKGgGR0By8UW69TP0aAdL5WgIR0CyzxIWUKRddX2UKGgGR0BzQH127nPnaAdL3WgIR0Cyzx00SAYpdX2UKGgGR0Bxt7c2zfJnaAdL6WgIR0Cyz41efI0ZdX2UKGgGR0By9aeJ53TvaAdL5GgIR0Cyz/7i6xxDdX2UKGgGR0BwefNY8uBdaAdL9mgIR0Cy0BKI7/4qdX2UKGgGR0BxSbWkJrtWaAdL6mgIR0Cy0BauwHJLdX2UKGgGR0BxJAf+0gKXaAdL4mgIR0Cy0FFLzwtrdX2UKGgGR0BzFrGhmGucaAdLwWgIR0Cy0FcV+I/JdX2UKGgGR0Bl15mh/RVqaAdN6ANoCEdAstCKk+HJtHV9lChoBkdActqTUiILxGgHS9JoCEdAstCPcVQAMnV9lChoBkdAcpMlGwzLwGgHS91oCEdAstCzQ+lj3HV9lChoBkdAcn6MqjJuEWgHS+loCEdAstDT7TDwY3V9lChoBkdAcGvDPGACn2gHS+JoCEdAstEbJIUah3V9lChoBkdAbzWMAFPi1mgHS8loCEdAstFdY3eenXV9lChoBkdAdAOwJw84gmgHS/FoCEdAstGUc7yQP3V9lChoBkdAcqhqYJE6UGgHS89oCEdAstGqJZW7v3V9lChoBkdAcSQeC04R3GgHS9xoCEdAstG9JCjUNXV9lChoBkdAb67AyEcsDmgHS85oCEdAstHeA5JbuHV9lChoBkdAcdkDYRNAT2gHS8FoCEdAstHxh9b5dnV9lChoBkdAcjh6j3225WgHS+VoCEdAstIBR2r4nHV9lChoBkdAcoGus90RvmgHS9poCEdAstI+IKtxMnV9lChoBkdAcRcM/QjUu2gHS9RoCEdAstLZWwNb1XV9lChoBkdAdCdZ/0/W2GgHTQkBaAhHQLLS84jbBXV1fZQoaAZHQHIL6j8DSw5oB0vEaAhHQLLS98+zMRp1fZQoaAZHQHFUGrwOOKhoB0u9aAhHQLLTEH9m6Gx1fZQoaAZHQG/zFGXokiVoB0vNaAhHQLLTT8tf5UN1fZQoaAZHQHL/5qqOtGNoB0u9aAhHQLLTWYyO7xx1fZQoaAZHQHM8hWDHwPRoB0vvaAhHQLLTWxTsIE91fZQoaAZHQHG79oJzDGdoB0vVaAhHQLLTdQoTfzl1fZQoaAZHQHCRl85S3spoB0vCaAhHQLLUWuIyj591fZQoaAZHQHD5neizsyBoB0u6aAhHQLLUiyO7xut1fZQoaAZHQHD4cWCVbA1oB0vhaAhHQLLUw5tFa0R1fZQoaAZHQHNU978ejmFoB0vHaAhHQLLU/lgtvn91fZQoaAZHQHHj4JqqOtJoB0vKaAhHQLLVED/2kBV1fZQoaAZHQHKlNeY2Kl5oB0u+aAhHQLLVFFdszl91fZQoaAZHQHNBGUnogV5oB0vvaAhHQLLVRSGrS3N1fZQoaAZHQHGbSDVYp2FoB0vUaAhHQLLV44z7/GV1ZS4="
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
+ "_n_updates": 980,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
  ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
 
76
  "dtype": "int64",
77
  "_np_random": null
78
  },
79
+ "n_envs": 10,
80
+ "n_steps": 2048,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.99,
83
  "ent_coef": 0.01,
84
  "vf_coef": 0.5,
85
  "max_grad_norm": 0.5,
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:71fb298083d26a1d3b1c2d07d71e8592cc4ab5b4df2d430df69eb891648b6029
3
  size 87929
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:24723a58ef156ce4617d597ac5289c9d3b47a852ca58c56d76ab94e429ba3498
3
  size 87929
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:fba5f207a8ed72d91e33ffe0b7d96e0ae6c4913181c587e10fc660ad94dfd661
3
  size 43329
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:67d9e489e12f9629703d769d94ec019117699ec135ace70499747a0ba697130a
3
  size 43329
ppo-LunarLander-v2/system_info.txt CHANGED
@@ -1,4 +1,4 @@
1
- - OS: Linux-5.15.90.1-microsoft-standard-WSL2-x86_64-with-glibc2.31 # 1 SMP Fri Jan 27 02:56:13 UTC 2023
2
  - Python: 3.10.12
3
  - Stable-Baselines3: 2.0.0a5
4
  - PyTorch: 2.0.1+cu118
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
  - Python: 3.10.12
3
  - Stable-Baselines3: 2.0.0a5
4
  - PyTorch: 2.0.1+cu118
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 8.637881352112748, "std_reward": 174.6076887015636, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-03T09:32:21.431528"}
 
1
+ {"mean_reward": 276.2177373796943, "std_reward": 24.753711549448216, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-04T16:10:30.116891"}