End of training
Browse files- README.md +25 -25
- logs/events.out.tfevents.1714565598.DESKTOP-3CFO1LV.4799.0 +2 -2
- model.safetensors +1 -1
- preprocessor_config.json +1 -1
README.md
CHANGED
@@ -17,14 +17,14 @@ should probably proofread and complete it, then remove this comment. -->
|
|
17 |
|
18 |
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
-
- Loss: 0.
|
21 |
-
- Answer: {'precision': 0.
|
22 |
-
- Header: {'precision': 0.
|
23 |
-
- Question: {'precision': 0.
|
24 |
-
- Overall Precision: 0.
|
25 |
-
- Overall Recall: 0.
|
26 |
-
- Overall F1: 0.
|
27 |
-
- Overall Accuracy: 0.
|
28 |
|
29 |
## Model description
|
30 |
|
@@ -54,23 +54,23 @@ The following hyperparameters were used during training:
|
|
54 |
|
55 |
### Training results
|
56 |
|
57 |
-
| Training Loss | Epoch | Step | Validation Loss | Answer
|
58 |
-
|
59 |
-
| 1.
|
60 |
-
| 1.
|
61 |
-
| 1.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
|
75 |
|
76 |
### Framework versions
|
|
|
17 |
|
18 |
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.7028
|
21 |
+
- Answer: {'precision': 0.7362637362637363, 'recall': 0.8281829419035847, 'f1': 0.779522978475858, 'number': 809}
|
22 |
+
- Header: {'precision': 0.33093525179856115, 'recall': 0.3865546218487395, 'f1': 0.35658914728682173, 'number': 119}
|
23 |
+
- Question: {'precision': 0.7906360424028268, 'recall': 0.8403755868544601, 'f1': 0.81474738279472, 'number': 1065}
|
24 |
+
- Overall Precision: 0.7387
|
25 |
+
- Overall Recall: 0.8083
|
26 |
+
- Overall F1: 0.7719
|
27 |
+
- Overall Accuracy: 0.8094
|
28 |
|
29 |
## Model description
|
30 |
|
|
|
54 |
|
55 |
### Training results
|
56 |
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
59 |
+
| 1.8038 | 1.0 | 10 | 1.5774 | {'precision': 0.020026702269692925, 'recall': 0.018541409147095178, 'f1': 0.01925545571245186, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.15968586387434555, 'recall': 0.05727699530516432, 'f1': 0.08431237042156187, 'number': 1065} | 0.0672 | 0.0381 | 0.0487 | 0.3785 |
|
60 |
+
| 1.4615 | 2.0 | 20 | 1.2492 | {'precision': 0.13497652582159625, 'recall': 0.14215080346106304, 'f1': 0.13847080072245638, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.4067796610169492, 'recall': 0.4732394366197183, 'f1': 0.4375, 'number': 1065} | 0.2960 | 0.3106 | 0.3031 | 0.5839 |
|
61 |
+
| 1.121 | 3.0 | 30 | 0.9545 | {'precision': 0.4633642930856553, 'recall': 0.5550061804697157, 'f1': 0.5050618672665917, 'number': 809} | {'precision': 0.1111111111111111, 'recall': 0.008403361344537815, 'f1': 0.015625, 'number': 119} | {'precision': 0.5644546147978642, 'recall': 0.6948356807511737, 'f1': 0.6228956228956228, 'number': 1065} | 0.5199 | 0.5971 | 0.5558 | 0.7097 |
|
62 |
+
| 0.8446 | 4.0 | 40 | 0.7984 | {'precision': 0.5806451612903226, 'recall': 0.6897404202719407, 'f1': 0.6305084745762712, 'number': 809} | {'precision': 0.04878048780487805, 'recall': 0.01680672268907563, 'f1': 0.025, 'number': 119} | {'precision': 0.6506024096385542, 'recall': 0.7605633802816901, 'f1': 0.7012987012987013, 'number': 1065} | 0.6097 | 0.6874 | 0.6462 | 0.7567 |
|
63 |
+
| 0.6751 | 5.0 | 50 | 0.7137 | {'precision': 0.6598049837486457, 'recall': 0.7527812113720643, 'f1': 0.7032332563510393, 'number': 809} | {'precision': 0.18666666666666668, 'recall': 0.11764705882352941, 'f1': 0.14432989690721648, 'number': 119} | {'precision': 0.694006309148265, 'recall': 0.8262910798122066, 'f1': 0.7543934847835405, 'number': 1065} | 0.6633 | 0.7541 | 0.7058 | 0.7900 |
|
64 |
+
| 0.5714 | 6.0 | 60 | 0.6914 | {'precision': 0.6613065326633166, 'recall': 0.8133498145859085, 'f1': 0.729490022172949, 'number': 809} | {'precision': 0.26153846153846155, 'recall': 0.14285714285714285, 'f1': 0.18478260869565216, 'number': 119} | {'precision': 0.7305699481865285, 'recall': 0.7943661971830986, 'f1': 0.7611336032388665, 'number': 1065} | 0.6858 | 0.7632 | 0.7224 | 0.7861 |
|
65 |
+
| 0.5064 | 7.0 | 70 | 0.6675 | {'precision': 0.6880927291886196, 'recall': 0.8071693448702101, 'f1': 0.7428896473265074, 'number': 809} | {'precision': 0.2125984251968504, 'recall': 0.226890756302521, 'f1': 0.21951219512195122, 'number': 119} | {'precision': 0.7450812660393499, 'recall': 0.8178403755868544, 'f1': 0.7797672336615935, 'number': 1065} | 0.6909 | 0.7782 | 0.7319 | 0.7985 |
