Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- qwen3-vl4b-agentnet_filter_failure_ws4_lr2e-5_vit1e-5_aligner1e-5_bs384-step500/added_tokens.json +28 -0
- qwen3-vl4b-agentnet_filter_failure_ws4_lr2e-5_vit1e-5_aligner1e-5_bs384-step500/args.json +392 -0
- qwen3-vl4b-agentnet_filter_failure_ws4_lr2e-5_vit1e-5_aligner1e-5_bs384-step500/chat_template.jinja +120 -0
- qwen3-vl4b-agentnet_filter_failure_ws4_lr2e-5_vit1e-5_aligner1e-5_bs384-step500/config.json +70 -0
- qwen3-vl4b-agentnet_filter_failure_ws4_lr2e-5_vit1e-5_aligner1e-5_bs384-step500/generation_config.json +13 -0
- qwen3-vl4b-agentnet_filter_failure_ws4_lr2e-5_vit1e-5_aligner1e-5_bs384-step500/latest +1 -0
- qwen3-vl4b-agentnet_filter_failure_ws4_lr2e-5_vit1e-5_aligner1e-5_bs384-step500/merges.txt +0 -0
- qwen3-vl4b-agentnet_filter_failure_ws4_lr2e-5_vit1e-5_aligner1e-5_bs384-step500/model-00001-of-00002.safetensors +3 -0
- qwen3-vl4b-agentnet_filter_failure_ws4_lr2e-5_vit1e-5_aligner1e-5_bs384-step500/model-00002-of-00002.safetensors +3 -0
- qwen3-vl4b-agentnet_filter_failure_ws4_lr2e-5_vit1e-5_aligner1e-5_bs384-step500/model.safetensors.index.json +722 -0
- qwen3-vl4b-agentnet_filter_failure_ws4_lr2e-5_vit1e-5_aligner1e-5_bs384-step500/preprocessor_config.json +21 -0
- qwen3-vl4b-agentnet_filter_failure_ws4_lr2e-5_vit1e-5_aligner1e-5_bs384-step500/special_tokens_map.json +31 -0
- qwen3-vl4b-agentnet_filter_failure_ws4_lr2e-5_vit1e-5_aligner1e-5_bs384-step500/tokenizer.json +3 -0
- qwen3-vl4b-agentnet_filter_failure_ws4_lr2e-5_vit1e-5_aligner1e-5_bs384-step500/tokenizer_config.json +240 -0
- qwen3-vl4b-agentnet_filter_failure_ws4_lr2e-5_vit1e-5_aligner1e-5_bs384-step500/trainer_state.json +3534 -0
- qwen3-vl4b-agentnet_filter_failure_ws4_lr2e-5_vit1e-5_aligner1e-5_bs384-step500/training_args.bin +3 -0
- qwen3-vl4b-agentnet_filter_failure_ws4_lr2e-5_vit1e-5_aligner1e-5_bs384-step500/video_preprocessor_config.json +41 -0
- qwen3-vl4b-agentnet_filter_failure_ws4_lr2e-5_vit1e-5_aligner1e-5_bs384-step500/vocab.json +0 -0
- qwen3-vl4b-agentnet_filter_failure_ws4_lr2e-5_vit1e-5_aligner1e-5_bs384-step500/zero_to_fp32.py +760 -0
.gitattributes
CHANGED
|
@@ -73,3 +73,4 @@ qwen3-vl-4b-agentnet_shortest-30pct_lr2e-5_vit1e-5_aligner1e-5_bs384-step1564/to
|
|
| 73 |
qwen3-vl-4b-agentnet_filter_failure_loss_reweight_lr2e-5_vit1e-5_aligner1e-5_bs384-step3500/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
| 74 |
qwen3-vl-4b-agentnet_filter_failure_ubuntu-only_lr2e-5_vit1e-5_aligner1e-5_bs384-step636/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
| 75 |
qwen3-vl-4b-agentnet_filter_failure_ubuntu-only_lr2e-5_vit1e-5_aligner1e-5_bs384_ep5/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 73 |
qwen3-vl-4b-agentnet_filter_failure_loss_reweight_lr2e-5_vit1e-5_aligner1e-5_bs384-step3500/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
| 74 |
qwen3-vl-4b-agentnet_filter_failure_ubuntu-only_lr2e-5_vit1e-5_aligner1e-5_bs384-step636/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
| 75 |
qwen3-vl-4b-agentnet_filter_failure_ubuntu-only_lr2e-5_vit1e-5_aligner1e-5_bs384_ep5/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
| 76 |
+
qwen3-vl4b-agentnet_filter_failure_ws4_lr2e-5_vit1e-5_aligner1e-5_bs384-step500/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
qwen3-vl4b-agentnet_filter_failure_ws4_lr2e-5_vit1e-5_aligner1e-5_bs384-step500/added_tokens.json
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"</think>": 151668,
|
| 3 |
+
"</tool_call>": 151658,
|
| 4 |
+
"</tool_response>": 151666,
|
| 5 |
+
"<think>": 151667,
|
| 6 |
+
"<tool_call>": 151657,
|
| 7 |
+
"<tool_response>": 151665,
|
| 8 |
+
"<|box_end|>": 151649,
|
| 9 |
+
"<|box_start|>": 151648,
|
| 10 |
+
"<|endoftext|>": 151643,
|
| 11 |
+
"<|file_sep|>": 151664,
|
| 12 |
+
"<|fim_middle|>": 151660,
|
| 13 |
+
"<|fim_pad|>": 151662,
|
| 14 |
+
"<|fim_prefix|>": 151659,
|
| 15 |
+
"<|fim_suffix|>": 151661,
|
| 16 |
+
"<|im_end|>": 151645,
|
| 17 |
+
"<|im_start|>": 151644,
|
| 18 |
+
"<|image_pad|>": 151655,
|
| 19 |
+
"<|object_ref_end|>": 151647,
|
| 20 |
+
"<|object_ref_start|>": 151646,
|
| 21 |
+
"<|quad_end|>": 151651,
|
| 22 |
+
"<|quad_start|>": 151650,
|
| 23 |
+
"<|repo_name|>": 151663,
|
| 24 |
+
"<|video_pad|>": 151656,
|
| 25 |
+
"<|vision_end|>": 151653,
|
| 26 |
+
"<|vision_pad|>": 151654,
|
| 27 |
+
"<|vision_start|>": 151652
|
| 28 |
+
}
|
qwen3-vl4b-agentnet_filter_failure_ws4_lr2e-5_vit1e-5_aligner1e-5_bs384-step500/args.json
ADDED
|
@@ -0,0 +1,392 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"output_dir": "/apdcephfs_fsgm/share_304220499/weixian/workspace/Agent_SFT/output/Qwen3-VL-4B-Instruct/agentnet_filter_failure_ws4_lr2e-5_vit1e-5_aligner1e-5_bs384/v0-20260131-020453",
|
| 3 |
+
"overwrite_output_dir": false,
|
| 4 |
+
"do_train": false,
|
| 5 |
+
"do_eval": false,
|
| 6 |
+
"do_predict": false,
|
| 7 |
+
"eval_strategy": "no",
|
| 8 |
+
"prediction_loss_only": false,
|
| 9 |
+
"per_device_train_batch_size": 4,
|
| 10 |
+
"per_device_eval_batch_size": 1,
|
| 11 |
+
"per_gpu_train_batch_size": null,
|
| 12 |
+
"per_gpu_eval_batch_size": null,
|
| 13 |
+
"gradient_accumulation_steps": 1,
|
| 14 |
+
"eval_accumulation_steps": null,
|
| 15 |
+
"eval_delay": 0,
|
| 16 |
+
"torch_empty_cache_steps": null,
|
| 17 |
+
"learning_rate": 2e-05,
|
| 18 |
+
"weight_decay": 0.1,
|
| 19 |
+
"adam_beta1": 0.9,
|
| 20 |
+
"adam_beta2": 0.95,
|
| 21 |
+
"adam_epsilon": 1e-08,
|
| 22 |
+
"max_grad_norm": 1.0,
|
| 23 |
+
"num_train_epochs": 1.0,
|
| 24 |
+
"max_steps": -1,
|
| 25 |
+
"lr_scheduler_type": "cosine",
|
| 26 |
+
"lr_scheduler_kwargs": null,
|
| 27 |
+
"warmup_ratio": 0.05,
|
| 28 |
+
"warmup_steps": 0,
|
| 29 |
+
"log_level": "passive",
|
| 30 |
+
"log_level_replica": "warning",
|
| 31 |
+
"log_on_each_node": true,
|
| 32 |
+
"logging_dir": "/apdcephfs_fsgm/share_304220499/weixian/workspace/Agent_SFT/output/Qwen3-VL-4B-Instruct/agentnet_filter_failure_ws4_lr2e-5_vit1e-5_aligner1e-5_bs384/v0-20260131-020453/runs",
|
| 33 |
+
"logging_strategy": "steps",
|
| 34 |
+
"logging_first_step": true,
|
| 35 |
+
"logging_steps": 1,
|
| 36 |
+
"logging_nan_inf_filter": true,
|
| 37 |
+
"save_strategy": "steps",
|
| 38 |
+
"save_steps": 500.0,
|
| 39 |
+
"save_total_limit": null,
|
| 40 |
+
"save_safetensors": true,
|
| 41 |
+
"save_on_each_node": false,
|
| 42 |
+
"save_only_model": false,
|
| 43 |
+
"restore_callback_states_from_checkpoint": false,
|
| 44 |
+
"no_cuda": false,
|
| 45 |
+
"use_cpu": false,
|
| 46 |
+
"use_mps_device": false,
|
| 47 |
+
"seed": 42,
|
| 48 |
+
"data_seed": 42,
|
| 49 |
+
"jit_mode_eval": false,
|
| 50 |
+
"bf16": true,
|
| 51 |
+
"fp16": false,
|
| 52 |
+
"fp16_opt_level": "O1",
|
| 53 |
+
"half_precision_backend": "auto",
|
| 54 |
+
"bf16_full_eval": false,
|
| 55 |
+
"fp16_full_eval": false,
|
| 56 |
+
"tf32": null,
|
| 57 |
+
"local_rank": 0,
|
| 58 |
+
"ddp_backend": null,
|
| 59 |
+
"tpu_num_cores": null,
|
| 60 |
+
"tpu_metrics_debug": false,
|
| 61 |
+
"debug": null,
|
| 62 |
+
"dataloader_drop_last": false,
|
| 63 |
+
"eval_steps": 10000.0,
|
| 64 |
+
"dataloader_num_workers": 8,
|
| 65 |
+
"dataloader_prefetch_factor": null,
|
| 66 |
+
"past_index": -1,
|
| 67 |
+
"run_name": "/apdcephfs_fsgm/share_304220499/weixian/workspace/Agent_SFT/output/Qwen3-VL-4B-Instruct/agentnet_filter_failure_ws4_lr2e-5_vit1e-5_aligner1e-5_bs384/v0-20260131-020453",
|
| 68 |
+
"disable_tqdm": null,
|
| 69 |
+
"remove_unused_columns": true,
|
| 70 |
+
"label_names": null,
|
| 71 |
+
"load_best_model_at_end": false,
|
| 72 |
+
"metric_for_best_model": "loss",
|
| 73 |
+
"greater_is_better": false,
|
| 74 |
+
"ignore_data_skip": false,
|
| 75 |
+
"fsdp": [],
|
| 76 |
+
"fsdp_min_num_params": 0,
|
| 77 |
+
"fsdp_config": null,
|
| 78 |
+
"fsdp_transformer_layer_cls_to_wrap": null,
|
| 79 |
+
"accelerator_config": {
|
| 80 |
+
"dispatch_batches": false
|
| 81 |
+
},
|
| 82 |
+
"parallelism_config": null,
|
| 83 |
+
"deepspeed": {
|
| 84 |
+
"fp16": {
|
| 85 |
+
"enabled": "auto",
|
| 86 |
+
"loss_scale": 0,
|
| 87 |
+
"loss_scale_window": 1000,
|
| 88 |
+
"initial_scale_power": 16,
|
| 89 |
+
"hysteresis": 2,
|
| 90 |
+
"min_loss_scale": 1
|
| 91 |
+
},
|
| 92 |
+
"bf16": {
|
| 93 |
+
"enabled": "auto"
|
| 94 |
+
},
|
| 95 |
+
"zero_optimization": {
|
| 96 |
+
"stage": 1,
|
| 97 |
+
"offload_optimizer": {
|
| 98 |
+
"device": "none",
|
| 99 |
+
"pin_memory": true
|
| 100 |
+
},
|
| 101 |
+
"allgather_partitions": true,
|
| 102 |
+
"allgather_bucket_size": 200000000.0,
|
| 103 |
+
"overlap_comm": false,
|
| 104 |
+
"reduce_scatter": true,
|
| 105 |
+
"reduce_bucket_size": 200000000.0,
|
| 106 |
+
"contiguous_gradients": true
|
| 107 |
+
},
|
| 108 |
+
"gradient_accumulation_steps": "auto",
|
| 109 |
+
"gradient_clipping": "auto",
|
| 110 |
+
"steps_per_print": 2000,
|
| 111 |
+
"train_batch_size": "auto",
|
| 112 |
+
"train_micro_batch_size_per_gpu": "auto",
|
| 113 |
+
"wall_clock_breakdown": false
|
| 114 |
+
},
|
| 115 |
+
"label_smoothing_factor": 0.0,
|
| 116 |
+
"optim": "adamw_torch_fused",
|
| 117 |
+
"optim_args": null,
|
| 118 |
+
"adafactor": false,
|
| 119 |
+
"group_by_length": false,
|
| 120 |
+
"length_column_name": "length",
|
| 121 |
+
"report_to": [
|
| 122 |
+
"wandb"
|
| 123 |
+
],
|
| 124 |
+
"project": "huggingface",
|
| 125 |
+
"trackio_space_id": "trackio",
|
| 126 |
+
"ddp_find_unused_parameters": null,
|
| 127 |
+
"ddp_bucket_cap_mb": null,
|
| 128 |
+
"ddp_broadcast_buffers": null,
|
| 129 |
+
"dataloader_pin_memory": true,
|
| 130 |
+
"dataloader_persistent_workers": false,
|
| 131 |
+
"skip_memory_metrics": true,
|
| 132 |
+
"use_legacy_prediction_loop": false,
|
| 133 |
+
"push_to_hub": false,
|
| 134 |
+
"resume_from_checkpoint": null,
|
| 135 |
+
"hub_model_id": null,
|
| 136 |
+
"hub_strategy": "every_save",
|
| 137 |
+
"hub_token": null,
|
| 138 |
+
"hub_private_repo": null,
|
| 139 |
+
"hub_always_push": false,
|
| 140 |
+
"hub_revision": null,
|
| 141 |
+
"gradient_checkpointing": true,
|
| 142 |
+
"gradient_checkpointing_kwargs": null,
|
| 143 |
+
"include_inputs_for_metrics": false,
|
| 144 |
+
"include_for_metrics": [],
|
| 145 |
+
"eval_do_concat_batches": true,
|
| 146 |
+
"fp16_backend": "auto",
|
| 147 |
+
"push_to_hub_model_id": null,
|
| 148 |
+
"push_to_hub_organization": null,
|
| 149 |
+
"push_to_hub_token": null,
|
| 150 |
+
"mp_parameters": "",
|
| 151 |
+
"auto_find_batch_size": false,
|
| 152 |
+
"full_determinism": false,
|
| 153 |
+
"torchdynamo": null,
|
| 154 |
+
"ray_scope": "last",
|
| 155 |
+
"ddp_timeout": 18000000,
|
| 156 |
+
"torch_compile": false,
|
| 157 |
+
"torch_compile_backend": null,
|
| 158 |
+
"torch_compile_mode": null,
|
| 159 |
+
"include_tokens_per_second": false,
|
| 160 |
+
"include_num_input_tokens_seen": false,
|
| 161 |
+
"neftune_noise_alpha": null,
|
| 162 |
+
"optim_target_modules": null,
|
| 163 |
+
"batch_eval_metrics": false,
|
| 164 |
+
"eval_on_start": false,
|
| 165 |
+
"use_liger_kernel": true,
|
| 166 |
+
"liger_kernel_config": null,
|
| 167 |
+
"eval_use_gather_object": false,
|
| 168 |
+
"average_tokens_across_devices": true,
|
| 169 |
+
"sortish_sampler": false,
|
| 170 |
+
"predict_with_generate": false,
|
| 171 |
+
"generation_max_length": null,
|
| 172 |
+
"generation_num_beams": null,
|
| 173 |
+
"generation_config": null,
|
| 174 |
+
"tuner_backend": "peft",
|
| 175 |
+
"vit_gradient_checkpointing": null,
|
| 176 |
+
"router_aux_loss_coef": 0.0,
|
| 177 |
+
"enable_dft_loss": false,
|
| 178 |
+
"enable_channel_loss": false,
|
| 179 |
+
"check_model": true,
|
| 180 |
+
"acc_strategy": "token",
|
| 181 |
+
"train_dataloader_shuffle": true,
|
| 182 |
+
"max_epochs": null,
|
| 183 |
+
"aligner_lr": 1e-05,
|
| 184 |
+
"vit_lr": 1e-05,
|
| 185 |
+
"use_logits_to_keep": null,
|
| 186 |
+
"ds3_gather_for_generation": true,
|
| 187 |
+
"resume_only_model": false,
|
| 188 |
+
"optimizer": null,
|
| 189 |
+
"loss_type": null,
|
| 190 |
+
"metric": null,
|
| 191 |
+
"eval_use_evalscope": false,
|
| 192 |
+
"eval_dataset": [],
|
| 193 |
+
"eval_dataset_args": null,
|
| 194 |
+
"eval_limit": null,
|
| 195 |
+
"eval_generation_config": null,
|
| 196 |
+
"extra_eval_args": null,
|
| 197 |
+
"use_flash_ckpt": false,
|
| 198 |
+
"use_ray": false,
|
| 199 |
+
"ray_exp_name": null,
|
| 200 |
+
"device_groups": null,
|
| 201 |
+
"model": "/apdcephfs_fsgm/share_304220499/mclan/checkpoints/Qwen3-VL-4B-Instruct",
|
| 202 |
+
"model_type": "qwen3_vl",
|
| 203 |
+
"model_revision": null,
|
| 204 |
+
"task_type": "causal_lm",
|
| 205 |
+
"torch_dtype": "bfloat16",
|
| 206 |
+
"attn_impl": "flash_attn",
|
| 207 |
+
"new_special_tokens": [],
|
| 208 |
+
"num_labels": null,
|
| 209 |
+
"problem_type": null,
|
| 210 |
+
"rope_scaling": null,
|
| 211 |
+
"device_map": null,
|
| 212 |
+
"max_memory": {},
|
| 213 |
+
"max_model_len": null,
|
| 214 |
+
"local_repo_path": null,
|
| 215 |
+
"init_strategy": null,
|
| 216 |
+
"template": "qwen3_vl",
|
| 217 |
+
"system": null,
|
| 218 |
+
"max_length": 65536,
|
| 219 |
+
