leom21 commited on
Commit
a6b0f19
1 Parent(s): 39b8fdc

End of training

Browse files
README.md CHANGED
@@ -17,14 +17,14 @@ should probably proofread and complete it, then remove this comment. -->
17
 
18
  This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
19
  It achieves the following results on the evaluation set:
20
- - Loss: 0.6891
21
- - Answer: {'precision': 0.7296996662958843, 'recall': 0.8108776266996292, 'f1': 0.7681498829039812, 'number': 809}
22
- - Header: {'precision': 0.3620689655172414, 'recall': 0.35294117647058826, 'f1': 0.3574468085106383, 'number': 119}
23
- - Question: {'precision': 0.7939609236234458, 'recall': 0.8394366197183099, 'f1': 0.8160657234139663, 'number': 1065}
24
- - Overall Precision: 0.7436
25
- - Overall Recall: 0.7988
26
- - Overall F1: 0.7702
27
- - Overall Accuracy: 0.8108
28
 
29
  ## Model description
30
 
@@ -54,23 +54,23 @@ The following hyperparameters were used during training:
54
 
55
  ### Training results
56
 
57
- | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
58
- |:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
59
- | 1.8006 | 1.0 | 10 | 1.5983 | {'precision': 0.015552099533437015, 'recall': 0.012360939431396786, 'f1': 0.013774104683195591, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.20512820512820512, 'recall': 0.12018779342723004, 'f1': 0.15156897572528122, 'number': 1065} | 0.1089 | 0.0692 | 0.0847 | 0.3439 |
60
- | 1.4817 | 2.0 | 20 | 1.2758 | {'precision': 0.23966065747614, 'recall': 0.27935723114956734, 'f1': 0.2579908675799087, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.4002998500749625, 'recall': 0.5014084507042254, 'f1': 0.4451854939558149, 'number': 1065} | 0.3338 | 0.3813 | 0.3560 | 0.5953 |
61
- | 1.1479 | 3.0 | 30 | 0.9589 | {'precision': 0.48957298907646474, 'recall': 0.6093943139678616, 'f1': 0.5429515418502202, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.5823389021479713, 'recall': 0.6873239436619718, 'f1': 0.6304909560723513, 'number': 1065} | 0.5361 | 0.6147 | 0.5727 | 0.6955 |
62
- | 0.872 | 4.0 | 40 | 0.8144 | {'precision': 0.574447646493756, 'recall': 0.7391841779975278, 'f1': 0.6464864864864865, 'number': 809} | {'precision': 0.075, 'recall': 0.025210084033613446, 'f1': 0.03773584905660377, 'number': 119} | {'precision': 0.6640281442392261, 'recall': 0.7089201877934272, 'f1': 0.6857402361489555, 'number': 1065} | 0.6114 | 0.6804 | 0.6440 | 0.7492 |
63
- | 0.6944 | 5.0 | 50 | 0.7241 | {'precision': 0.638682252922423, 'recall': 0.7428924598269468, 'f1': 0.6868571428571428, 'number': 809} | {'precision': 0.1875, 'recall': 0.12605042016806722, 'f1': 0.1507537688442211, 'number': 119} | {'precision': 0.674493927125506, 'recall': 0.7821596244131456, 'f1': 0.7243478260869566, 'number': 1065} | 0.6423 | 0.7270 | 0.6820 | 0.7876 |
64
- | 0.588 | 6.0 | 60 | 0.6902 | {'precision': 0.6445115810674723, 'recall': 0.7911001236093943, 'f1': 0.7103218645948945, 'number': 809} | {'precision': 0.265625, 'recall': 0.14285714285714285, 'f1': 0.18579234972677594, 'number': 119} | {'precision': 0.7232219365895458, 'recall': 0.7924882629107981, 'f1': 0.7562724014336917, 'number': 1065} | 0.6749 | 0.7531 | 0.7119 | 0.7922 |
65
- | 0.5155 | 7.0 | 70 | 0.6651 | {'precision': 0.6762820512820513, 'recall': 0.7824474660074165, 'f1': 0.7255014326647564, 'number': 809} | {'precision': 0.22115384615384615, 'recall': 0.19327731092436976, 'f1': 0.2062780269058296, 'number': 119} | {'precision': 0.7402597402597403, 'recall': 0.8028169014084507, 'f1': 0.7702702702702703, 'number': 1065} | 0.6884 | 0.7582 | 0.7216 | 0.7979 |
66
