leom21 commited on
Commit
7a18724
1 Parent(s): c561095

End of training

Browse files
README.md CHANGED
@@ -17,14 +17,14 @@ should probably proofread and complete it, then remove this comment. -->
17
 
18
  This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
19
  It achieves the following results on the evaluation set:
20
- - Loss: 0.6859
21
- - Answer: {'precision': 0.7175572519083969, 'recall': 0.8133498145859085, 'f1': 0.7624565469293164, 'number': 809}
22
- - Header: {'precision': 0.29411764705882354, 'recall': 0.33613445378151263, 'f1': 0.3137254901960785, 'number': 119}
23
- - Question: {'precision': 0.7724867724867724, 'recall': 0.8225352112676056, 'f1': 0.7967257844474761, 'number': 1065}
24
- - Overall Precision: 0.7197
25
- - Overall Recall: 0.7898
26
- - Overall F1: 0.7531
27
- - Overall Accuracy: 0.8101
28
 
29
  ## Model description
30
 
@@ -54,23 +54,23 @@ The following hyperparameters were used during training:
54
 
55
  ### Training results
56
 
57
- | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
58
- |:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
59
- | 1.8268 | 1.0 | 10 | 1.5857 | {'precision': 0.015523932729624839, 'recall': 0.014833127317676144, 'f1': 0.015170670037926676, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.17011834319526628, 'recall': 0.107981220657277, 'f1': 0.1321079839172889, 'number': 1065} | 0.0876 | 0.0637 | 0.0738 | 0.3586 |
60
- | 1.4514 | 2.0 | 20 | 1.2482 | {'precision': 0.28865979381443296, 'recall': 0.311495673671199, 'f1': 0.29964328180737215, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.38357142857142856, 'recall': 0.504225352112676, 'f1': 0.43569979716024343, 'number': 1065} | 0.3471 | 0.3959 | 0.3699 | 0.5859 |
61
- | 1.1188 | 3.0 | 30 | 0.9477 | {'precision': 0.5157232704402516, 'recall': 0.6081582200247219, 'f1': 0.5581395348837209, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.5390879478827362, 'recall': 0.6215962441314554, 'f1': 0.5774095071958134, 'number': 1065} | 0.5215 | 0.5790 | 0.5487 | 0.7076 |
62
- | 0.8437 | 4.0 | 40 | 0.7798 | {'precision': 0.5986124876114965, 'recall': 0.7466007416563659, 'f1': 0.6644664466446645, 'number': 809} | {'precision': 0.1875, 'recall': 0.07563025210084033, 'f1': 0.10778443113772454, 'number': 119} | {'precision': 0.6486718080548415, 'recall': 0.7107981220657277, 'f1': 0.6783154121863798, 'number': 1065} | 0.6160 | 0.6874 | 0.6498 | 0.7580 |
63
- | 0.6804 | 5.0 | 50 | 0.7073 | {'precision': 0.6413502109704642, 'recall': 0.7515451174289246, 'f1': 0.6920887877063175, 'number': 809} | {'precision': 0.3, 'recall': 0.17647058823529413, 'f1': 0.22222222222222224, 'number': 119} | {'precision': 0.6712662337662337, 'recall': 0.7765258215962442, 'f1': 0.7200696560731389, 'number': 1065} | 0.6471 | 0.7306 | 0.6863 | 0.7850 |
64
- | 0.5726 | 6.0 | 60 | 0.6805 | {'precision': 0.643141153081511, 'recall': 0.799752781211372, 'f1': 0.7129476584022039, 'number': 809} | {'precision': 0.3142857142857143, 'recall': 0.18487394957983194, 'f1': 0.23280423280423282, 'number': 119} | {'precision': 0.709372312983663, 'recall': 0.7746478873239436, 'f1': 0.7405745062836624, 'number': 1065} | 0.6673 | 0.7496 | 0.7060 | 0.7854 |
65