"truncation_strategy": "delete",
|
| 220 |
+
"max_pixels": null,
|
| 221 |
+
"agent_template": null,
|
| 222 |
+
"norm_bbox": null,
|
| 223 |
+
"use_chat_template": true,
|
| 224 |
+
"padding_side": "right",
|
| 225 |
+
"padding_free": true,
|
| 226 |
+
"loss_scale": "default",
|
| 227 |
+
"sequence_parallel_size": 1,
|
| 228 |
+
"template_backend": "swift",
|
| 229 |
+
"response_prefix": null,
|
| 230 |
+
"enable_thinking": null,
|
| 231 |
+
"add_non_thinking_prefix": true,
|
| 232 |
+
"dataset": [
|
| 233 |
+
"/apdcephfs_fsgm/share_304220499/data/planning/to_train/0127/AgentNet_ws4_filter_failure/agentnet_ubuntu_5k.train0107.openai_unified_converted.swift.ws4.l1.jsonl#163000",
|
| 234 |
+
"/apdcephfs_fsgm/share_304220499/data/planning/to_train/0127/AgentNet_ws4_filter_failure/agentnet_win_mac_18k.train0107.openai_unified_converted.swift.ws4.l1.jsonl#339000",
|
| 235 |
+
"/apdcephfs_fsgm/share_304220499/data/planning/to_train/0127/AgentNet_ws4_filter_failure/agentnet_ubuntu_5k.train0107.openai_unified_converted.swift.ws4.l2.jsonl#163000",
|
| 236 |
+
"/apdcephfs_fsgm/share_304220499/data/planning/to_train/0127/AgentNet_ws4_filter_failure/agentnet_win_mac_18k.train0107.openai_unified_converted.swift.ws4.l2.jsonl#339000",
|
| 237 |
+
"/apdcephfs_fsgm/share_304220499/data/planning/to_train/0127/AgentNet_ws4_filter_failure/agentnet_ubuntu_5k.train0107.openai_unified_converted.swift.ws4.l3.jsonl#163000",
|
| 238 |
+
"/apdcephfs_fsgm/share_304220499/data/planning/to_train/0127/AgentNet_ws4_filter_failure/agentnet_win_mac_18k.train0107.openai_unified_converted.swift.ws4.l3.jsonl#339000"
|
| 239 |
+
],
|
| 240 |
+
"val_dataset": [],
|
| 241 |
+
"cached_dataset": [],
|
| 242 |
+
"cached_val_dataset": [],
|
| 243 |
+
"split_dataset_ratio": 0.0,
|
| 244 |
+
"dataset_num_proc": 8,
|
| 245 |
+
"load_from_cache_file": false,
|
| 246 |
+
"dataset_shuffle": true,
|
| 247 |
+
"val_dataset_shuffle": false,
|
| 248 |
+
"streaming": false,
|
| 249 |
+
"interleave_prob": null,
|
| 250 |
+
"stopping_strategy": "first_exhausted",
|
| 251 |
+
"shuffle_buffer_size": 1000,
|
| 252 |
+
"download_mode": "reuse_dataset_if_exists",
|
| 253 |
+
"columns": {},
|
| 254 |
+
"strict": false,
|
| 255 |
+
"model_name": null,
|
| 256 |
+
"model_author": null,
|
| 257 |
+
"custom_dataset_info": [],
|
| 258 |
+
"quant_method": null,
|
| 259 |
+
"quant_bits": null,
|
| 260 |
+
"hqq_axis": null,
|
| 261 |
+
"bnb_4bit_compute_dtype": "bfloat16",
|
| 262 |
+
"bnb_4bit_quant_type": "nf4",
|
| 263 |
+
"bnb_4bit_use_double_quant": true,
|
| 264 |
+
"bnb_4bit_quant_storage": null,
|
| 265 |
+
"max_new_tokens": 64,
|
| 266 |
+
"temperature": 0.0,
|
| 267 |
+
"top_k": null,
|
| 268 |
+
"top_p": null,
|
| 269 |
+
"repetition_penalty": null,
|
| 270 |
+
"num_beams": 1,
|
| 271 |
+
"stream": false,
|
| 272 |
+
"stop_words": [],
|
| 273 |
+
"logprobs": false,
|
| 274 |
+
"top_logprobs": null,
|
| 275 |
+
"structured_outputs_regex": null,
|
| 276 |
+
"ckpt_dir": null,
|
| 277 |
+
"lora_modules": [],
|
| 278 |
+
"train_type": "full",
|
| 279 |
+
"adapters": [],
|
| 280 |
+
"external_plugins": [],
|
| 281 |
+
"model_kwargs": {},
|
| 282 |
+
"load_args": false,
|
| 283 |
+
"load_data_args": false,
|
| 284 |
+
"packing": false,
|
| 285 |
+
"packing_length": null,
|
| 286 |
+
"packing_num_proc": 1,
|
| 287 |
+
"lazy_tokenize": true,
|
| 288 |
+
"custom_register_path": [],
|
| 289 |
+
"use_hf": false,
|
| 290 |
+
"ignore_args_error": false,
|
| 291 |
+
"use_swift_lora": false,
|
| 292 |
+
"freeze_parameters": [],
|
| 293 |
+
"freeze_parameters_regex": null,
|
| 294 |
+
"freeze_parameters_ratio": 0.0,
|
| 295 |
+
"trainable_parameters": [
|
| 296 |
+
"model.visual.merger",
|
| 297 |
+
"model.visual.deepstack_merger_list"
|
| 298 |
+
],
|
| 299 |
+
"trainable_parameters_regex": null,
|
| 300 |
+
"freeze_llm": false,
|
| 301 |
+
"freeze_vit": false,
|
| 302 |
+
"freeze_aligner": false,
|
| 303 |
+
"target_modules": [
|
| 304 |
+
"all-linear"
|
| 305 |
+
],
|
| 306 |
+
"target_regex": null,
|
| 307 |
+
"target_parameters": null,
|
| 308 |
+
"modules_to_save": [],
|
| 309 |
+
"lora_rank": 8,
|
| 310 |
+
"lora_alpha": 32,
|
| 311 |
+
"lora_dropout": 0.05,
|
| 312 |
+
"lora_bias": "none",
|
| 313 |
+
"lora_dtype": null,
|
| 314 |
+
"lorap_lr_ratio": null,
|
| 315 |
+
"use_rslora": false,
|
| 316 |
+
"use_dora": false,
|
| 317 |
+
"lora_ga_batch_size": 2,
|
| 318 |
+
"lora_ga_iters": 2,
|
| 319 |
+
"lora_ga_max_length": 1024,
|
| 320 |
+
"lora_ga_direction": "ArB2r",
|
| 321 |
+
"lora_ga_scale": "stable",
|
| 322 |
+
"lora_ga_stable_gamma": 16,
|
| 323 |
+
"init_weights": true,
|
| 324 |
+
"fourier_n_frequency": 2000,
|
| 325 |
+
"fourier_scaling": 300.0,
|
| 326 |
+
"boft_block_size": 4,
|
| 327 |
+
"boft_block_num": 0,
|
| 328 |
+
"boft_n_butterfly_factor": 1,
|
| 329 |
+
"boft_dropout": 0.0,
|
| 330 |
+
"vera_rank": 256,
|
| 331 |
+
"vera_projection_prng_key": 0,
|
| 332 |
+
"vera_dropout": 0.0,
|
| 333 |
+
"vera_d_initial": 0.1,
|
| 334 |
+
"adapter_act": "gelu",
|
| 335 |
+
"adapter_length": 128,
|
| 336 |
+
"use_galore": false,
|
| 337 |
+
"galore_target_modules": null,
|
| 338 |
+
"galore_rank": 128,
|
| 339 |
+
"galore_update_proj_gap": 50,
|
| 340 |
+
"galore_scale": 1.0,
|
| 341 |
+
"galore_proj_type": "std",
|
| 342 |
+
"galore_optim_per_parameter": false,
|
| 343 |
+
"galore_with_embedding": false,
|
| 344 |
+
"galore_quantization": false,
|
| 345 |
+
"galore_proj_quant": false,
|
| 346 |
+
"galore_proj_bits": 4,
|
| 347 |
+
"galore_proj_group_size": 256,
|
| 348 |
+
"galore_cos_threshold": 0.4,
|
| 349 |
+
"galore_gamma_proj": 2,
|
| 350 |
+
"galore_queue_size": 5,
|
| 351 |
+
"adalora_target_r": 8,
|
| 352 |
+
"adalora_init_r": 12,
|
| 353 |
+
"adalora_tinit": 0,
|
| 354 |
+
"adalora_tfinal": 0,
|
| 355 |
+
"adalora_deltaT": 1,
|
| 356 |
+
"adalora_beta1": 0.85,
|
| 357 |
+
"adalora_beta2": 0.85,
|
| 358 |
+
"adalora_orth_reg_weight": 0.5,
|
| 359 |
+
"llamapro_num_new_blocks": 4,
|
| 360 |
+
"llamapro_num_groups": null,
|
| 361 |
+
"lisa_activated_layers": 0,
|
| 362 |
+
"lisa_step_interval": 20,
|
| 363 |
+
"reft_layer_key": null,
|
| 364 |
+
"reft_layers": null,
|
| 365 |
+
"reft_rank": 4,
|
| 366 |
+
"reft_intervention_type": "LoreftIntervention",
|
| 367 |
+
"reft_args": null,
|
| 368 |
+
"swanlab_token": null,
|
| 369 |
+
"swanlab_project": "ms-swift",
|
| 370 |
+
"swanlab_workspace": null,
|
| 371 |
+
"swanlab_exp_name": null,
|
| 372 |
+
"swanlab_notification_method": null,
|
| 373 |
+
"swanlab_webhook_url": null,
|
| 374 |
+
"swanlab_secret": null,
|
| 375 |
+
"swanlab_mode": "cloud",
|
| 376 |
+
"add_version": true,
|
| 377 |
+
"create_checkpoint_symlink": false,
|
| 378 |
+
"zero_hpz_partition_size": null,
|
| 379 |
+
"deepspeed_autotp_size": null,
|
| 380 |
+
"early_stop_interval": null,
|
| 381 |
+
"rank": 0,
|
| 382 |
+
"global_world_size": 96,
|
| 383 |
+
"local_world_size": 8,
|
| 384 |
+
"model_suffix": "Qwen3-VL-4B-Instruct",
|
| 385 |
+
"model_info": "ModelInfo(model_type='qwen3_vl', model_dir='/apdcephfs_fsgm/share_304220499/mclan/checkpoints/Qwen3-VL-4B-Instruct', torch_dtype=torch.bfloat16, max_model_len=262144, quant_method=None, quant_bits=None, rope_scaling={'mrope_interleaved': True, 'mrope_section': [24, 20, 20], 'rope_type': 'default'}, is_moe_model=False, is_multimodal=True, config=None, task_type='causal_lm', num_labels=None)",
|
| 386 |
+
"model_meta": "ModelMeta(model_type='qwen3_vl', model_groups=[ModelGroup(models=[Model(ms_model_id='Qwen/Qwen3-VL-2B-Instruct', hf_model_id='Qwen/Qwen3-VL-2B-Instruct', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-VL-2B-Thinking', hf_model_id='Qwen/Qwen3-VL-2B-Thinking', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-VL-2B-Instruct-FP8', hf_model_id='Qwen/Qwen3-VL-2B-Instruct-FP8', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-VL-2B-Thinking-FP8', hf_model_id='Qwen/Qwen3-VL-2B-Thinking-FP8', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-VL-4B-Instruct', hf_model_id='Qwen/Qwen3-VL-4B-Instruct', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-VL-4B-Thinking', hf_model_id='Qwen/Qwen3-VL-4B-Thinking', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-VL-4B-Instruct-FP8', hf_model_id='Qwen/Qwen3-VL-4B-Instruct-FP8', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-VL-4B-Thinking-FP8', hf_model_id='Qwen/Qwen3-VL-4B-Thinking-FP8', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-VL-8B-Instruct', hf_model_id='Qwen/Qwen3-VL-8B-Instruct', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-VL-8B-Thinking', hf_model_id='Qwen/Qwen3-VL-8B-Thinking', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-VL-8B-Instruct-FP8', hf_model_id='Qwen/Qwen3-VL-8B-Instruct-FP8', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-VL-8B-Thinking-FP8', hf_model_id='Qwen/Qwen3-VL-8B-Thinking-FP8', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-VL-32B-Instruct', hf_model_id='Qwen/Qwen3-VL-32B-Instruct', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-VL-32B-Thinking', hf_model_id='Qwen/Qwen3-VL-32B-Thinking', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-VL-32B-Instruct-FP8', hf_model_id='Qwen/Qwen3-VL-32B-Instruct-FP8', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-VL-32B-Thinking-FP8', hf_model_id='Qwen/Qwen3-VL-32B-Thinking-FP8', model_path=None, ms_revision=None, hf_revision=None)], ignore_patterns=None, requires=None, tags=[])], template='qwen3_vl', get_function=<function get_model_tokenizer_qwen3_vl at 0x7f78135487c0>, model_arch=MultiModelKeys(arch_name='qwen3_vl', embedding=None, module_list=None, lm_head=None, q_proj=None, k_proj=None, v_proj=None, o_proj=None, attention=None, mlp=None, down_proj=None, qkv_proj=None, qk_proj=None, qa_proj=None, qb_proj=None, kv_proj=None, kva_proj=None, kvb_proj=None, language_model=['model.language_model', 'lm_head'], aligner=['model.visual.merger', 'model.visual.deepstack_merger_list'], vision_tower=['model.visual'], generator=[]), architectures=['Qwen3VLForConditionalGeneration'], additional_saved_files=[], torch_dtype=None, is_multimodal=True, is_reward=False, is_reranker=False, task_type=None, ignore_patterns=None, requires=['transformers>=4.57', 'qwen_vl_utils>=0.0.14', 'decord'], tags=['vision', 'video'])",
|
| 387 |
+
"model_dir": "/apdcephfs_fsgm/share_304220499/mclan/checkpoints/Qwen3-VL-4B-Instruct",
|
| 388 |
+
"_val_dataset_exists": [],
|
| 389 |
+
"hub": "<class 'swift.hub.hub.MSHub'>",
|
| 390 |
+
"evaluation_strategy": "steps",
|
| 391 |
+
"training_args": "Seq2SeqTrainingArguments(output_dir='/apdcephfs_fsgm/share_304220499/weixian/workspace/Agent_SFT/output/Qwen3-VL-4B-Instruct/agentnet_filter_failure_ws4_lr2e-5_vit1e-5_aligner1e-5_bs384/v0-20260131-020453', overwrite_output_dir=False, do_train=False, do_eval=False, do_predict=False, eval_strategy=<IntervalStrategy.NO: 'no'>, prediction_loss_only=False, per_device_train_batch_size=4, per_device_eval_batch_size=1, per_gpu_train_batch_size=None, per_gpu_eval_batch_size=None, gradient_accumulation_steps=1, eval_accumulation_steps=None, eval_delay=0, torch_empty_cache_steps=None, learning_rate=2e-05, weight_decay=0.1, adam_beta1=0.9, adam_beta2=0.95, adam_epsilon=1e-08, max_grad_norm=1.0, num_train_epochs=1.0, max_steps=-1, lr_scheduler_type=<SchedulerType.COSINE: 'cosine'>, lr_scheduler_kwargs=None, warmup_ratio=0.05, warmup_steps=0, log_level='passive', log_level_replica='warning', log_on_each_node=True, logging_dir='/apdcephfs_fsgm/share_304220499/weixian/workspace/Agent_SFT/output/Qwen3-VL-4B-Instruct/agentnet_filter_failure_ws4_lr2e-5_vit1e-5_aligner1e-5_bs384/v0-20260131-020453/runs', logging_strategy=<IntervalStrategy.STEPS: 'steps'>, logging_first_step=True, logging_steps=1, logging_nan_inf_filter=True, save_strategy=<SaveStrategy.STEPS: 'steps'>, save_steps=500, save_total_limit=None, save_safetensors=True, save_on_each_node=False, save_only_model=False, restore_callback_states_from_checkpoint=False, no_cuda=False, use_cpu=False, use_mps_device=False, seed=42, data_seed=42, jit_mode_eval=False, bf16=True, fp16=False, fp16_opt_level='O1', half_precision_backend='auto', bf16_full_eval=False, fp16_full_eval=False, tf32=None, local_rank=0, ddp_backend=None, tpu_num_cores=None, tpu_metrics_debug=False, debug=[], dataloader_drop_last=False, eval_steps=10000.0, dataloader_num_workers=8, dataloader_prefetch_factor=2, past_index=-1, run_name='/apdcephfs_fsgm/share_304220499/weixian/workspace/Agent_SFT/output/Qwen3-VL-4B-Instruct/agentnet_filter_failure_ws4_lr2e-5_vit1e-5_aligner1e-5_bs384/v0-20260131-020453', disable_tqdm=False, remove_unused_columns=False, label_names=None, load_best_model_at_end=False, metric_for_best_model='loss', greater_is_better=False, ignore_data_skip=False, fsdp=[], fsdp_min_num_params=0, fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_transformer_layer_cls_to_wrap=None, accelerator_config=AcceleratorConfig(split_batches=False, dispatch_batches=False, even_batches=True, use_seedable_sampler=True, non_blocking=False, gradient_accumulation_kwargs=None, use_configured_state=False), parallelism_config=None, deepspeed={'fp16': {'enabled': 