- | 0.4567 | 8.0 | 80 | 0.6544 | {'precision': 0.682062298603652, 'recall': 0.7849196538936959, 'f1': 0.7298850574712644, 'number': 809} | {'precision': 0.21359223300970873, 'recall': 0.18487394957983194, 'f1': 0.1981981981981982, 'number': 119} | {'precision': 0.759515570934256, 'recall': 0.8244131455399061, 'f1': 0.790634849167042, 'number': 1065} | 0.7009 | 0.7702 | 0.7339 | 0.8047 |
67
- | 0.4044 | 9.0 | 90 | 0.6556 | {'precision': 0.7029379760609358, 'recall': 0.7985166872682324, 'f1': 0.7476851851851851, 'number': 809} | {'precision': 0.2621359223300971, 'recall': 0.226890756302521, 'f1': 0.24324324324324326, 'number': 119} | {'precision': 0.7710320901994796, 'recall': 0.8347417840375587, 'f1': 0.8016230838593327, 'number': 1065} | 0.7182 | 0.7837 | 0.7495 | 0.8089 |
68
- | 0.3974 | 10.0 | 100 | 0.6652 | {'precision': 0.7141292442497261, 'recall': 0.8059332509270705, 'f1': 0.7572590011614402, 'number': 809} | {'precision': 0.30357142857142855, 'recall': 0.2857142857142857, 'f1': 0.2943722943722944, 'number': 119} | {'precision': 0.7917414721723519, 'recall': 0.828169014084507, 'f1': 0.8095456631482332, 'number': 1065} | 0.7331 | 0.7868 | 0.7590 | 0.8094 |
69
- | 0.3327 | 11.0 | 110 | 0.6705 | {'precision': 0.720620842572062, 'recall': 0.8034610630407911, 'f1': 0.7597895967270601, 'number': 809} | {'precision': 0.336283185840708, 'recall': 0.31932773109243695, 'f1': 0.32758620689655166, 'number': 119} | {'precision': 0.7891939769707705, 'recall': 0.8366197183098592, 'f1': 0.812215132178669, 'number': 1065} | 0.7365 | 0.7923 | 0.7634 | 0.8096 |
70
- | 0.3194 | 12.0 | 120 | 0.6719 | {'precision': 0.7239057239057239, 'recall': 0.7972805933250927, 'f1': 0.7588235294117647, 'number': 809} | {'precision': 0.3853211009174312, 'recall': 0.35294117647058826, 'f1': 0.36842105263157904, 'number': 119} | {'precision': 0.7911111111111111, 'recall': 0.8356807511737089, 'f1': 0.812785388127854, 'number': 1065} | 0.7421 | 0.7913 | 0.7659 | 0.8115 |
71
- | 0.301 | 13.0 | 130 | 0.6828 | {'precision': 0.7256637168141593, 'recall': 0.8108776266996292, 'f1': 0.7659077641564506, 'number': 809} | {'precision': 0.41414141414141414, 'recall': 0.3445378151260504, 'f1': 0.3761467889908257, 'number': 119} | {'precision': 0.8005415162454874, 'recall': 0.8328638497652582, 'f1': 0.8163828808099403, 'number': 1065} | 0.7504 | 0.7948 | 0.7719 | 0.8099 |
72
- | 0.286 | 14.0 | 140 | 0.6856 | {'precision': 0.7279821627647715, 'recall': 0.8071693448702101, 'f1': 0.7655334114888628, 'number': 809} | {'precision': 0.3853211009174312, 'recall': 0.35294117647058826, 'f1': 0.36842105263157904, 'number': 119} | {'precision': 0.7931034482758621, 'recall': 0.8422535211267606, 'f1': 0.8169398907103825, 'number': 1065} | 0.7450 | 0.7988 | 0.7709 | 0.8108 |
73
- | 0.2789 | 15.0 | 150 | 0.6891 | {'precision': 0.7296996662958843, 'recall': 0.8108776266996292, 'f1': 0.7681498829039812, 'number': 809} | {'precision': 0.3620689655172414, 'recall': 0.35294117647058826, 'f1': 0.3574468085106383, 'number': 119} | {'precision': 0.7939609236234458, 'recall': 0.8394366197183099, 'f1': 0.8160657234139663, 'number': 1065} | 0.7436 | 0.7988 | 0.7702 | 0.8108 |
74
 
75
 
76
  ### Framework versions
 
17
 
18
  This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
19
  It achieves the following results on the evaluation set:
20
+ - Loss: 0.7028
21
+ - Answer: {'precision': 0.7362637362637363, 'recall': 0.8281829419035847, 'f1': 0.779522978475858, 'number': 809}
22
+ - Header: {'precision': 0.33093525179856115, 'recall': 0.3865546218487395, 'f1': 0.35658914728682173, 'number': 119}
23
+ - Question: {'precision': 0.7906360424028268, 'recall': 0.8403755868544601, 'f1': 0.81474738279472, 'number': 1065}
24
+ - Overall Precision: 0.7387
25
+ - Overall Recall: 0.8083
26
+ - Overall F1: 0.7719
27
+ - Overall Accuracy: 0.8094
28
 