- | 0.5005 | 7.0 | 70 | 0.6536 | {'precision': 0.6701680672268907, 'recall': 0.788627935723115, 'f1': 0.7245883021010789, 'number': 809} | {'precision': 0.27450980392156865, 'recall': 0.23529411764705882, 'f1': 0.2533936651583711, 'number': 119} | {'precision': 0.743103448275862, 'recall': 0.8093896713615023, 'f1': 0.7748314606741572, 'number': 1065} | 0.6902 | 0.7667 | 0.7264 | 0.7982 |
66
- | 0.444 | 8.0 | 80 | 0.6526 | {'precision': 0.6802935010482181, 'recall': 0.8022249690976514, 'f1': 0.7362450368689732, 'number': 809} | {'precision': 0.26956521739130435, 'recall': 0.2605042016806723, 'f1': 0.264957264957265, 'number': 119} | {'precision': 0.7400690846286702, 'recall': 0.8046948356807512, 'f1': 0.7710301394511921, 'number': 1065} | 0.6902 | 0.7712 | 0.7284 | 0.8022 |
67
- | 0.3904 | 9.0 | 90 | 0.6549 | {'precision': 0.6905781584582441, 'recall': 0.7972805933250927, 'f1': 0.7401032702237521, 'number': 809} | {'precision': 0.26666666666666666, 'recall': 0.2689075630252101, 'f1': 0.26778242677824265, 'number': 119} | {'precision': 0.7554019014693172, 'recall': 0.8206572769953052, 'f1': 0.7866786678667866, 'number': 1065} | 0.7015 | 0.7782 | 0.7379 | 0.8073 |
68
- | 0.3778 | 10.0 | 100 | 0.6593 | {'precision': 0.6996805111821086, 'recall': 0.8121137206427689, 'f1': 0.7517162471395881, 'number': 809} | {'precision': 0.3018867924528302, 'recall': 0.2689075630252101, 'f1': 0.28444444444444444, 'number': 119} | {'precision': 0.7707231040564374, 'recall': 0.8206572769953052, 'f1': 0.7949067758071852, 'number': 1065} | 0.7173 | 0.7842 | 0.7493 | 0.8096 |
69
- | 0.3205 | 11.0 | 110 | 0.6673 | {'precision': 0.7185104052573932, 'recall': 0.8108776266996292, 'f1': 0.761904761904762, 'number': 809} | {'precision': 0.26277372262773724, 'recall': 0.3025210084033613, 'f1': 0.28125000000000006, 'number': 119} | {'precision': 0.7557643040136636, 'recall': 0.8309859154929577, 'f1': 0.7915921288014313, 'number': 1065} | 0.7100 | 0.7913 | 0.7485 | 0.8077 |
70
- | 0.3107 | 12.0 | 120 | 0.6723 | {'precision': 0.7185104052573932, 'recall': 0.8108776266996292, 'f1': 0.761904761904762, 'number': 809} | {'precision': 0.2803030303030303, 'recall': 0.31092436974789917, 'f1': 0.29482071713147406, 'number': 119} | {'precision': 0.7740213523131673, 'recall': 0.8169014084507042, 'f1': 0.7948835084513477, 'number': 1065} | 0.7206 | 0.7842 | 0.7511 | 0.8102 |
71
- | 0.2906 | 13.0 | 130 | 0.6774 | {'precision': 0.7175324675324676, 'recall': 0.8195302843016069, 'f1': 0.7651471436814773, 'number': 809} | {'precision': 0.2824427480916031, 'recall': 0.31092436974789917, 'f1': 0.29600000000000004, 'number': 119} | {'precision': 0.7678883071553229, 'recall': 0.8262910798122066, 'f1': 0.7960199004975125, 'number': 1065} | 0.7179 | 0.7928 | 0.7535 | 0.8111 |
72
- | 0.2684 | 14.0 | 140 | 0.6829 | {'precision': 0.716304347826087, 'recall': 0.8145859085290482, 'f1': 0.7622903412377097, 'number': 809} | {'precision': 0.2900763358778626, 'recall': 0.31932773109243695, 'f1': 0.304, 'number': 119} | {'precision': 0.7742504409171076, 'recall': 0.8244131455399061, 'f1': 0.7985447930877672, 'number': 1065} | 0.7208 | 0.7903 | 0.7539 | 0.8115 |
73
- | 0.2659 | 15.0 | 150 | 0.6859 | {'precision': 0.7175572519083969, 'recall': 0.8133498145859085, 'f1': 0.7624565469293164, 'number': 809} | {'precision': 0.29411764705882354, 'recall': 0.33613445378151263, 'f1': 0.3137254901960785, 'number': 119} | {'precision': 0.7724867724867724, 'recall': 0.8225352112676056, 'f1': 0.7967257844474761, 'number': 1065} | 0.7197 | 0.7898 | 0.7531 | 0.8101 |
74
 