'auto', 'loss_scale': 0, 'loss_scale_window': 1000, 'initial_scale_power': 16, 'hysteresis': 2, 'min_loss_scale': 1}, 'bf16': {'enabled': 'auto'}, 'zero_optimization': {'stage': 1, 'offload_optimizer': {'device': 'none', 'pin_memory': True}, 'allgather_partitions': True, 'allgather_bucket_size': 200000000.0, 'overlap_comm': False, 'reduce_scatter': True, 'reduce_bucket_size': 200000000.0, 'contiguous_gradients': True}, 'gradient_accumulation_steps': 'auto', 'gradient_clipping': 'auto', 'steps_per_print': 2000, 'train_batch_size': 'auto', 'train_micro_batch_size_per_gpu': 'auto', 'wall_clock_breakdown': False}, label_smoothing_factor=0.0, optim=<OptimizerNames.ADAMW_TORCH_FUSED: 'adamw_torch_fused'>, optim_args=None, adafactor=False, group_by_length=False, length_column_name='length', report_to=['wandb'], project='huggingface', trackio_space_id='trackio', ddp_find_unused_parameters=None, ddp_bucket_cap_mb=None, ddp_broadcast_buffers=None, dataloader_pin_memory=True, dataloader_persistent_workers=False, skip_memory_metrics=True, use_legacy_prediction_loop=False, push_to_hub=False, resume_from_checkpoint=None, hub_model_id=None, hub_strategy=<HubStrategy.EVERY_SAVE: 'every_save'>, hub_token=None, hub_private_repo=None, hub_always_push=False, hub_revision=None, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, include_inputs_for_metrics=False, include_for_metrics=[], eval_do_concat_batches=True, fp16_backend='auto', push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=None, mp_parameters='', auto_find_batch_size=False, full_determinism=False, torchdynamo=None, ray_scope='last', ddp_timeout=18000000, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, include_tokens_per_second=None, include_num_input_tokens_seen=None, neftune_noise_alpha=None, optim_target_modules=None, batch_eval_metrics=False, eval_on_start=False, use_liger_kernel=True, liger_kernel_config=None, eval_use_gather_object=False, average_tokens_across_devices=None, sortish_sampler=False, predict_with_generate=False, generation_max_length=None, generation_num_beams=None, generation_config=None, tuner_backend='peft', vit_gradient_checkpointing=True, router_aux_loss_coef=0.0, enable_dft_loss=False, enable_channel_loss=False, check_model=True, acc_strategy='token', train_dataloader_shuffle=True, max_epochs=None, aligner_lr=1e-05, vit_lr=1e-05, use_logits_to_keep=None, ds3_gather_for_generation=True, resume_only_model=False, optimizer='multimodal', loss_type=None, metric=None, eval_use_evalscope=False, eval_dataset=[], eval_dataset_args=None, eval_limit=None, eval_generation_config=None, extra_eval_args=None, use_flash_ckpt=False, sft_alpha=0, chord_sft_dataset=[], chord_sft_per_device_train_batch_size=None, chord_enable_phi_function=False, chord_mu_warmup_steps=None, chord_mu_decay_steps=None, chord_mu_peak=None, chord_mu_valley=None, train_type='full', local_repo_path=None, galore_config=None, task_type='causal_lm', problem_type=None)"
|
| 392 |
+
}
|
qwen3-vl4b-agentnet_filter_failure_ws4_lr2e-5_vit1e-5_aligner1e-5_bs384-step500/chat_template.jinja
ADDED
|
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{%- if tools %}
|
| 2 |
+
{{- '<|im_start|>system\n' }}
|
| 3 |
+
{%- if messages[0].role == 'system' %}
|
| 4 |
+
{%- if messages[0].content is string %}
|
| 5 |
+
{{- messages[0].content }}
|
| 6 |
+
{%- else %}
|
| 7 |
+
{%- for content in messages[0].content %}
|
| 8 |
+
{%- if 'text' in content %}
|
| 9 |
+
{{- content.text }}
|
| 10 |
+
{%- endif %}
|
| 11 |
+
{%- endfor %}
|
| 12 |
+
{%- endif %}
|
| 13 |
+
{{- '\n\n' }}
|
| 14 |
+
{%- endif %}
|
| 15 |
+
{{- "# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
|
| 16 |
+
{%- for tool in tools %}
|
| 17 |
+
{{- "\n" }}
|
| 18 |
+
{{- tool | tojson }}
|
| 19 |
+
{%- endfor %}
|
| 20 |
+
{{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
|
| 21 |
+
{%- else %}
|
| 22 |
+
{%- if messages[0].role == 'system' %}
|
| 23 |
+
{{- '<|im_start|>system\n' }}
|
| 24 |
+
{%- if messages[0].content is string %}
|
| 25 |
+
{{- messages[0].content }}
|
| 26 |
+
{%- else %}
|
| 27 |
+
{%- for content in messages[0].content %}
|
| 28 |
+
{%- if 'text' in content %}
|
| 29 |
+
{{- content.text }}
|
| 30 |
+
{%- endif %}
|
| 31 |
+
{%- endfor %}
|
| 32 |
+
{%- endif %}
|
| 33 |
+
{{- '<|im_end|>\n' }}
|
| 34 |
+
{%- endif %}
|
| 35 |
+
{%- endif %}
|
| 36 |
+
{%- set image_count = namespace(value=0) %}
|
| 37 |
+
{%- set video_count = namespace(value=0) %}
|
| 38 |
+
{%- for message in messages %}
|
| 39 |
+
{%- if message.role == "user" %}
|
| 40 |
+
{{- '<|im_start|>' + message.role + '\n' }}
|
| 41 |
+
{%- if message.content is string %}
|
| 42 |
+
{{- message.content }}
|
| 43 |
+
{%- else %}
|
| 44 |
+
{%- for content in message.content %}
|
| 45 |
+
{%- if content.type == 'image' or 'image' in content or 'image_url' in content %}
|
| 46 |
+
{%- set image_count.value = image_count.value + 1 %}
|
| 47 |
+
{%- if add_vision_id %}Picture {{ image_count.value }}: {% endif -%}
|
| 48 |
+
<|vision_start|><|image_pad|><|vision_end|>
|
| 49 |
+
{%- elif content.type == 'video' or 'video' in content %}
|
| 50 |
+
{%- set video_count.value = video_count.value + 1 %}
|
| 51 |
+
{%- if add_vision_id %}Video {{ video_count.value }}: {% endif -%}
|
| 52 |
+
<|vision_start|><|video_pad|><|vision_end|>
|
| 53 |
+
{%- elif 'text' in content %}
|
| 54 |
+
{{- content.text }}
|
| 55 |
+
{%- endif %}
|
| 56 |
+
{%- endfor %}
|
| 57 |
+
{%- endif %}
|
| 58 |
+
{{- '<|im_end|>\n' }}
|
| 59 |
+
{%- elif message.role == "assistant" %}
|
| 60 |
+
{{- '<|im_start|>' + message.role + '\n' }}
|
| 61 |
+
{%- if message.content is string %}
|
| 62 |
+
{{- message.content }}
|
| 63 |
+
{%- else %}
|
| 64 |
+
{%- for content_item in message.content %}
|
| 65 |
+
{%- if 'text' in content_item %}
|
| 66 |
+
{{- content_item.text }}
|
| 67 |
+
{%- endif %}
|
| 68 |
+
{%- endfor %}
|
| 69 |
+
{%- endif %}
|
| 70 |
+
{%- if message.tool_calls %}
|
| 71 |
+
{%- for tool_call in message.tool_calls %}
|
| 72 |
+
{%- if (loop.first and message.content) or (not loop.first) %}
|
| 73 |
+
{{- '\n' }}
|
| 74 |
+
{%- endif %}
|
| 75 |
+
{%- if tool_call.function %}
|
| 76 |
+
{%- set tool_call = tool_call.function %}
|
| 77 |
+
{%- endif %}
|
| 78 |
+
{{- '<tool_call>\n{"name": "' }}
|
| 79 |
+
{{- tool_call.name }}
|
| 80 |
+
{{- '", "arguments": ' }}
|
| 81 |
+
{%- if tool_call.arguments is string %}
|
| 82 |
+
{{- tool_call.arguments }}
|
| 83 |
+
{%- else %}
|
| 84 |
+
{{- tool_call.arguments | tojson }}
|
| 85 |
+
{%- endif %}
|
| 86 |
+
{{- '}\n</tool_call>' }}
|
| 87 |
+
{%- endfor %}
|
| 88 |
+
{%- endif %}
|
| 89 |
+
{{- '<|im_end|>\n' }}
|
| 90 |
+
{%- elif message.role == "tool" %}
|
| 91 |
+
{%- if loop.first or (messages[loop.index0 - 1].role != "tool") %}
|
| 92 |
+
{{- '<|im_start|>user' }}
|
| 93 |
+
{%- endif %}
|
| 94 |
+
{{- '\n<tool_response>\n' }}
|
| 95 |
+
{%- if message.content is string %}
|
| 96 |
+
{{- message.content }}
|
| 97 |
+
{%- else %}
|
| 98 |
+
{%- for content in message.content %}
|
| 99 |
+
{%- if content.type == 'image' or 'image' in content or 'image_url' in content %}
|
| 100 |
+
{%- set image_count.value = image_count.value + 1 %}
|
| 101 |
+
{%- if add_vision_id %}Picture {{ image_count.value }}: {% endif -%}
|
| 102 |
+
<|vision_start|><|image_pad|><|vision_end|>
|
| 103 |
+
{%- elif content.type == 'video' or 'video' in content %}
|
| 104 |
+
{%- set video_count.value = video_count.value + 1 %}
|
| 105 |
+
{%- if add_vision_id %}Video {{ video_count.value }}: {% endif -%}
|
| 106 |
+
<|vision_start|><|video_pad|><|vision_end|>
|
| 107 |
+
{%- elif 'text' in content %}
|
| 108 |
+
{{- content.text }}
|
| 109 |
+
{%- endif %}
|
| 110 |
+
{%- endfor %}
|
| 111 |
+
{%- endif %}
|
| 112 |
+
{{- '\n</tool_response>' }}
|
| 113 |
+
{%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
|
| 114 |
+
{{- '<|im_end|>\n' }}
|
| 115 |
+
{%- endif %}
|
| 116 |
+
{%- endif %}
|
| 117 |
+
{%- endfor %}
|
| 118 |
+
{%- if add_generation_prompt %}
|
| 119 |
+
{{- '<|im_start|>assistant\n' }}
|
| 120 |
+
{%- endif %}
|
qwen3-vl4b-agentnet_filter_failure_ws4_lr2e-5_vit1e-5_aligner1e-5_bs384-step500/config.json
ADDED
|
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"Qwen3VLForConditionalGeneration"
|
| 4 |
+
],
|
| 5 |
+
"dtype": "bfloat16",
|
| 6 |
+
"eos_token_id": 151645,
|
| 7 |
+
"hidden_size": 2560,
|
| 8 |
+
"image_token_id": 151655,
|
| 9 |
+
"model_type": "qwen3_vl",
|
| 10 |
+
"pad_token_id": 151643,
|
| 11 |
+
"text_config": {
|
| 12 |
+
"attention_bias": false,
|
| 13 |
+
"attention_dropout": 0.0,
|
| 14 |
+
"bos_token_id": 151643,
|
| 15 |
+
"dtype": "bfloat16",
|
| 16 |
+
"eos_token_id": 151645,
|
| 17 |
+
"head_dim": 128,
|
| 18 |
+
"hidden_act": "silu",
|
| 19 |
+
"hidden_size": 2560,
|
| 20 |
+
"initializer_range": 0.02,
|
| 21 |
+
"intermediate_size": 9728,
|
| 22 |
+
"max_position_embeddings": 262144,
|
| 23 |
+
"model_type": "qwen3_vl_text",
|
| 24 |
+
"num_attention_heads": 32,
|
| 25 |
+
"num_hidden_layers": 36,
|
| 26 |
+
"num_key_value_heads": 8,
|
| 27 |
+
"pad_token_id": 151643,
|
| 28 |
+
"rms_norm_eps": 1e-06,
|
| 29 |
+
"rope_scaling": {
|
| 30 |
+
"mrope_interleaved": true,
|
| 31 |
+
"mrope_section": [
|
| 32 |
+
24,
|
| 33 |
+
20,
|
| 34 |
+
20
|
| 35 |
+
],
|
| 36 |
+
"rope_type": "default"
|
| 37 |
+
},
|
| 38 |
+
"rope_theta": 5000000,
|
| 39 |
+
"tie_word_embeddings": true,
|
| 40 |
+
"use_cache": false,
|
| 41 |
+
"vocab_size": 151936
|
| 42 |
+
},
|
| 43 |
+
"tie_word_embeddings": true,
|
| 44 |
+
"transformers_version": "4.57.1",
|
| 45 |
+
"video_token_id": 151656,
|
| 46 |
+
"vision_config": {
|
| 47 |
+
"deepstack_visual_indexes": [
|
| 48 |
+
5,
|
| 49 |
+
11,
|
| 50 |
+
17
|
| 51 |
+
],
|
| 52 |
+
"depth": 24,
|
| 53 |
+
"dtype": "bfloat16",
|
| 54 |
+
"hidden_act": "gelu_pytorch_tanh",
|
| 55 |
+
"hidden_size": 1024,
|
| 56 |
+
"in_channels": 3,
|
| 57 |
+
"initializer_range": 0.02,
|
| 58 |
+
"intermediate_size": 4096,
|
| 59 |
+
"model_type": "qwen3_vl",
|
| 60 |
+
"num_heads": 16,
|
| 61 |
+
"num_position_embeddings": 2304,
|
| 62 |
+
"out_hidden_size": 2560,
|
| 63 |
+
"pad_token_id": 151643,
|
| 64 |
+
"patch_size": 16,
|
| 65 |
+
"spatial_merge_size": 2,
|
| 66 |
+
"temporal_patch_size": 2
|
| 67 |
+
},
|
| 68 |
+
"vision_end_token_id": 151653,
|
| 69 |
+
"vision_start_token_id": 151652
|
| 70 |
+
}
|
qwen3-vl4b-agentnet_filter_failure_ws4_lr2e-5_vit1e-5_aligner1e-5_bs384-step500/generation_config.json
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token_id": 151643,
|
| 3 |
+
"do_sample": true,
|
| 4 |
+
"eos_token_id": [
|
| 5 |
+
151645,
|
| 6 |
+
151643
|
| 7 |
+
],
|
| 8 |
+
"pad_token_id": 151643,
|
| 9 |
+
"temperature": 0.7,
|
| 10 |
+
"top_k": 20,
|
| 11 |
+
"top_p": 0.8,
|
| 12 |
+
"transformers_version": "4.57.1"
|
| 13 |
+
}
|
qwen3-vl4b-agentnet_filter_failure_ws4_lr2e-5_vit1e-5_aligner1e-5_bs384-step500/latest
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
global_step500
|
qwen3-vl4b-agentnet_filter_failure_ws4_lr2e-5_vit1e-5_aligner1e-5_bs384-step500/merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
qwen3-vl4b-agentnet_filter_failure_ws4_lr2e-5_vit1e-5_aligner1e-5_bs384-step500/model-00001-of-00002.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b130fa2b71319f11479489c2f6c4e9cff8605cd4cd2e0ee3f828178aef2f6088
|
| 3 |
+
size 4990497880
|
qwen3-vl4b-agentnet_filter_failure_ws4_lr2e-5_vit1e-5_aligner1e-5_bs384-step500/model-00002-of-00002.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e717d3c72f84363f5efcae0edaa621f842a3e36299567ce5501e77e71ed8e94f
|
| 3 |
+
size 4663133960
|
qwen3-vl4b-agentnet_filter_failure_ws4_lr2e-5_vit1e-5_aligner1e-5_bs384-step500/model.safetensors.index.json
ADDED
|
@@ -0,0 +1,722 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_parameters": 4437815808,
|
| 4 |
+
"total_size": 9653543936
|
| 5 |
+
},
|
| 6 |
+
"weight_map": {
|
| 7 |
+
"lm_head.weight": "model-00002-of-00002.safetensors",
|
| 8 |
+
"model.language_model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
| 9 |
+
"model.language_model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 10 |
+
"model.language_model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 11 |
+
"model.language_model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 12 |
+
"model.language_model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 13 |
+
"model.language_model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 14 |
+
"model.language_model.layers.0.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 15 |
+
"model.language_model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 16 |
+
"model.language_model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 17 |
+
"model.language_model.layers.0.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 18 |
+
"model.language_model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 19 |
+
"model.language_model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 20 |
