|
""" |
|
This scripts runs the evaluation (dev & test) for the AskUbuntu dataset |
|
|
|
Usage: |
|
python eval_askubuntu.py [sbert_model_name_or_path] |
|
""" |
|
|
|
from sentence_transformers import SentenceTransformer, LoggingHandler |
|
from sentence_transformers import util, evaluation |
|
import logging |
|
import os |
|
import gzip |
|
import sys |
|
|
|
|
|
logging.basicConfig(format='%(asctime)s - %(message)s', |
|
datefmt='%Y-%m-%d %H:%M:%S', |
|
level=logging.INFO, |
|
handlers=[LoggingHandler()]) |
|
|
|
|
|
model = SentenceTransformer(sys.argv[1]) |
|
|
|
|
|
|
|
askubuntu_folder = 'askubuntu' |
|
training_corpus = os.path.join(askubuntu_folder, 'train.unsupervised.txt') |
|
|
|
|
|
|
|
for filename in ['text_tokenized.txt.gz', 'dev.txt', 'test.txt', 'train_random.txt']: |
|
filepath = os.path.join(askubuntu_folder, filename) |
|
if not os.path.exists(filepath): |
|
util.http_get('https://github.com/taolei87/askubuntu/raw/master/'+filename, filepath) |
|
|
|
|
|
corpus = {} |
|
dev_test_ids = set() |
|
with gzip.open(os.path.join(askubuntu_folder, 'text_tokenized.txt.gz'), 'rt', encoding='utf8') as fIn: |
|
for line in fIn: |
|
splits = line.strip().split("\t") |
|
id = splits[0] |
|
title = splits[1] |
|
corpus[id] = title |
|
|
|
|
|
def read_eval_dataset(filepath): |
|
dataset = [] |
|
with open(filepath) as fIn: |
|
for line in fIn: |
|
query_id, relevant_id, candidate_ids, bm25_scores = line.strip().split("\t") |
|
if len(relevant_id) == 0: |
|
continue |
|
|
|
relevant_id = relevant_id.split(" ") |
|
candidate_ids = candidate_ids.split(" ") |
|
negative_ids = set(candidate_ids) - set(relevant_id) |
|
dataset.append({ |
|
'query': corpus[query_id], |
|
'positive': [corpus[pid] for pid in relevant_id], |
|
'negative': [corpus[pid] for pid in negative_ids] |
|
}) |
|
dev_test_ids.add(query_id) |
|
dev_test_ids.update(candidate_ids) |
|
return dataset |
|
|
|
dev_dataset = read_eval_dataset(os.path.join(askubuntu_folder, 'dev.txt')) |
|
test_dataset = read_eval_dataset(os.path.join(askubuntu_folder, 'test.txt')) |
|
|
|
|
|
|
|
|
|
|
|
dev_evaluator = evaluation.RerankingEvaluator(dev_dataset, name="AskUbuntu dev") |
|
|
|
logging.info("Dev performance before training") |
|
dev_evaluator(model) |
|
|
|
test_evaluator = evaluation.RerankingEvaluator(test_dataset, name="AskUbuntu test") |
|
logging.info("Test performance before training") |
|
test_evaluator(model) |
|
|