75
 
76
  ### Framework versions
 
17
 
18
  This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
19
  It achieves the following results on the evaluation set:
20
+ - Loss: 0.6891
21
+ - Answer: {'precision': 0.7296996662958843, 'recall': 0.8108776266996292, 'f1': 0.7681498829039812, 'number': 809}
22
+ - Header: {'precision': 0.3620689655172414, 'recall': 0.35294117647058826, 'f1': 0.3574468085106383, 'number': 119}
23
+ - Question: {'precision': 0.7939609236234458, 'recall': 0.8394366197183099, 'f1': 0.8160657234139663, 'number': 1065}
24
+ - Overall Precision: 0.7436
25
+ - Overall Recall: 0.7988
26
+ - Overall F1: 0.7702
27
+ - Overall Accuracy: 0.8108
28
 
29
  ## Model description
30
 
 
54
 
55
  ### Training results
56
 
57
+ | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
58
+ |:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
59
+ | 1.8006 | 1.0 | 10 | 1.5983 | {'precision': 0.015552099533437015, 'recall': 0.012360939431396786, 'f1': 0.013774104683195591, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.20512820512820512, 'recall': 0.12018779342723004, 'f1': 0.15156897572528122, 'number': 1065} | 0.1089 | 0.0692 | 0.0847 | 0.3439 |
60
+ | 1.4817 | 2.0 | 20 | 1.2758 | {'precision': 0.23966065747614, 'recall': 0.27935723114956734, 'f1': 0.2579908675799087, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.4002998500749625, 'recall': 0.5014084507042254, 'f1': 0.4451854939558149, 'number': 1065} | 0.3338 | 0.3813 | 0.3560 | 0.5953 |
61
+ | 1.1479 | 3.0 | 30 | 0.9589 | {'precision': 0.48957298907646474, 'recall': 0.6093943139678616, 'f1': 0.5429515418502202, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.5823389021479713, 'recall': 0.6873239436619718, 'f1': 0.6304909560723513, 'number': 1065} | 0.5361 | 0.6147 | 0.5727 | 0.6955 |
62
+ | 0.872 | 4.0 | 40 | 0.8144 | {'precision': 0.574447646493756, 'recall': 0.7391841779975278, 'f1': 0.6464864864864865, 'number': 809} | {'precision': 0.075, 'recall': 0.025210084033613446, 'f1': 0.03773584905660377, 'number': 119} | {'precision': 0.6640281442392261, 'recall': 0.7089201877934272, 'f1': 0.6857402361489555, 'number': 1065} | 0.6114 | 0.6804 | 0.6440 | 0.7492 |
63
+ | 0.6944 | 5.0 | 50 | 0.7241 | {'precision': 0.638682252922423, 'recall': 0.7428924598269468, 'f1': 0.6868571428571428, 'number': 809} | {'precision': 0.1875, 'recall': 0.12605042016806722, 'f1': 0.1507537688442211, 'number': 119} | {'precision': 0.674493927125506, 'recall': 0.7821596244131456, 'f1': 0.7243478260869566, 'number': 1065} | 0.6423 | 0.7270 | 0.6820 | 0.7876 |
64
+ | 0.588 | 6.0 | 60 | 0.6902 | {'precision': 0.6445115810674723, 'recall': 0.7911001236093943, 'f1': 0.7103218645948945, 'number': 809} | {'precision': 0.265625, 'recall': 0.14285714285714285, 'f1': 0.18579234972677594, 'number': 119} | {'precision': 0.7232219365895458, 'recall': 0.7924882629107981, 'f1': 0.7562724014336917, 'number': 1065} | 0.6749 | 0.7531 | 0.7119 | 0.7922 |
65
+ | 0.5155 | 7.0 | 70 | 0.6651 | {'precision': 0.6762820512820513, 'recall': 0.7824474660074165, 'f1': 0.7255014326647564, 'number': 809} | {'precision': 0.22115384615384615, 'recall': 0.19327731092436976, 'f1': 0.2062780269058296, 'number': 119} | {'precision': 0.7402597402597403, 'recall': 0.8028169014084507, 'f1': 0.7702702702702703, 'number': 1065} | 0.6884 | 0.7582 | 0.7216 | 0.7979 |
66
+ | 0.4567 | 8.0 | 80 | 0.6544 | {'precision': 0.682062298603652, 'recall': 0.7849196538936959, 'f1': 0.7298850574712644, 'number': 809} | {'precision': 0.21359223300970873, 'recall': 0.18487394957983194, 'f1': 0.1981981981981982, 'number': 119} | {'precision': 0.759515570934256, 'recall': 0.8244131455399061, 'f1': 0.790634849167042, 'number': 1065} | 0.7009 | 0.7702 | 0.7339 | 0.8047 |