+
"model.language_model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 21 |
+
"model.language_model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 22 |
+
"model.language_model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 23 |
+
"model.language_model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 24 |
+
"model.language_model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 25 |
+
"model.language_model.layers.1.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 26 |
+
"model.language_model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 27 |
+
"model.language_model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 28 |
+
"model.language_model.layers.1.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 29 |
+
"model.language_model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 30 |
+
"model.language_model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 31 |
+
"model.language_model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 32 |
+
"model.language_model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 33 |
+
"model.language_model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 34 |
+
"model.language_model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 35 |
+
"model.language_model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 36 |
+
"model.language_model.layers.10.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 37 |
+
"model.language_model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 38 |
+
"model.language_model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 39 |
+
"model.language_model.layers.10.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 40 |
+
"model.language_model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 41 |
+
"model.language_model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 42 |
+
"model.language_model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 43 |
+
"model.language_model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 44 |
+
"model.language_model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 45 |
+
"model.language_model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 46 |
+
"model.language_model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 47 |
+
"model.language_model.layers.11.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 48 |
+
"model.language_model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 49 |
+
"model.language_model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 50 |
+
"model.language_model.layers.11.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 51 |
+
"model.language_model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 52 |
+
"model.language_model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 53 |
+
"model.language_model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 54 |
+
"model.language_model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 55 |
+
"model.language_model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 56 |
+
"model.language_model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 57 |
+
"model.language_model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 58 |
+
"model.language_model.layers.12.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 59 |
+
"model.language_model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 60 |
+
"model.language_model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 61 |
+
"model.language_model.layers.12.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 62 |
+
"model.language_model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 63 |
+
"model.language_model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 64 |
+
"model.language_model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 65 |
+
"model.language_model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 66 |
+
"model.language_model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 67 |
+
"model.language_model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 68 |
+
"model.language_model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 69 |
+
"model.language_model.layers.13.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 70 |
+
"model.language_model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 71 |
+
"model.language_model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 72 |
+
"model.language_model.layers.13.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 73 |
+
"model.language_model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 74 |
+
"model.language_model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 75 |
+
"model.language_model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 76 |
+
"model.language_model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 77 |
+
"model.language_model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 78 |
+
"model.language_model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 79 |
+
"model.language_model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 80 |
+
"model.language_model.layers.14.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 81 |
+
"model.language_model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 82 |
+
"model.language_model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 83 |
+
"model.language_model.layers.14.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 84 |
+
"model.language_model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 85 |
+
"model.language_model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 86 |
+
"model.language_model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 87 |
+
"model.language_model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 88 |
+
"model.language_model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 89 |
+
"model.language_model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 90 |
+
"model.language_model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 91 |
+
"model.language_model.layers.15.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 92 |
+
"model.language_model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 93 |
+
"model.language_model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 94 |
+
"model.language_model.layers.15.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 95 |
+
"model.language_model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 96 |
+
"model.language_model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 97 |
+
"model.language_model.layers.16.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 98 |
+
"model.language_model.layers.16.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 99 |
+
"model.language_model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 100 |
+
"model.language_model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 101 |
+
"model.language_model.layers.16.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 102 |
+
"model.language_model.layers.16.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 103 |
+
"model.language_model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 104 |
+
"model.language_model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 105 |
+
"model.language_model.layers.16.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 106 |
+
"model.language_model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 107 |
+
"model.language_model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 108 |
+
"model.language_model.layers.17.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 109 |
+
"model.language_model.layers.17.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 110 |
+
"model.language_model.layers.17.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 111 |
+
"model.language_model.layers.17.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 112 |
+
"model.language_model.layers.17.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 113 |
+
"model.language_model.layers.17.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 114 |
+
"model.language_model.layers.17.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 115 |
+
"model.language_model.layers.17.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 116 |
+
"model.language_model.layers.17.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 117 |
+
"model.language_model.layers.17.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 118 |
+
"model.language_model.layers.17.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 119 |
+
"model.language_model.layers.18.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 120 |
+
"model.language_model.layers.18.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 121 |
+
"model.language_model.layers.18.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 122 |
+
"model.language_model.layers.18.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 123 |
+
"model.language_model.layers.18.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 124 |
+
"model.language_model.layers.18.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 125 |
+
"model.language_model.layers.18.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 126 |
+
"model.language_model.layers.18.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 127 |
+
"model.language_model.layers.18.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 128 |
+
"model.language_model.layers.18.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 129 |
+
"model.language_model.layers.18.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 130 |
+
"model.language_model.layers.19.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 131 |
+
"model.language_model.layers.19.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 132 |
+
"model.language_model.layers.19.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 133 |
+
"model.language_model.layers.19.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 134 |
+
"model.language_model.layers.19.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 135 |
+
"model.language_model.layers.19.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 136 |
+
"model.language_model.layers.19.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 137 |
+
"model.language_model.layers.19.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 138 |
+
"model.language_model.layers.19.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 139 |
+
"model.language_model.layers.19.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 140 |
+
"model.language_model.layers.19.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 141 |
+
"model.language_model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 142 |
+
"model.language_model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 143 |
+
"model.language_model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 144 |
+
"model.language_model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 145 |
+
"model.language_model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 146 |
+
"model.language_model.layers.2.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 147 |
+
"model.language_model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 148 |
+
"model.language_model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 149 |
+
"model.language_model.layers.2.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 150 |
+
"model.language_model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 151 |
+
"model.language_model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 152 |
+
"model.language_model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 153 |
+
"model.language_model.layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 154 |
+
"model.language_model.layers.20.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 155 |
+
"model.language_model.layers.20.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 156 |
+
"model.language_model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 157 |
+
"model.language_model.layers.20.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 158 |
+
"model.language_model.layers.20.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 159 |
+
"model.language_model.layers.20.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 160 |
+
"model.language_model.layers.20.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 161 |
+
"model.language_model.layers.20.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 162 |
+
"model.language_model.layers.20.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 163 |
+
"model.language_model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 164 |
+
"model.language_model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 165 |
+
"model.language_model.layers.21.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 166 |
+
"model.language_model.layers.21.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 167 |
+
"model.language_model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 168 |
+
"model.language_model.layers.21.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 169 |
