End of training
Browse files- README.md +25 -25
- logs/events.out.tfevents.1714565161.DESKTOP-3CFO1LV.2689.0 +2 -2
- model.safetensors +1 -1
README.md
CHANGED
@@ -17,14 +17,14 @@ should probably proofread and complete it, then remove this comment. -->
|
|
17 |
|
18 |
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
-
- Loss: 0.
|
21 |
-
- Answer: {'precision': 0.
|
22 |
-
- Header: {'precision': 0.
|
23 |
-
- Question: {'precision': 0.
|
24 |
-
- Overall Precision: 0.
|
25 |
-
- Overall Recall: 0.
|
26 |
-
- Overall F1: 0.
|
27 |
-
- Overall Accuracy: 0.
|
28 |
|
29 |
## Model description
|
30 |
|
@@ -54,23 +54,23 @@ The following hyperparameters were used during training:
|
|
54 |
|
55 |
### Training results
|
56 |
|
57 |
-
| Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question
|
58 |
-
|
59 |
-
| 1.
|
60 |
-
| 1.
|
61 |
-
| 1.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
|
75 |
|
76 |
### Framework versions
|
|
|
17 |
|
18 |
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.6891
|
21 |
+
- Answer: {'precision': 0.7296996662958843, 'recall': 0.8108776266996292, 'f1': 0.7681498829039812, 'number': 809}
|
22 |
+
- Header: {'precision': 0.3620689655172414, 'recall': 0.35294117647058826, 'f1': 0.3574468085106383, 'number': 119}
|
23 |
+
- Question: {'precision': 0.7939609236234458, 'recall': 0.8394366197183099, 'f1': 0.8160657234139663, 'number': 1065}
|
24 |
+
- Overall Precision: 0.7436
|
25 |
+
- Overall Recall: 0.7988
|
26 |
+
- Overall F1: 0.7702
|
27 |
+
- Overall Accuracy: 0.8108
|
28 |
|
29 |
## Model description
|
30 |
|
|
|
54 |
|
55 |
### Training results
|
56 |
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
59 |
+
| 1.8006 | 1.0 | 10 | 1.5983 | {'precision': 0.015552099533437015, 'recall': 0.012360939431396786, 'f1': 0.013774104683195591, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.20512820512820512, 'recall': 0.12018779342723004, 'f1': 0.15156897572528122, 'number': 1065} | 0.1089 | 0.0692 | 0.0847 | 0.3439 |
|
60 |
+
| 1.4817 | 2.0 | 20 | 1.2758 | {'precision': 0.23966065747614, 'recall': 0.27935723114956734, 'f1': 0.2579908675799087, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.4002998500749625, 'recall': 0.5014084507042254, 'f1': 0.4451854939558149, 'number': 1065} | 0.3338 | 0.3813 | 0.3560 | 0.5953 |
|
61 |
+
| 1.1479 | 3.0 | 30 | 0.9589 | {'precision': 0.48957298907646474, 'recall': 0.6093943139678616, 'f1': 0.5429515418502202, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.5823389021479713, 'recall': 0.6873239436619718, 'f1': 0.6304909560723513, 'number': 1065} | 0.5361 | 0.6147 | 0.5727 | 0.6955 |
|
62 |
+
| 0.872 | 4.0 | 40 | 0.8144 | {'precision': 0.574447646493756, 'recall': 0.7391841779975278, 'f1': 0.6464864864864865, 'number': 809} | {'precision': 0.075, 'recall': 0.025210084033613446, 'f1': 0.03773584905660377, 'number': 119} | {'precision': 0.6640281442392261, 'recall': 0.7089201877934272, 'f1': 0.6857402361489555, 'number': 1065} | 0.6114 | 0.6804 | 0.6440 | 0.7492 |
|
63 |
+
| 0.6944 | 5.0 | 50 | 0.7241 | {'precision': 0.638682252922423, 'recall': 0.7428924598269468, 'f1': 0.6868571428571428, 'number': 809} | {'precision': 0.1875, 'recall': 0.12605042016806722, 'f1': 0.1507537688442211, 'number': 119} | {'precision': 0.674493927125506, 'recall': 0.7821596244131456, 'f1': 0.7243478260869566, 'number': 1065} | 0.6423 | 0.7270 | 0.6820 | 0.7876 |
|
64 |
+
| 0.588 | 6.0 | 60 | 0.6902 | {'precision': 0.6445115810674723, 'recall': 0.7911001236093943, 'f1': 0.7103218645948945, 'number': 809} | {'precision': 0.265625, 'recall': 0.14285714285714285, 'f1': 0.18579234972677594, 'number': 119} | {'precision': 0.7232219365895458, 'recall': 0.7924882629107981, 'f1': 0.7562724014336917, 'number': 1065} | 0.6749 | 0.7531 | 0.7119 | 0.7922 |
|
65 |
+