67
+ | 0.4044 | 9.0 | 90 | 0.6556 | {'precision': 0.7029379760609358, 'recall': 0.7985166872682324, 'f1': 0.7476851851851851, 'number': 809} | {'precision': 0.2621359223300971, 'recall': 0.226890756302521, 'f1': 0.24324324324324326, 'number': 119} | {'precision': 0.7710320901994796, 'recall': 0.8347417840375587, 'f1': 0.8016230838593327, 'number': 1065} | 0.7182 | 0.7837 | 0.7495 | 0.8089 |
68
+ | 0.3974 | 10.0 | 100 | 0.6652 | {'precision': 0.7141292442497261, 'recall': 0.8059332509270705, 'f1': 0.7572590011614402, 'number': 809} | {'precision': 0.30357142857142855, 'recall': 0.2857142857142857, 'f1': 0.2943722943722944, 'number': 119} | {'precision': 0.7917414721723519, 'recall': 0.828169014084507, 'f1': 0.8095456631482332, 'number': 1065} | 0.7331 | 0.7868 | 0.7590 | 0.8094 |
69
+ | 0.3327 | 11.0 | 110 | 0.6705 | {'precision': 0.720620842572062, 'recall': 0.8034610630407911, 'f1': 0.7597895967270601, 'number': 809} | {'precision': 0.336283185840708, 'recall': 0.31932773109243695, 'f1': 0.32758620689655166, 'number': 119} | {'precision': 0.7891939769707705, 'recall': 0.8366197183098592, 'f1': 0.812215132178669, 'number': 1065} | 0.7365 | 0.7923 | 0.7634 | 0.8096 |
70
+ | 0.3194 | 12.0 | 120 | 0.6719 | {'precision': 0.7239057239057239, 'recall': 0.7972805933250927, 'f1': 0.7588235294117647, 'number': 809} | {'precision': 0.3853211009174312, 'recall': 0.35294117647058826, 'f1': 0.36842105263157904, 'number': 119} | {'precision': 0.7911111111111111, 'recall': 0.8356807511737089, 'f1': 0.812785388127854, 'number': 1065} | 0.7421 | 0.7913 | 0.7659 | 0.8115 |
71
+ | 0.301 | 13.0 | 130 | 0.6828 | {'precision': 0.7256637168141593, 'recall': 0.8108776266996292, 'f1': 0.7659077641564506, 'number': 809} | {'precision': 0.41414141414141414, 'recall': 0.3445378151260504, 'f1': 0.3761467889908257, 'number': 119} | {'precision': 0.8005415162454874, 'recall': 0.8328638497652582, 'f1': 0.8163828808099403, 'number': 1065} | 0.7504 | 0.7948 | 0.7719 | 0.8099 |
72
+ | 0.286 | 14.0 | 140 | 0.6856 | {'precision': 0.7279821627647715, 'recall': 0.8071693448702101, 'f1': 0.7655334114888628, 'number': 809} | {'precision': 0.3853211009174312, 'recall': 0.35294117647058826, 'f1': 0.36842105263157904, 'number': 119} | {'precision': 0.7931034482758621, 'recall': 0.8422535211267606, 'f1': 0.8169398907103825, 'number': 1065} | 0.7450 | 0.7988 | 0.7709 | 0.8108 |
73
+ | 0.2789 | 15.0 | 150 | 0.6891 | {'precision': 0.7296996662958843, 'recall': 0.8108776266996292, 'f1': 0.7681498829039812, 'number': 809} | {'precision': 0.3620689655172414, 'recall': 0.35294117647058826, 'f1': 0.3574468085106383, 'number': 119} | {'precision': 0.7939609236234458, 'recall': 0.8394366197183099, 'f1': 0.8160657234139663, 'number': 1065} | 0.7436 | 0.7988 | 0.7702 | 0.8108 |
74
 
75
 
76
  ### Framework versions
logs/events.out.tfevents.1714565161.DESKTOP-3CFO1LV.2689.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:11dcbae81a6ac50453347349f0d7010ee3dc8c8e3e9a7a640aeb6839877af30d
3
- size 12645
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7f8972c5c1bee27cf65b39b95b514083a16d50b445f7ecf2d77ba61346d53929
3
+ size 15846
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:16f48160736c0faaa37504aca1ef4d75991f3ebfa66a13836b6624e5156bf46c
3
  size 450558212
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a9c4a5ea9f31994c950d421141af42e6b2b37f84af7bb9482eff8c68eb226fdc
3
  size 450558212