+
"model.language_model.layers.21.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 170 |
+
"model.language_model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 171 |
+
"model.language_model.layers.21.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 172 |
+
"model.language_model.layers.21.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 173 |
+
"model.language_model.layers.21.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 174 |
+
"model.language_model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 175 |
+
"model.language_model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 176 |
+
"model.language_model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 177 |
+
"model.language_model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 178 |
+
"model.language_model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 179 |
+
"model.language_model.layers.22.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 180 |
+
"model.language_model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 181 |
+
"model.language_model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 182 |
+
"model.language_model.layers.22.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 183 |
+
"model.language_model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 184 |
+
"model.language_model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 185 |
+
"model.language_model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 186 |
+
"model.language_model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 187 |
+
"model.language_model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 188 |
+
"model.language_model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 189 |
+
"model.language_model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 190 |
+
"model.language_model.layers.23.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 191 |
+
"model.language_model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 192 |
+
"model.language_model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 193 |
+
"model.language_model.layers.23.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 194 |
+
"model.language_model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 195 |
+
"model.language_model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 196 |
+
"model.language_model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 197 |
+
"model.language_model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 198 |
+
"model.language_model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 199 |
+
"model.language_model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 200 |
+
"model.language_model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 201 |
+
"model.language_model.layers.24.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 202 |
+
"model.language_model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 203 |
+
"model.language_model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 204 |
+
"model.language_model.layers.24.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 205 |
+
"model.language_model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 206 |
+
"model.language_model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 207 |
+
"model.language_model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 208 |
+
"model.language_model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 209 |
+
"model.language_model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 210 |
+
"model.language_model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 211 |
+
"model.language_model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 212 |
+
"model.language_model.layers.25.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 213 |
+
"model.language_model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 214 |
+
"model.language_model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 215 |
+
"model.language_model.layers.25.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 216 |
+
"model.language_model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 217 |
+
"model.language_model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 218 |
+
"model.language_model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 219 |
+
"model.language_model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 220 |
+
"model.language_model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 221 |
+
"model.language_model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 222 |
+
"model.language_model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 223 |
+
"model.language_model.layers.26.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 224 |
+
"model.language_model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 225 |
+
"model.language_model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 226 |
+
"model.language_model.layers.26.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 227 |
+
"model.language_model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 228 |
+
"model.language_model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 229 |
+
"model.language_model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 230 |
+
"model.language_model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 231 |
+
"model.language_model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 232 |
+
"model.language_model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 233 |
+
"model.language_model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 234 |
+
"model.language_model.layers.27.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 235 |
+
"model.language_model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 236 |
+
"model.language_model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 237 |
+
"model.language_model.layers.27.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 238 |
+
"model.language_model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 239 |
+
"model.language_model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 240 |
+
"model.language_model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 241 |
+
"model.language_model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 242 |
+
"model.language_model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 243 |
+
"model.language_model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 244 |
+
"model.language_model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 245 |
+
"model.language_model.layers.28.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 246 |
+
"model.language_model.layers.28.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 247 |
+
"model.language_model.layers.28.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 248 |
+
"model.language_model.layers.28.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 249 |
+
"model.language_model.layers.28.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 250 |
+
"model.language_model.layers.28.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 251 |
+
"model.language_model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 252 |
+
"model.language_model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 253 |
+
"model.language_model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 254 |
+
"model.language_model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 255 |
+
"model.language_model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 256 |
+
"model.language_model.layers.29.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 257 |
+
"model.language_model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 258 |
+
"model.language_model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 259 |
+
"model.language_model.layers.29.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 260 |
+
"model.language_model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 261 |
+
"model.language_model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 262 |
+
"model.language_model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 263 |
+
"model.language_model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 264 |
+
"model.language_model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 265 |
+
"model.language_model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 266 |
+
"model.language_model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 267 |
+
"model.language_model.layers.3.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 268 |
+
"model.language_model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 269 |
+
"model.language_model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 270 |
+
"model.language_model.layers.3.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 271 |
+
"model.language_model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 272 |
+
"model.language_model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 273 |
+
"model.language_model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 274 |
+
"model.language_model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 275 |
+
"model.language_model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 276 |
+
"model.language_model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 277 |
+
"model.language_model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 278 |
+
"model.language_model.layers.30.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 279 |
+
"model.language_model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 280 |
+
"model.language_model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 281 |
+
"model.language_model.layers.30.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 282 |
+
"model.language_model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 283 |
+
"model.language_model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 284 |
+
"model.language_model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 285 |
+
"model.language_model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 286 |
+
"model.language_model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 287 |
+
"model.language_model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 288 |
+
"model.language_model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 289 |
+
"model.language_model.layers.31.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 290 |
+
"model.language_model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 291 |
+
"model.language_model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 292 |
+
"model.language_model.layers.31.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 293 |
+
"model.language_model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 294 |
+
"model.language_model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 295 |
+
"model.language_model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 296 |
+
"model.language_model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 297 |
+
"model.language_model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 298 |
+
"model.language_model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 299 |
+
"model.language_model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 300 |
+
"model.language_model.layers.32.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 301 |
+
"model.language_model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 302 |
+
"model.language_model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 303 |
+
"model.language_model.layers.32.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 304 |
+
"model.language_model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 305 |
+
"model.language_model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 306 |
+
"model.language_model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 307 |
+
"model.language_model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 308 |
+
"model.language_model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 309 |
+
"model.language_model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 310 |
+
"model.language_model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 311 |
+
"model.language_model.layers.33.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 312 |
+
"model.language_model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 313 |
+
"model.language_model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 314 |
+
"model.language_model.layers.33.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 315 |
+
"model.language_model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 316 |
+
"model.language_model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 317 |
+
"model.language_model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 318 |
+
"model.language_model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 319 |
+
"model.language_model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 320 |
+
"model.language_model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 321 |
+