| 0.5155 | 7.0 | 70 | 0.6651 | {'precision': 0.6762820512820513, 'recall': 0.7824474660074165, 'f1': 0.7255014326647564, 'number': 809} | {'precision': 0.22115384615384615, 'recall': 0.19327731092436976, 'f1': 0.2062780269058296, 'number': 119} | {'precision': 0.7402597402597403, 'recall': 0.8028169014084507, 'f1': 0.7702702702702703, 'number': 1065} | 0.6884 | 0.7582 | 0.7216 | 0.7979 |
|
66 |
+
| 0.4567 | 8.0 | 80 | 0.6544 | {'precision': 0.682062298603652, 'recall': 0.7849196538936959, 'f1': 0.7298850574712644, 'number': 809} | {'precision': 0.21359223300970873, 'recall': 0.18487394957983194, 'f1': 0.1981981981981982, 'number': 119} | {'precision': 0.759515570934256, 'recall': 0.8244131455399061, 'f1': 0.790634849167042, 'number': 1065} | 0.7009 | 0.7702 | 0.7339 | 0.8047 |
|
67 |
+
| 0.4044 | 9.0 | 90 | 0.6556 | {'precision': 0.7029379760609358, 'recall': 0.7985166872682324, 'f1': 0.7476851851851851, 'number': 809} | {'precision': 0.2621359223300971, 'recall': 0.226890756302521, 'f1': 0.24324324324324326, 'number': 119} | {'precision': 0.7710320901994796, 'recall': 0.8347417840375587, 'f1': 0.8016230838593327, 'number': 1065} | 0.7182 | 0.7837 | 0.7495 | 0.8089 |
|
68 |
+
| 0.3974 | 10.0 | 100 | 0.6652 | {'precision': 0.7141292442497261, 'recall': 0.8059332509270705, 'f1': 0.7572590011614402, 'number': 809} | {'precision': 0.30357142857142855, 'recall': 0.2857142857142857, 'f1': 0.2943722943722944, 'number': 119} | {'precision': 0.7917414721723519, 'recall': 0.828169014084507, 'f1': 0.8095456631482332, 'number': 1065} | 0.7331 | 0.7868 | 0.7590 | 0.8094 |
|
69 |
+
| 0.3327 | 11.0 | 110 | 0.6705 | {'precision': 0.720620842572062, 'recall': 0.8034610630407911, 'f1': 0.7597895967270601, 'number': 809} | {'precision': 0.336283185840708, 'recall': 0.31932773109243695, 'f1': 0.32758620689655166, 'number': 119} | {'precision': 0.7891939769707705, 'recall': 0.8366197183098592, 'f1': 0.812215132178669, 'number': 1065} | 0.7365 | 0.7923 | 0.7634 | 0.8096 |
|
70 |
+
| 0.3194 | 12.0 | 120 | 0.6719 | {'precision': 0.7239057239057239, 'recall': 0.7972805933250927, 'f1': 0.7588235294117647, 'number': 809} | {'precision': 0.3853211009174312, 'recall': 0.35294117647058826, 'f1': 0.36842105263157904, 'number': 119} | {'precision': 0.7911111111111111, 'recall': 0.8356807511737089, 'f1': 0.812785388127854, 'number': 1065} | 0.7421 | 0.7913 | 0.7659 | 0.8115 |
|
71 |
+
| 0.301 | 13.0 | 130 | 0.6828 | {'precision': 0.7256637168141593, 'recall': 0.8108776266996292, 'f1': 0.7659077641564506, 'number': 809} | {'precision': 0.41414141414141414, 'recall': 0.3445378151260504, 'f1': 0.3761467889908257, 'number': 119} | {'precision': 0.8005415162454874, 'recall': 0.8328638497652582, 'f1': 0.8163828808099403, 'number': 1065} | 0.7504 | 0.7948 | 0.7719 | 0.8099 |
|
72 |
+
| 0.286 | 14.0 | 140 | 0.6856 | {'precision': 0.7279821627647715, 'recall': 0.8071693448702101, 'f1': 0.7655334114888628, 'number': 809} | {'precision': 0.3853211009174312, 'recall': 0.35294117647058826, 'f1': 0.36842105263157904, 'number': 119} | {'precision': 0.7931034482758621, 'recall': 0.8422535211267606, 'f1': 0.8169398907103825, 'number': 1065} | 0.7450 | 0.7988 | 0.7709 | 0.8108 |
|
73 |
+
| 0.2789 | 15.0 | 150 | 0.6891 | {'precision': 0.7296996662958843, 'recall': 0.8108776266996292, 'f1': 0.7681498829039812, 'number': 809} | {'precision': 0.3620689655172414, 'recall': 0.35294117647058826, 'f1': 0.3574468085106383, 'number': 119} | {'precision': 0.7939609236234458, 'recall': 0.8394366197183099, 'f1': 0.8160657234139663, 'number': 1065} | 0.7436 | 0.7988 | 0.7702 | 0.8108 |
|
74 |
|
75 |
|
76 |
### Framework versions
|
logs/events.out.tfevents.1714565161.DESKTOP-3CFO1LV.2689.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7f8972c5c1bee27cf65b39b95b514083a16d50b445f7ecf2d77ba61346d53929
|
3 |
+
size 15846
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 450558212
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a9c4a5ea9f31994c950d421141af42e6b2b37f84af7bb9482eff8c68eb226fdc
|
3 |
size 450558212
|