update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
datasets:
|
5 |
+
- fdner
|
6 |
+
metrics:
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
- accuracy
|
11 |
+
model-index:
|
12 |
+
- name: bert-base-chinese-finetuned-ner-v1
|
13 |
+
results:
|
14 |
+
- task:
|
15 |
+
name: Token Classification
|
16 |
+
type: token-classification
|
17 |
+
dataset:
|
18 |
+
name: fdner
|
19 |
+
type: fdner
|
20 |
+
args: fdner
|
21 |
+
metrics:
|
22 |
+
- name: Precision
|
23 |
+
type: precision
|
24 |
+
value: 0.981203007518797
|
25 |
+
- name: Recall
|
26 |
+
type: recall
|
27 |
+
value: 0.9886363636363636
|
28 |
+
- name: F1
|
29 |
+
type: f1
|
30 |
+
value: 0.9849056603773584
|
31 |
+
- name: Accuracy
|
32 |
+
type: accuracy
|
33 |
+
value: 0.9909536373916321
|
34 |
+
---
|
35 |
+
|
36 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
37 |
+
should probably proofread and complete it, then remove this comment. -->
|
38 |
+
|
39 |
+
# bert-base-chinese-finetuned-ner-v1
|
40 |
+
|
41 |
+
This model is a fine-tuned version of [bert-base-chinese](https://huggingface.co/bert-base-chinese) on the fdner dataset.
|
42 |
+
It achieves the following results on the evaluation set:
|
43 |
+
- Loss: 0.0413
|
44 |
+
- Precision: 0.9812
|
45 |
+
- Recall: 0.9886
|
46 |
+
- F1: 0.9849
|
47 |
+
- Accuracy: 0.9910
|
48 |
+
|
49 |
+
## Model description
|
50 |
+
|
51 |
+
More information needed
|
52 |
+
|
53 |
+
## Intended uses & limitations
|
54 |
+
|
55 |
+
More information needed
|
56 |
+
|
57 |
+
## Training and evaluation data
|
58 |
+
|
59 |
+
More information needed
|
60 |
+
|
61 |
+
## Training procedure
|
62 |
+
|
63 |
+
### Training hyperparameters
|
64 |
+
|
65 |
+
The following hyperparameters were used during training:
|
66 |
+
- learning_rate: 2e-05
|
67 |
+
- train_batch_size: 10
|
68 |
+
- eval_batch_size: 10
|
69 |
+
- seed: 42
|
70 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
71 |
+
- lr_scheduler_type: linear
|
72 |
+
- num_epochs: 30
|
73 |
+
|
74 |
+
### Training results
|
75 |
+
|
76 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
77 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
78 |
+
| No log | 1.0 | 8 | 2.0640 | 0.0 | 0.0 | 0.0 | 0.4323 |
|
79 |
+
| No log | 2.0 | 16 | 1.7416 | 0.0204 | 0.0227 | 0.0215 | 0.5123 |
|
80 |
+
| No log | 3.0 | 24 | 1.5228 | 0.0306 | 0.0265 | 0.0284 | 0.5456 |
|
81 |
+
| No log | 4.0 | 32 | 1.2597 | 0.0961 | 0.1591 | 0.1198 | 0.6491 |
|
82 |
+
| No log | 5.0 | 40 | 1.0273 | 0.1588 | 0.2159 | 0.1830 | 0.7450 |
|
83 |
+
| No log | 6.0 | 48 | 0.8026 | 0.2713 | 0.3258 | 0.2960 | 0.8208 |
|
84 |
+
| No log | 7.0 | 56 | 0.6547 | 0.36 | 0.4091 | 0.3830 | 0.8513 |
|
85 |
+
| No log | 8.0 | 64 | 0.5180 | 0.4650 | 0.5038 | 0.4836 | 0.8873 |
|
86 |
+
| No log | 9.0 | 72 | 0.4318 | 0.5139 | 0.5606 | 0.5362 | 0.9067 |
|
87 |
+
| No log | 10.0 | 80 | 0.3511 | 0.6169 | 0.6894 | 0.6512 | 0.9291 |
|
88 |
+
| No log | 11.0 | 88 | 0.2887 | 0.6691 | 0.6894 | 0.6791 | 0.9414 |
|
89 |
+
| No log | 12.0 | 96 | 0.2396 | 0.7042 | 0.7576 | 0.7299 | 0.9516 |
|
90 |
+
| No log | 13.0 | 104 | 0.2052 | 0.7568 | 0.8371 | 0.7950 | 0.9587 |
|
91 |
+
| No log | 14.0 | 112 | 0.1751 | 0.8303 | 0.8712 | 0.8503 | 0.9610 |
|
92 |
+
| No log | 15.0 | 120 | 0.1512 | 0.8464 | 0.8977 | 0.8713 | 0.9668 |
|
93 |
+
| No log | 16.0 | 128 | 0.1338 | 0.8759 | 0.9091 | 0.8922 | 0.9710 |
|
94 |
+
| No log | 17.0 | 136 | 0.1147 | 0.8959 | 0.9129 | 0.9043 | 0.9746 |
|
95 |
+
| No log | 18.0 | 144 | 0.1011 | 0.9326 | 0.9432 | 0.9379 | 0.9761 |
|
96 |
+
| No log | 19.0 | 152 | 0.0902 | 0.9251 | 0.9356 | 0.9303 | 0.9795 |
|
97 |
+
| No log | 20.0 | 160 | 0.0806 | 0.9440 | 0.9583 | 0.9511 | 0.9804 |
|
98 |
+
| No log | 21.0 | 168 | 0.0743 | 0.9586 | 0.9659 | 0.9623 | 0.9812 |
|
99 |
+
| No log | 22.0 | 176 | 0.0649 | 0.9511 | 0.9583 | 0.9547 | 0.9851 |
|
100 |
+
| No log | 23.0 | 184 | 0.0595 | 0.9591 | 0.9773 | 0.9681 | 0.9876 |
|
101 |
+
| No log | 24.0 | 192 | 0.0537 | 0.9625 | 0.9735 | 0.9680 | 0.9883 |
|
102 |
+
| No log | 25.0 | 200 | 0.0505 | 0.9701 | 0.9848 | 0.9774 | 0.9894 |
|
103 |
+
| No log | 26.0 | 208 | 0.0464 | 0.9737 | 0.9811 | 0.9774 | 0.9904 |
|
104 |
+
| No log | 27.0 | 216 | 0.0439 | 0.9737 | 0.9811 | 0.9774 | 0.9906 |
|
105 |
+
| No log | 28.0 | 224 | 0.0428 | 0.9812 | 0.9886 | 0.9849 | 0.9910 |
|
106 |
+
| No log | 29.0 | 232 | 0.0417 | 0.9812 | 0.9886 | 0.9849 | 0.9910 |
|
107 |
+
| No log | 30.0 | 240 | 0.0413 | 0.9812 | 0.9886 | 0.9849 | 0.9910 |
|
108 |
+
|
109 |
+
|
110 |
+
### Framework versions
|
111 |
+
|
112 |
+
- Transformers 4.18.0
|
113 |
+
- Pytorch 1.10.0+cu111
|
114 |
+
- Datasets 2.0.0
|
115 |
+
- Tokenizers 0.11.6
|