"model.language_model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 322 |
+
"model.language_model.layers.34.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 323 |
+
"model.language_model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 324 |
+
"model.language_model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 325 |
+
"model.language_model.layers.34.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 326 |
+
"model.language_model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 327 |
+
"model.language_model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 328 |
+
"model.language_model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 329 |
+
"model.language_model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 330 |
+
"model.language_model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 331 |
+
"model.language_model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 332 |
+
"model.language_model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 333 |
+
"model.language_model.layers.35.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 334 |
+
"model.language_model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 335 |
+
"model.language_model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 336 |
+
"model.language_model.layers.35.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 337 |
+
"model.language_model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 338 |
+
"model.language_model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 339 |
+
"model.language_model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 340 |
+
"model.language_model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 341 |
+
"model.language_model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 342 |
+
"model.language_model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 343 |
+
"model.language_model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 344 |
+
"model.language_model.layers.4.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 345 |
+
"model.language_model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 346 |
+
"model.language_model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 347 |
+
"model.language_model.layers.4.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 348 |
+
"model.language_model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 349 |
+
"model.language_model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 350 |
+
"model.language_model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 351 |
+
"model.language_model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 352 |
+
"model.language_model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 353 |
+
"model.language_model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 354 |
+
"model.language_model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 355 |
+
"model.language_model.layers.5.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 356 |
+
"model.language_model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 357 |
+
"model.language_model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 358 |
+
"model.language_model.layers.5.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 359 |
+
"model.language_model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 360 |
+
"model.language_model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 361 |
+
"model.language_model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 362 |
+
"model.language_model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 363 |
+
"model.language_model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 364 |
+
"model.language_model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 365 |
+
"model.language_model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 366 |
+
"model.language_model.layers.6.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 367 |
+
"model.language_model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 368 |
+
"model.language_model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 369 |
+
"model.language_model.layers.6.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 370 |
+
"model.language_model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 371 |
+
"model.language_model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 372 |
+
"model.language_model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 373 |
+
"model.language_model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 374 |
+
"model.language_model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 375 |
+
"model.language_model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 376 |
+
"model.language_model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 377 |
+
"model.language_model.layers.7.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 378 |
+
"model.language_model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 379 |
+
"model.language_model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 380 |
+
"model.language_model.layers.7.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 381 |
+
"model.language_model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 382 |
+
"model.language_model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 383 |
+
"model.language_model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 384 |
+
"model.language_model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 385 |
+
"model.language_model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 386 |
+
"model.language_model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 387 |
+
"model.language_model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 388 |
+
"model.language_model.layers.8.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 389 |
+
"model.language_model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 390 |
+
"model.language_model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 391 |
+
"model.language_model.layers.8.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 392 |
+
"model.language_model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 393 |
+
"model.language_model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 394 |
+
"model.language_model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 395 |
+
"model.language_model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 396 |
+
"model.language_model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 397 |
+
"model.language_model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 398 |
+
"model.language_model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 399 |
+
"model.language_model.layers.9.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 400 |
+
"model.language_model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 401 |
+
"model.language_model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 402 |
+
"model.language_model.layers.9.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 403 |
+
"model.language_model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 404 |
+
"model.language_model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 405 |
+
"model.language_model.norm.weight": "model-00002-of-00002.safetensors",
|
| 406 |
+
"model.visual.blocks.0.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 407 |
+
"model.visual.blocks.0.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 408 |
+
"model.visual.blocks.0.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 409 |
+
"model.visual.blocks.0.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 410 |
+
"model.visual.blocks.0.mlp.linear_fc1.bias": "model-00001-of-00002.safetensors",
|
| 411 |
+
"model.visual.blocks.0.mlp.linear_fc1.weight": "model-00001-of-00002.safetensors",
|
| 412 |
+
"model.visual.blocks.0.mlp.linear_fc2.bias": "model-00001-of-00002.safetensors",
|
| 413 |
+
"model.visual.blocks.0.mlp.linear_fc2.weight": "model-00001-of-00002.safetensors",
|
| 414 |
+
"model.visual.blocks.0.norm1.bias": "model-00001-of-00002.safetensors",
|
| 415 |
+
"model.visual.blocks.0.norm1.weight": "model-00001-of-00002.safetensors",
|
| 416 |
+
"model.visual.blocks.0.norm2.bias": "model-00001-of-00002.safetensors",
|
| 417 |
+
"model.visual.blocks.0.norm2.weight": "model-00001-of-00002.safetensors",
|
| 418 |
+
"model.visual.blocks.1.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 419 |
+
"model.visual.blocks.1.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 420 |
+
"model.visual.blocks.1.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 421 |
+
"model.visual.blocks.1.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 422 |
+
"model.visual.blocks.1.mlp.linear_fc1.bias": "model-00001-of-00002.safetensors",
|
| 423 |
+
"model.visual.blocks.1.mlp.linear_fc1.weight": "model-00001-of-00002.safetensors",
|
| 424 |
+
"model.visual.blocks.1.mlp.linear_fc2.bias": "model-00001-of-00002.safetensors",
|
| 425 |
+
"model.visual.blocks.1.mlp.linear_fc2.weight": "model-00001-of-00002.safetensors",
|
| 426 |
+
"model.visual.blocks.1.norm1.bias": "model-00001-of-00002.safetensors",
|
| 427 |
+
"model.visual.blocks.1.norm1.weight": "model-00001-of-00002.safetensors",
|
| 428 |
+
"model.visual.blocks.1.norm2.bias": "model-00001-of-00002.safetensors",
|
| 429 |
+
"model.visual.blocks.1.norm2.weight": "model-00001-of-00002.safetensors",
|
| 430 |
+
"model.visual.blocks.10.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 431 |
+
"model.visual.blocks.10.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 432 |
+
"model.visual.blocks.10.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 433 |
+
"model.visual.blocks.10.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 434 |
+
"model.visual.blocks.10.mlp.linear_fc1.bias": "model-00001-of-00002.safetensors",
|
| 435 |
+
"model.visual.blocks.10.mlp.linear_fc1.weight": "model-00001-of-00002.safetensors",
|
| 436 |
+
"model.visual.blocks.10.mlp.linear_fc2.bias": "model-00001-of-00002.safetensors",
|
| 437 |
+
"model.visual.blocks.10.mlp.linear_fc2.weight": "model-00001-of-00002.safetensors",
|
| 438 |
+
"model.visual.blocks.10.norm1.bias": "model-00001-of-00002.safetensors",
|
| 439 |
+
"model.visual.blocks.10.norm1.weight": "model-00001-of-00002.safetensors",
|
| 440 |
+
"model.visual.blocks.10.norm2.bias": "model-00001-of-00002.safetensors",
|
| 441 |
+
"model.visual.blocks.10.norm2.weight": "model-00001-of-00002.safetensors",
|
| 442 |
+
"model.visual.blocks.11.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 443 |
+
"model.visual.blocks.11.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 444 |
+
"model.visual.blocks.11.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 445 |
+
"model.visual.blocks.11.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 446 |
+
"model.visual.blocks.11.mlp.linear_fc1.bias": "model-00001-of-00002.safetensors",
|
| 447 |
+
"model.visual.blocks.11.mlp.linear_fc1.weight": "model-00001-of-00002.safetensors",
|
| 448 |
+
"model.visual.blocks.11.mlp.linear_fc2.bias": "model-00001-of-00002.safetensors",
|
| 449 |
+
"model.visual.blocks.11.mlp.linear_fc2.weight": "model-00001-of-00002.safetensors",
|
| 450 |
+
"model.visual.blocks.11.norm1.bias": "model-00001-of-00002.safetensors",
|
| 451 |
+
"model.visual.blocks.11.norm1.weight": "model-00001-of-00002.safetensors",
|
| 452 |
+
"model.visual.blocks.11.norm2.bias": "model-00001-of-00002.safetensors",
|
| 453 |
+
"model.visual.blocks.11.norm2.weight": "model-00001-of-00002.safetensors",
|
| 454 |
+
"model.visual.blocks.12.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 455 |
+
"model.visual.blocks.12.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 456 |
+
"model.visual.blocks.12.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 457 |
+
"model.visual.blocks.12.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 458 |
+
"model.visual.blocks.12.mlp.linear_fc1.bias": "model-00001-of-00002.safetensors",
|
| 459 |
+
"model.visual.blocks.12.mlp.linear_fc1.weight": "model-00001-of-00002.safetensors",
|
| 460 |
+
"model.visual.blocks.12.mlp.linear_fc2.bias": "model-00001-of-00002.safetensors",
|
| 461 |
+
"model.visual.blocks.12.mlp.linear_fc2.weight": "model-00001-of-00002.safetensors",
|
| 462 |
+
"model.visual.blocks.12.norm1.bias": "model-00001-of-00002.safetensors",
|
| 463 |
+
"model.visual.blocks.12.norm1.weight": "model-00001-of-00002.safetensors",
|
| 464 |
+
"model.visual.blocks.12.norm2.bias": "model-00001-of-00002.safetensors",
|
| 465 |
+
"model.visual.blocks.12.norm2.weight": "model-00001-of-00002.safetensors",
|
| 466 |
+
"model.visual.blocks.13.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 467 |
+
"model.visual.blocks.13.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 468 |
+
"model.visual.blocks.13.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 469 |
+
"model.visual.blocks.13.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 470 |
+
"model.visual.blocks.13.mlp.linear_fc1.bias": "model-00001-of-00002.safetensors",
|
| 471 |
+