29
  ## Model description
30
 
 
54
 
55
  ### Training results
56
 
57
+ | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
58
+ |:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
59
+ | 1.8038 | 1.0 | 10 | 1.5774 | {'precision': 0.020026702269692925, 'recall': 0.018541409147095178, 'f1': 0.01925545571245186, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.15968586387434555, 'recall': 0.05727699530516432, 'f1': 0.08431237042156187, 'number': 1065} | 0.0672 | 0.0381 | 0.0487 | 0.3785 |
60
+ | 1.4615 | 2.0 | 20 | 1.2492 | {'precision': 0.13497652582159625, 'recall': 0.14215080346106304, 'f1': 0.13847080072245638, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.4067796610169492, 'recall': 0.4732394366197183, 'f1': 0.4375, 'number': 1065} | 0.2960 | 0.3106 | 0.3031 | 0.5839 |
61
+ | 1.121 | 3.0 | 30 | 0.9545 | {'precision': 0.4633642930856553, 'recall': 0.5550061804697157, 'f1': 0.5050618672665917, 'number': 809} | {'precision': 0.1111111111111111, 'recall': 0.008403361344537815, 'f1': 0.015625, 'number': 119} | {'precision': 0.5644546147978642, 'recall': 0.6948356807511737, 'f1': 0.6228956228956228, 'number': 1065} | 0.5199 | 0.5971 | 0.5558 | 0.7097 |
62
+ | 0.8446 | 4.0 | 40 | 0.7984 | {'precision': 0.5806451612903226, 'recall': 0.6897404202719407, 'f1': 0.6305084745762712, 'number': 809} | {'precision': 0.04878048780487805, 'recall': 0.01680672268907563, 'f1': 0.025, 'number': 119} | {'precision': 0.6506024096385542, 'recall': 0.7605633802816901, 'f1': 0.7012987012987013, 'number': 1065} | 0.6097 | 0.6874 | 0.6462 | 0.7567 |
63
+ | 0.6751 | 5.0 | 50 | 0.7137 | {'precision': 0.6598049837486457, 'recall': 0.7527812113720643, 'f1': 0.7032332563510393, 'number': 809} | {'precision': 0.18666666666666668, 'recall': 0.11764705882352941, 'f1': 0.14432989690721648, 'number': 119} | {'precision': 0.694006309148265, 'recall': 0.8262910798122066, 'f1': 0.7543934847835405, 'number': 1065} | 0.6633 | 0.7541 | 0.7058 | 0.7900 |
64
+ | 0.5714 | 6.0 | 60 | 0.6914 | {'precision': 0.6613065326633166, 'recall': 0.8133498145859085, 'f1': 0.729490022172949, 'number': 809} | {'precision': 0.26153846153846155, 'recall': 0.14285714285714285, 'f1': 0.18478260869565216, 'number': 119} | {'precision': 0.7305699481865285, 'recall': 0.7943661971830986, 'f1': 0.7611336032388665, 'number': 1065} | 0.6858 | 0.7632 | 0.7224 | 0.7861 |
65
+ | 0.5064 | 7.0 | 70 | 0.6675 | {'precision': 0.6880927291886196, 'recall': 0.8071693448702101, 'f1': 0.7428896473265074, 'number': 809} | {'precision': 0.2125984251968504, 'recall': 0.226890756302521, 'f1': 0.21951219512195122, 'number': 119} | {'precision': 0.7450812660393499, 'recall': 0.8178403755868544, 'f1': 0.7797672336615935, 'number': 1065} | 0.6909 | 0.7782 | 0.7319 | 0.7985 |
66
+ | 0.4472 | 8.0 | 80 | 0.6608 | {'precision': 0.6995798319327731, 'recall': 0.823238566131026, 'f1': 0.7563884156729132, 'number': 809} | {'precision': 0.23529411764705882, 'recall': 0.23529411764705882, 'f1': 0.23529411764705882, 'number': 119} | {'precision': 0.7419087136929461, 'recall': 0.8394366197183099, 'f1': 0.7876651982378854, 'number': 1065} | 0.6977 | 0.7968 | 0.7440 | 0.8048 |
67
+ | 0.3918 | 9.0 | 90 | 0.6697 | {'precision': 0.7226435536294691, 'recall': 0.8244746600741656, 'f1': 0.7702078521939953, 'number': 809} | {'precision': 0.2647058823529412, 'recall': 0.3025210084033613, 'f1': 0.2823529411764706, 'number': 119} | {'precision': 0.7542808219178082, 'recall': 0.8272300469483568, 'f1': 0.7890729959695477, 'number': 1065} | 0.7113 | 0.7948 | 0.7507 | 0.8038 |