|
66 |
+
| 0.4472 | 8.0 | 80 | 0.6608 | {'precision': 0.6995798319327731, 'recall': 0.823238566131026, 'f1': 0.7563884156729132, 'number': 809} | {'precision': 0.23529411764705882, 'recall': 0.23529411764705882, 'f1': 0.23529411764705882, 'number': 119} | {'precision': 0.7419087136929461, 'recall': 0.8394366197183099, 'f1': 0.7876651982378854, 'number': 1065} | 0.6977 | 0.7968 | 0.7440 | 0.8048 |
|
67 |
+
| 0.3918 | 9.0 | 90 | 0.6697 | {'precision': 0.7226435536294691, 'recall': 0.8244746600741656, 'f1': 0.7702078521939953, 'number': 809} | {'precision': 0.2647058823529412, 'recall': 0.3025210084033613, 'f1': 0.2823529411764706, 'number': 119} | {'precision': 0.7542808219178082, 'recall': 0.8272300469483568, 'f1': 0.7890729959695477, 'number': 1065} | 0.7113 | 0.7948 | 0.7507 | 0.8038 |
|
68 |
+
| 0.3803 | 10.0 | 100 | 0.6890 | {'precision': 0.7176724137931034, 'recall': 0.823238566131026, 'f1': 0.7668393782383419, 'number': 809} | {'precision': 0.2890625, 'recall': 0.31092436974789917, 'f1': 0.29959514170040485, 'number': 119} | {'precision': 0.7899910634495085, 'recall': 0.8300469483568075, 'f1': 0.8095238095238095, 'number': 1065} | 0.7297 | 0.7963 | 0.7615 | 0.8062 |
|
69 |
+
| 0.323 | 11.0 | 110 | 0.6893 | {'precision': 0.7279651795429815, 'recall': 0.826946847960445, 'f1': 0.7743055555555555, 'number': 809} | {'precision': 0.3161764705882353, 'recall': 0.36134453781512604, 'f1': 0.3372549019607843, 'number': 119} | {'precision': 0.7728055077452668, 'recall': 0.8431924882629108, 'f1': 0.8064660978895375, 'number': 1065} | 0.7262 | 0.8078 | 0.7648 | 0.8068 |
|
70 |
+
| 0.3093 | 12.0 | 120 | 0.6906 | {'precision': 0.7358490566037735, 'recall': 0.8195302843016069, 'f1': 0.775438596491228, 'number': 809} | {'precision': 0.33093525179856115, 'recall': 0.3865546218487395, 'f1': 0.35658914728682173, 'number': 119} | {'precision': 0.7902654867256638, 'recall': 0.8384976525821596, 'f1': 0.8136674259681094, 'number': 1065} | 0.7382 | 0.8038 | 0.7696 | 0.8096 |
|
71 |
+
| 0.2963 | 13.0 | 130 | 0.6953 | {'precision': 0.7271739130434782, 'recall': 0.826946847960445, 'f1': 0.7738577212261423, 'number': 809} | {'precision': 0.3181818181818182, 'recall': 0.35294117647058826, 'f1': 0.3346613545816733, 'number': 119} | {'precision': 0.7943262411347518, 'recall': 0.8413145539906103, 'f1': 0.8171454628362973, 'number': 1065} | 0.7372 | 0.8063 | 0.7702 | 0.8099 |
|
72 |
+
| 0.2773 | 14.0 | 140 | 0.6991 | {'precision': 0.7343578485181119, 'recall': 0.826946847960445, 'f1': 0.7779069767441861, 'number': 809} | {'precision': 0.3283582089552239, 'recall': 0.3697478991596639, 'f1': 0.34782608695652173, 'number': 119} | {'precision': 0.7982222222222223, 'recall': 0.8431924882629108, 'f1': 0.8200913242009132, 'number': 1065} | 0.7424 | 0.8083 | 0.7740 | 0.8099 |
|
73 |
+
| 0.2687 | 15.0 | 150 | 0.7028 | {'precision': 0.7362637362637363, 'recall': 0.8281829419035847, 'f1': 0.779522978475858, 'number': 809} | {'precision': 0.33093525179856115, 'recall': 0.3865546218487395, 'f1': 0.35658914728682173, 'number': 119} | {'precision': 0.7906360424028268, 'recall': 0.8403755868544601, 'f1': 0.81474738279472, 'number': 1065} | 0.7387 | 0.8083 | 0.7719 | 0.8094 |
|
74 |
|
75 |
|
76 |
### Framework versions
|
logs/events.out.tfevents.1714565598.DESKTOP-3CFO1LV.4799.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:be57fe7894430bb82844257a65d24ee9f0f58b958403aeb0ce56176c4cfc1577
|
3 |
+
size 15846
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 450558212
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:18a14a8f8c46a423eed0a91c32856e2c20c5ceb52926fd5b05e4c9128bedc943
|
3 |
size 450558212
|
preprocessor_config.json
CHANGED
@@ -11,7 +11,7 @@
|
|
11 |
"data_format",
|
12 |
"input_data_format"
|
13 |
],
|
14 |
-
"apply_ocr":
|
15 |
"do_resize": true,
|
16 |
"image_processor_type": "LayoutLMv2ImageProcessor",
|
17 |
"ocr_lang": null,
|
|
|
11 |
"data_format",
|
12 |
"input_data_format"
|
13 |
],
|
14 |
+
"apply_ocr": true,
|
15 |
"do_resize": true,
|
16 |
"image_processor_type": "LayoutLMv2ImageProcessor",
|
17 |
"ocr_lang": null,
|