"model.visual.blocks.13.mlp.linear_fc1.weight": "model-00001-of-00002.safetensors",
|
| 472 |
+
"model.visual.blocks.13.mlp.linear_fc2.bias": "model-00001-of-00002.safetensors",
|
| 473 |
+
"model.visual.blocks.13.mlp.linear_fc2.weight": "model-00001-of-00002.safetensors",
|
| 474 |
+
"model.visual.blocks.13.norm1.bias": "model-00001-of-00002.safetensors",
|
| 475 |
+
"model.visual.blocks.13.norm1.weight": "model-00001-of-00002.safetensors",
|
| 476 |
+
"model.visual.blocks.13.norm2.bias": "model-00001-of-00002.safetensors",
|
| 477 |
+
"model.visual.blocks.13.norm2.weight": "model-00001-of-00002.safetensors",
|
| 478 |
+
"model.visual.blocks.14.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 479 |
+
"model.visual.blocks.14.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 480 |
+
"model.visual.blocks.14.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 481 |
+
"model.visual.blocks.14.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 482 |
+
"model.visual.blocks.14.mlp.linear_fc1.bias": "model-00001-of-00002.safetensors",
|
| 483 |
+
"model.visual.blocks.14.mlp.linear_fc1.weight": "model-00001-of-00002.safetensors",
|
| 484 |
+
"model.visual.blocks.14.mlp.linear_fc2.bias": "model-00001-of-00002.safetensors",
|
| 485 |
+
"model.visual.blocks.14.mlp.linear_fc2.weight": "model-00001-of-00002.safetensors",
|
| 486 |
+
"model.visual.blocks.14.norm1.bias": "model-00001-of-00002.safetensors",
|
| 487 |
+
"model.visual.blocks.14.norm1.weight": "model-00001-of-00002.safetensors",
|
| 488 |
+
"model.visual.blocks.14.norm2.bias": "model-00001-of-00002.safetensors",
|
| 489 |
+
"model.visual.blocks.14.norm2.weight": "model-00001-of-00002.safetensors",
|
| 490 |
+
"model.visual.blocks.15.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 491 |
+
"model.visual.blocks.15.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 492 |
+
"model.visual.blocks.15.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 493 |
+
"model.visual.blocks.15.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 494 |
+
"model.visual.blocks.15.mlp.linear_fc1.bias": "model-00001-of-00002.safetensors",
|
| 495 |
+
"model.visual.blocks.15.mlp.linear_fc1.weight": "model-00001-of-00002.safetensors",
|
| 496 |
+
"model.visual.blocks.15.mlp.linear_fc2.bias": "model-00001-of-00002.safetensors",
|
| 497 |
+
"model.visual.blocks.15.mlp.linear_fc2.weight": "model-00001-of-00002.safetensors",
|
| 498 |
+
"model.visual.blocks.15.norm1.bias": "model-00001-of-00002.safetensors",
|
| 499 |
+
"model.visual.blocks.15.norm1.weight": "model-00001-of-00002.safetensors",
|
| 500 |
+
"model.visual.blocks.15.norm2.bias": "model-00001-of-00002.safetensors",
|
| 501 |
+
"model.visual.blocks.15.norm2.weight": "model-00001-of-00002.safetensors",
|
| 502 |
+
"model.visual.blocks.16.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 503 |
+
"model.visual.blocks.16.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 504 |
+
"model.visual.blocks.16.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 505 |
+
"model.visual.blocks.16.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 506 |
+
"model.visual.blocks.16.mlp.linear_fc1.bias": "model-00001-of-00002.safetensors",
|
| 507 |
+
"model.visual.blocks.16.mlp.linear_fc1.weight": "model-00001-of-00002.safetensors",
|
| 508 |
+
"model.visual.blocks.16.mlp.linear_fc2.bias": "model-00001-of-00002.safetensors",
|
| 509 |
+
"model.visual.blocks.16.mlp.linear_fc2.weight": "model-00001-of-00002.safetensors",
|
| 510 |
+
"model.visual.blocks.16.norm1.bias": "model-00001-of-00002.safetensors",
|
| 511 |
+
"model.visual.blocks.16.norm1.weight": "model-00001-of-00002.safetensors",
|
| 512 |
+
"model.visual.blocks.16.norm2.bias": "model-00001-of-00002.safetensors",
|
| 513 |
+
"model.visual.blocks.16.norm2.weight": "model-00001-of-00002.safetensors",
|
| 514 |
+
"model.visual.blocks.17.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 515 |
+
"model.visual.blocks.17.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 516 |
+
"model.visual.blocks.17.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 517 |
+
"model.visual.blocks.17.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 518 |
+
"model.visual.blocks.17.mlp.linear_fc1.bias": "model-00001-of-00002.safetensors",
|
| 519 |
+
"model.visual.blocks.17.mlp.linear_fc1.weight": "model-00001-of-00002.safetensors",
|
| 520 |
+
"model.visual.blocks.17.mlp.linear_fc2.bias": "model-00001-of-00002.safetensors",
|
| 521 |
+
"model.visual.blocks.17.mlp.linear_fc2.weight": "model-00001-of-00002.safetensors",
|
| 522 |
+
"model.visual.blocks.17.norm1.bias": "model-00001-of-00002.safetensors",
|
| 523 |
+
"model.visual.blocks.17.norm1.weight": "model-00001-of-00002.safetensors",
|
| 524 |
+
"model.visual.blocks.17.norm2.bias": "model-00001-of-00002.safetensors",
|
| 525 |
+
"model.visual.blocks.17.norm2.weight": "model-00001-of-00002.safetensors",
|
| 526 |
+
"model.visual.blocks.18.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 527 |
+
"model.visual.blocks.18.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 528 |
+
"model.visual.blocks.18.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 529 |
+
"model.visual.blocks.18.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 530 |
+
"model.visual.blocks.18.mlp.linear_fc1.bias": "model-00001-of-00002.safetensors",
|
| 531 |
+
"model.visual.blocks.18.mlp.linear_fc1.weight": "model-00001-of-00002.safetensors",
|
| 532 |
+
"model.visual.blocks.18.mlp.linear_fc2.bias": "model-00001-of-00002.safetensors",
|
| 533 |
+
"model.visual.blocks.18.mlp.linear_fc2.weight": "model-00001-of-00002.safetensors",
|
| 534 |
+
"model.visual.blocks.18.norm1.bias": "model-00001-of-00002.safetensors",
|
| 535 |
+
"model.visual.blocks.18.norm1.weight": "model-00001-of-00002.safetensors",
|
| 536 |
+
"model.visual.blocks.18.norm2.bias": "model-00001-of-00002.safetensors",
|
| 537 |
+
"model.visual.blocks.18.norm2.weight": "model-00001-of-00002.safetensors",
|
| 538 |
+
"model.visual.blocks.19.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 539 |
+
"model.visual.blocks.19.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 540 |
+
"model.visual.blocks.19.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 541 |
+
"model.visual.blocks.19.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 542 |
+
"model.visual.blocks.19.mlp.linear_fc1.bias": "model-00001-of-00002.safetensors",
|
| 543 |
+
"model.visual.blocks.19.mlp.linear_fc1.weight": "model-00001-of-00002.safetensors",
|
| 544 |
+
"model.visual.blocks.19.mlp.linear_fc2.bias": "model-00001-of-00002.safetensors",
|
| 545 |
+
"model.visual.blocks.19.mlp.linear_fc2.weight": "model-00001-of-00002.safetensors",
|
| 546 |
+
"model.visual.blocks.19.norm1.bias": "model-00001-of-00002.safetensors",
|
| 547 |
+
"model.visual.blocks.19.norm1.weight": "model-00001-of-00002.safetensors",
|
| 548 |
+
"model.visual.blocks.19.norm2.bias": "model-00001-of-00002.safetensors",
|
| 549 |
+
"model.visual.blocks.19.norm2.weight": "model-00001-of-00002.safetensors",
|
| 550 |
+
"model.visual.blocks.2.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 551 |
+
"model.visual.blocks.2.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 552 |
+
"model.visual.blocks.2.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 553 |
+
"model.visual.blocks.2.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 554 |
+
"model.visual.blocks.2.mlp.linear_fc1.bias": "model-00001-of-00002.safetensors",
|
| 555 |
+
"model.visual.blocks.2.mlp.linear_fc1.weight": "model-00001-of-00002.safetensors",
|
| 556 |
+
"model.visual.blocks.2.mlp.linear_fc2.bias": "model-00001-of-00002.safetensors",
|
| 557 |
+
"model.visual.blocks.2.mlp.linear_fc2.weight": "model-00001-of-00002.safetensors",
|
| 558 |
+
"model.visual.blocks.2.norm1.bias": "model-00001-of-00002.safetensors",
|
| 559 |
+
"model.visual.blocks.2.norm1.weight": "model-00001-of-00002.safetensors",
|
| 560 |
+
"model.visual.blocks.2.norm2.bias": "model-00001-of-00002.safetensors",
|
| 561 |
+
"model.visual.blocks.2.norm2.weight": "model-00001-of-00002.safetensors",
|
| 562 |
+
"model.visual.blocks.20.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 563 |
+
"model.visual.blocks.20.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 564 |
+
"model.visual.blocks.20.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 565 |
+
"model.visual.blocks.20.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 566 |
+
"model.visual.blocks.20.mlp.linear_fc1.bias": "model-00001-of-00002.safetensors",
|
| 567 |
+
"model.visual.blocks.20.mlp.linear_fc1.weight": "model-00001-of-00002.safetensors",
|
| 568 |
+
"model.visual.blocks.20.mlp.linear_fc2.bias": "model-00001-of-00002.safetensors",
|
| 569 |
+
"model.visual.blocks.20.mlp.linear_fc2.weight": "model-00001-of-00002.safetensors",
|
| 570 |
+
"model.visual.blocks.20.norm1.bias": "model-00001-of-00002.safetensors",
|
| 571 |
+
"model.visual.blocks.20.norm1.weight": "model-00001-of-00002.safetensors",
|
| 572 |
+
"model.visual.blocks.20.norm2.bias": "model-00001-of-00002.safetensors",
|
| 573 |
+
"model.visual.blocks.20.norm2.weight": "model-00001-of-00002.safetensors",
|
| 574 |
+
"model.visual.blocks.21.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 575 |
+
"model.visual.blocks.21.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 576 |
+
"model.visual.blocks.21.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 577 |
+
"model.visual.blocks.21.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 578 |
+
"model.visual.blocks.21.mlp.linear_fc1.bias": "model-00001-of-00002.safetensors",
|
| 579 |
+
"model.visual.blocks.21.mlp.linear_fc1.weight": "model-00001-of-00002.safetensors",
|
| 580 |
+
"model.visual.blocks.21.mlp.linear_fc2.bias": "model-00001-of-00002.safetensors",
|
| 581 |
+
"model.visual.blocks.21.mlp.linear_fc2.weight": "model-00001-of-00002.safetensors",
|
| 582 |
+
"model.visual.blocks.21.norm1.bias": "model-00001-of-00002.safetensors",
|
| 583 |
+
"model.visual.blocks.21.norm1.weight": "model-00001-of-00002.safetensors",
|
| 584 |
+
"model.visual.blocks.21.norm2.bias": "model-00001-of-00002.safetensors",
|
| 585 |
+
"model.visual.blocks.21.norm2.weight": "model-00001-of-00002.safetensors",
|
| 586 |
+
"model.visual.blocks.22.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 587 |
+
"model.visual.blocks.22.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 588 |
+
"model.visual.blocks.22.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 589 |
+
"model.visual.blocks.22.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 590 |
+
"model.visual.blocks.22.mlp.linear_fc1.bias": "model-00001-of-00002.safetensors",
|
| 591 |
+
"model.visual.blocks.22.mlp.linear_fc1.weight": "model-00001-of-00002.safetensors",
|
| 592 |
+
"model.visual.blocks.22.mlp.linear_fc2.bias": "model-00001-of-00002.safetensors",
|
| 593 |
+
"model.visual.blocks.22.mlp.linear_fc2.weight": "model-00001-of-00002.safetensors",
|
| 594 |
+
"model.visual.blocks.22.norm1.bias": "model-00001-of-00002.safetensors",
|
| 595 |
+
"model.visual.blocks.22.norm1.weight": "model-00001-of-00002.safetensors",
|
| 596 |
+
"model.visual.blocks.22.norm2.bias": "model-00001-of-00002.safetensors",
|
| 597 |
+
"model.visual.blocks.22.norm2.weight": "model-00001-of-00002.safetensors",
|
| 598 |
+
"model.visual.blocks.23.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 599 |
+
"model.visual.blocks.23.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 600 |
+
"model.visual.blocks.23.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 601 |
+
"model.visual.blocks.23.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 602 |
+
"model.visual.blocks.23.mlp.linear_fc1.bias": "model-00001-of-00002.safetensors",
|
| 603 |
+
"model.visual.blocks.23.mlp.linear_fc1.weight": "model-00001-of-00002.safetensors",
|
| 604 |
+
"model.visual.blocks.23.mlp.linear_fc2.bias": "model-00001-of-00002.safetensors",
|
| 605 |
+
"model.visual.blocks.23.mlp.linear_fc2.weight": "model-00001-of-00002.safetensors",
|
| 606 |
+
"model.visual.blocks.23.norm1.bias": "model-00001-of-00002.safetensors",
|
| 607 |
+
"model.visual.blocks.23.norm1.weight": "model-00001-of-00002.safetensors",
|
| 608 |
+
"model.visual.blocks.23.norm2.bias": "model-00001-of-00002.safetensors",
|
| 609 |
+
"model.visual.blocks.23.norm2.weight": "model-00001-of-00002.safetensors",
|
| 610 |
+
"model.visual.blocks.3.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 611 |
+
"model.visual.blocks.3.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 612 |
+
"model.visual.blocks.3.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 613 |
+
"model.visual.blocks.3.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 614 |
+
"model.visual.blocks.3.mlp.linear_fc1.bias": "model-00001-of-00002.safetensors",
|
| 615 |
+
"model.visual.blocks.3.mlp.linear_fc1.weight": "model-00001-of-00002.safetensors",
|
| 616 |
+
"model.visual.blocks.3.mlp.linear_fc2.bias": "model-00001-of-00002.safetensors",
|
| 617 |
+
"model.visual.blocks.3.mlp.linear_fc2.weight": "model-00001-of-00002.safetensors",