68
+ | 0.3803 | 10.0 | 100 | 0.6890 | {'precision': 0.7176724137931034, 'recall': 0.823238566131026, 'f1': 0.7668393782383419, 'number': 809} | {'precision': 0.2890625, 'recall': 0.31092436974789917, 'f1': 0.29959514170040485, 'number': 119} | {'precision': 0.7899910634495085, 'recall': 0.8300469483568075, 'f1': 0.8095238095238095, 'number': 1065} | 0.7297 | 0.7963 | 0.7615 | 0.8062 |
69
+ | 0.323 | 11.0 | 110 | 0.6893 | {'precision': 0.7279651795429815, 'recall': 0.826946847960445, 'f1': 0.7743055555555555, 'number': 809} | {'precision': 0.3161764705882353, 'recall': 0.36134453781512604, 'f1': 0.3372549019607843, 'number': 119} | {'precision': 0.7728055077452668, 'recall': 0.8431924882629108, 'f1': 0.8064660978895375, 'number': 1065} | 0.7262 | 0.8078 | 0.7648 | 0.8068 |
70
+ | 0.3093 | 12.0 | 120 | 0.6906 | {'precision': 0.7358490566037735, 'recall': 0.8195302843016069, 'f1': 0.775438596491228, 'number': 809} | {'precision': 0.33093525179856115, 'recall': 0.3865546218487395, 'f1': 0.35658914728682173, 'number': 119} | {'precision': 0.7902654867256638, 'recall': 0.8384976525821596, 'f1': 0.8136674259681094, 'number': 1065} | 0.7382 | 0.8038 | 0.7696 | 0.8096 |
71
+ | 0.2963 | 13.0 | 130 | 0.6953 | {'precision': 0.7271739130434782, 'recall': 0.826946847960445, 'f1': 0.7738577212261423, 'number': 809} | {'precision': 0.3181818181818182, 'recall': 0.35294117647058826, 'f1': 0.3346613545816733, 'number': 119} | {'precision': 0.7943262411347518, 'recall': 0.8413145539906103, 'f1': 0.8171454628362973, 'number': 1065} | 0.7372 | 0.8063 | 0.7702 | 0.8099 |
72
+ | 0.2773 | 14.0 | 140 | 0.6991 | {'precision': 0.7343578485181119, 'recall': 0.826946847960445, 'f1': 0.7779069767441861, 'number': 809} | {'precision': 0.3283582089552239, 'recall': 0.3697478991596639, 'f1': 0.34782608695652173, 'number': 119} | {'precision': 0.7982222222222223, 'recall': 0.8431924882629108, 'f1': 0.8200913242009132, 'number': 1065} | 0.7424 | 0.8083 | 0.7740 | 0.8099 |
73
+ | 0.2687 | 15.0 | 150 | 0.7028 | {'precision': 0.7362637362637363, 'recall': 0.8281829419035847, 'f1': 0.779522978475858, 'number': 809} | {'precision': 0.33093525179856115, 'recall': 0.3865546218487395, 'f1': 0.35658914728682173, 'number': 119} | {'precision': 0.7906360424028268, 'recall': 0.8403755868544601, 'f1': 0.81474738279472, 'number': 1065} | 0.7387 | 0.8083 | 0.7719 | 0.8094 |
74
 
75
 
76
  ### Framework versions
logs/events.out.tfevents.1714565598.DESKTOP-3CFO1LV.4799.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:dccfea9a2a41252fb91f9e4b00e96ef4705c73a028611856e79963f8d63b6808
3
- size 12645
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:be57fe7894430bb82844257a65d24ee9f0f58b958403aeb0ce56176c4cfc1577
3
+ size 15846
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:17ae85e9b80528aadbcc8bb9672d8210297fa8b842aa04c066431543aab08374
3
  size 450558212
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:18a14a8f8c46a423eed0a91c32856e2c20c5ceb52926fd5b05e4c9128bedc943
3
  size 450558212
preprocessor_config.json CHANGED
@@ -11,7 +11,7 @@
11
  "data_format",
12
  "input_data_format"
13
  ],
14
- "apply_ocr": false,
15
  "do_resize": true,
16
  "image_processor_type": "LayoutLMv2ImageProcessor",
17
  "ocr_lang": null,
 
11
  "data_format",
12
  "input_data_format"
13
  ],
14
+ "apply_ocr": true,
15
  "do_resize": true,
16
  "image_processor_type": "LayoutLMv2ImageProcessor",
17
  "ocr_lang": null,