|
| 618 |
+
"model.visual.blocks.3.norm1.bias": "model-00001-of-00002.safetensors",
|
| 619 |
+
"model.visual.blocks.3.norm1.weight": "model-00001-of-00002.safetensors",
|
| 620 |
+
"model.visual.blocks.3.norm2.bias": "model-00001-of-00002.safetensors",
|
| 621 |
+
"model.visual.blocks.3.norm2.weight": "model-00001-of-00002.safetensors",
|
| 622 |
+
"model.visual.blocks.4.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 623 |
+
"model.visual.blocks.4.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 624 |
+
"model.visual.blocks.4.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 625 |
+
"model.visual.blocks.4.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 626 |
+
"model.visual.blocks.4.mlp.linear_fc1.bias": "model-00001-of-00002.safetensors",
|
| 627 |
+
"model.visual.blocks.4.mlp.linear_fc1.weight": "model-00001-of-00002.safetensors",
|
| 628 |
+
"model.visual.blocks.4.mlp.linear_fc2.bias": "model-00001-of-00002.safetensors",
|
| 629 |
+
"model.visual.blocks.4.mlp.linear_fc2.weight": "model-00001-of-00002.safetensors",
|
| 630 |
+
"model.visual.blocks.4.norm1.bias": "model-00001-of-00002.safetensors",
|
| 631 |
+
"model.visual.blocks.4.norm1.weight": "model-00001-of-00002.safetensors",
|
| 632 |
+
"model.visual.blocks.4.norm2.bias": "model-00001-of-00002.safetensors",
|
| 633 |
+
"model.visual.blocks.4.norm2.weight": "model-00001-of-00002.safetensors",
|
| 634 |
+
"model.visual.blocks.5.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 635 |
+
"model.visual.blocks.5.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 636 |
+
"model.visual.blocks.5.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 637 |
+
"model.visual.blocks.5.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 638 |
+
"model.visual.blocks.5.mlp.linear_fc1.bias": "model-00001-of-00002.safetensors",
|
| 639 |
+
"model.visual.blocks.5.mlp.linear_fc1.weight": "model-00001-of-00002.safetensors",
|
| 640 |
+
"model.visual.blocks.5.mlp.linear_fc2.bias": "model-00001-of-00002.safetensors",
|
| 641 |
+
"model.visual.blocks.5.mlp.linear_fc2.weight": "model-00001-of-00002.safetensors",
|
| 642 |
+
"model.visual.blocks.5.norm1.bias": "model-00001-of-00002.safetensors",
|
| 643 |
+
"model.visual.blocks.5.norm1.weight": "model-00001-of-00002.safetensors",
|
| 644 |
+
"model.visual.blocks.5.norm2.bias": "model-00001-of-00002.safetensors",
|
| 645 |
+
"model.visual.blocks.5.norm2.weight": "model-00001-of-00002.safetensors",
|
| 646 |
+
"model.visual.blocks.6.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 647 |
+
"model.visual.blocks.6.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 648 |
+
"model.visual.blocks.6.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 649 |
+
"model.visual.blocks.6.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 650 |
+
"model.visual.blocks.6.mlp.linear_fc1.bias": "model-00001-of-00002.safetensors",
|
| 651 |
+
"model.visual.blocks.6.mlp.linear_fc1.weight": "model-00001-of-00002.safetensors",
|
| 652 |
+
"model.visual.blocks.6.mlp.linear_fc2.bias": "model-00001-of-00002.safetensors",
|
| 653 |
+
"model.visual.blocks.6.mlp.linear_fc2.weight": "model-00001-of-00002.safetensors",
|
| 654 |
+
"model.visual.blocks.6.norm1.bias": "model-00001-of-00002.safetensors",
|
| 655 |
+
"model.visual.blocks.6.norm1.weight": "model-00001-of-00002.safetensors",
|
| 656 |
+
"model.visual.blocks.6.norm2.bias": "model-00001-of-00002.safetensors",
|
| 657 |
+
"model.visual.blocks.6.norm2.weight": "model-00001-of-00002.safetensors",
|
| 658 |
+
"model.visual.blocks.7.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 659 |
+
"model.visual.blocks.7.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 660 |
+
"model.visual.blocks.7.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 661 |
+
"model.visual.blocks.7.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 662 |
+
"model.visual.blocks.7.mlp.linear_fc1.bias": "model-00001-of-00002.safetensors",
|
| 663 |
+
"model.visual.blocks.7.mlp.linear_fc1.weight": "model-00001-of-00002.safetensors",
|
| 664 |
+
"model.visual.blocks.7.mlp.linear_fc2.bias": "model-00001-of-00002.safetensors",
|
| 665 |
+
"model.visual.blocks.7.mlp.linear_fc2.weight": "model-00001-of-00002.safetensors",
|
| 666 |
+
"model.visual.blocks.7.norm1.bias": "model-00001-of-00002.safetensors",
|
| 667 |
+
"model.visual.blocks.7.norm1.weight": "model-00001-of-00002.safetensors",
|
| 668 |
+
"model.visual.blocks.7.norm2.bias": "model-00001-of-00002.safetensors",
|
| 669 |
+
"model.visual.blocks.7.norm2.weight": "model-00001-of-00002.safetensors",
|
| 670 |
+
"model.visual.blocks.8.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 671 |
+
"model.visual.blocks.8.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 672 |
+
"model.visual.blocks.8.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 673 |
+
"model.visual.blocks.8.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 674 |
+
"model.visual.blocks.8.mlp.linear_fc1.bias": "model-00001-of-00002.safetensors",
|
| 675 |
+
"model.visual.blocks.8.mlp.linear_fc1.weight": "model-00001-of-00002.safetensors",
|
| 676 |
+
"model.visual.blocks.8.mlp.linear_fc2.bias": "model-00001-of-00002.safetensors",
|
| 677 |
+
"model.visual.blocks.8.mlp.linear_fc2.weight": "model-00001-of-00002.safetensors",
|
| 678 |
+
"model.visual.blocks.8.norm1.bias": "model-00001-of-00002.safetensors",
|
| 679 |
+
"model.visual.blocks.8.norm1.weight": "model-00001-of-00002.safetensors",
|
| 680 |
+
"model.visual.blocks.8.norm2.bias": "model-00001-of-00002.safetensors",
|
| 681 |
+
"model.visual.blocks.8.norm2.weight": "model-00001-of-00002.safetensors",
|
| 682 |
+
"model.visual.blocks.9.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 683 |
+
"model.visual.blocks.9.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 684 |
+
"model.visual.blocks.9.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 685 |
+
"model.visual.blocks.9.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 686 |
+
"model.visual.blocks.9.mlp.linear_fc1.bias": "model-00001-of-00002.safetensors",
|
| 687 |
+
"model.visual.blocks.9.mlp.linear_fc1.weight": "model-00001-of-00002.safetensors",
|
| 688 |
+
"model.visual.blocks.9.mlp.linear_fc2.bias": "model-00001-of-00002.safetensors",
|
| 689 |
+
"model.visual.blocks.9.mlp.linear_fc2.weight": "model-00001-of-00002.safetensors",
|
| 690 |
+
"model.visual.blocks.9.norm1.bias": "model-00001-of-00002.safetensors",
|
| 691 |
+
"model.visual.blocks.9.norm1.weight": "model-00001-of-00002.safetensors",
|
| 692 |
+
"model.visual.blocks.9.norm2.bias": "model-00001-of-00002.safetensors",
|
| 693 |
+
"model.visual.blocks.9.norm2.weight": "model-00001-of-00002.safetensors",
|
| 694 |
+
"model.visual.deepstack_merger_list.0.linear_fc1.bias": "model-00001-of-00002.safetensors",
|
| 695 |
+
"model.visual.deepstack_merger_list.0.linear_fc1.weight": "model-00001-of-00002.safetensors",
|
| 696 |
+
"model.visual.deepstack_merger_list.0.linear_fc2.bias": "model-00001-of-00002.safetensors",
|
| 697 |
+
"model.visual.deepstack_merger_list.0.linear_fc2.weight": "model-00001-of-00002.safetensors",
|
| 698 |
+
"model.visual.deepstack_merger_list.0.norm.bias": "model-00001-of-00002.safetensors",
|
| 699 |
+
"model.visual.deepstack_merger_list.0.norm.weight": "model-00001-of-00002.safetensors",
|
| 700 |
+
"model.visual.deepstack_merger_list.1.linear_fc1.bias": "model-00001-of-00002.safetensors",
|
| 701 |
+
"model.visual.deepstack_merger_list.1.linear_fc1.weight": "model-00001-of-00002.safetensors",
|
| 702 |
+
"model.visual.deepstack_merger_list.1.linear_fc2.bias": "model-00001-of-00002.safetensors",
|
| 703 |
+
"model.visual.deepstack_merger_list.1.linear_fc2.weight": "model-00001-of-00002.safetensors",
|
| 704 |
+
"model.visual.deepstack_merger_list.1.norm.bias": "model-00001-of-00002.safetensors",
|
| 705 |
+
"model.visual.deepstack_merger_list.1.norm.weight": "model-00001-of-00002.safetensors",
|
| 706 |
+
"model.visual.deepstack_merger_list.2.linear_fc1.bias": "model-00001-of-00002.safetensors",
|
| 707 |
+
"model.visual.deepstack_merger_list.2.linear_fc1.weight": "model-00001-of-00002.safetensors",
|
| 708 |
+
"model.visual.deepstack_merger_list.2.linear_fc2.bias": "model-00001-of-00002.safetensors",
|
| 709 |
+
"model.visual.deepstack_merger_list.2.linear_fc2.weight": "model-00001-of-00002.safetensors",
|
| 710 |
+
"model.visual.deepstack_merger_list.2.norm.bias": "model-00001-of-00002.safetensors",
|
| 711 |
+
"model.visual.deepstack_merger_list.2.norm.weight": "model-00001-of-00002.safetensors",
|
| 712 |
+
"model.visual.merger.linear_fc1.bias": "model-00001-of-00002.safetensors",
|
| 713 |
+
"model.visual.merger.linear_fc1.weight": "model-00001-of-00002.safetensors",
|
| 714 |
+
"model.visual.merger.linear_fc2.bias": "model-00001-of-00002.safetensors",
|
| 715 |
+
"model.visual.merger.linear_fc2.weight": "model-00001-of-00002.safetensors",
|
| 716 |
+
"model.visual.merger.norm.bias": "model-00001-of-00002.safetensors",
|
| 717 |
+
"model.visual.merger.norm.weight": "model-00001-of-00002.safetensors",
|
| 718 |
+
"model.visual.patch_embed.proj.bias": "model-00001-of-00002.safetensors",
|
| 719 |
+
"model.visual.patch_embed.proj.weight": "model-00001-of-00002.safetensors",
|
| 720 |
+
"model.visual.pos_embed.weight": "model-00001-of-00002.safetensors"
|
| 721 |
+
}
|
| 722 |
+
}
|
qwen3-vl4b-agentnet_filter_failure_ws4_lr2e-5_vit1e-5_aligner1e-5_bs384-step500/preprocessor_config.json
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"size": {
|
| 3 |
+
"longest_edge": 16777216,
|
| 4 |
+
"shortest_edge": 65536
|
| 5 |
+
},
|
| 6 |
+
"patch_size": 16,
|
| 7 |
+
"temporal_patch_size": 2,
|
| 8 |
+
"merge_size": 2,
|
| 9 |
+
"image_mean": [
|
| 10 |
+
0.5,
|
| 11 |
+
0.5,
|
| 12 |
+
0.5
|
| 13 |
+
],
|
| 14 |
+
"image_std": [
|
| 15 |
+
0.5,
|
| 16 |
+
0.5,
|
| 17 |
+
0.5
|
| 18 |
+
],
|
| 19 |
+
"processor_class": "Qwen3VLProcessor",
|
| 20 |
+
"image_processor_type": "Qwen2VLImageProcessorFast"
|
| 21 |
+
}
|
qwen3-vl4b-agentnet_filter_failure_ws4_lr2e-5_vit1e-5_aligner1e-5_bs384-step500/special_tokens_map.json
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<|im_start|>",
|
| 4 |
+
"<|im_end|>",
|
| 5 |
+
"<|object_ref_start|>",
|
| 6 |
+
"<|object_ref_end|>",
|
| 7 |
+
"<|box_start|>",
|
| 8 |
+
"<|box_end|>",
|
| 9 |
+
"<|quad_start|>",
|
| 10 |
+
"<|quad_end|>",
|
| 11 |
+
"<|vision_start|>",
|
| 12 |
+
"<|vision_end|>",
|
| 13 |
+
"<|vision_pad|>",
|
| 14 |
+
"<|image_pad|>",
|
| 15 |
+
"<|video_pad|>"
|
| 16 |
+
],
|
| 17 |
+
"eos_token": {
|
| 18 |
+
"content": "<|im_end|>",
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"normalized": false,
|
| 21 |
+
"rstrip": false,
|
| 22 |
+
"single_word": false
|
| 23 |
+
},
|
| 24 |
+
"pad_token": {
|
| 25 |
+
"content": "<|endoftext|>",
|
| 26 |
+
"lstrip": false,
|
| 27 |
+
"normalized": false,
|
| 28 |
+
"rstrip": false,
|
| 29 |
+
"single_word": false
|
| 30 |
+
}
|
| 31 |
+
}
|
qwen3-vl4b-agentnet_filter_failure_ws4_lr2e-5_vit1e-5_aligner1e-5_bs384-step500/tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:aeb13307a71acd8fe81861d94ad54ab689df773318809eed3cbe794b4492dae4
|
| 3 |
+
size 11422654
|
qwen3-vl4b-agentnet_filter_failure_ws4_lr2e-5_vit1e-5_aligner1e-5_bs384-step500/tokenizer_config.json
ADDED
|
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_prefix_space": false,
|
| 4 |
+
"added_tokens_decoder": {
|
| 5 |
+
"151643": {
|
| 6 |
+
"content": "<|endoftext|>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false,
|
| 11 |
+
"special": true
|
| 12 |
+
},
|
| 13 |
+
"151644": {
|
| 14 |
+
"content": "<|im_start|>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"special": true
|
| 20 |
+
},
|
| 21 |
+
"151645": {
|
| 22 |
+
"content": "<|im_end|>",
|
| 23 |
+
"lstrip": false,
|
| 24 |
+
"normalized": false,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"single_word": false,
|
| 27 |
+
"special": true
|
| 28 |
+
},
|
| 29 |
+
"151646": {
|
| 30 |
+
"content": "<|object_ref_start|>",
|
| 31 |
+
"lstrip": false,
|
| 32 |
+
"normalized": false,
|
| 33 |
+
"rstrip": false,
|
| 34 |
+
"single_word": false,
|
| 35 |
+
"special": true
|
| 36 |
+
},
|
| 37 |
+
"151647": {
|
| 38 |
+
"content": "<|object_ref_end|>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false,
|
| 43 |
+
"special": true
|
| 44 |
+
},
|
| 45 |
+
"151648": {
|
| 46 |
+
"content": "<|box_start|>",
|
| 47 |
+
"lstrip": false,
|
| 48 |
+
"normalized": false,
|
| 49 |
+
"rstrip": false,
|
| 50 |
+
"single_word": false,
|
| 51 |
+
"special": true
|
| 52 |
+
},
|
| 53 |
+
"151649": {
|
| 54 |
+
"content": "<|box_end|>",
|
| 55 |
+
"lstrip": false,
|
| 56 |
+
"normalized": false,
|
| 57 |
+
"rstrip": false,
|
| 58 |
+
"single_word": false,
|
| 59 |
+
"special": true
|
| 60 |
+
},
|
| 61 |
+
"151650": {
|
| 62 |
+
"content": "<|quad_start|>",
|
| 63 |
+
"lstrip": false,
|
| 64 |
+
"normalized": false,
|
| 65 |
+
"rstrip": false,
|
| 66 |
+
"single_word": false,
|
| 67 |
+
"special": true
|
| 68 |
+
},
|
| 69 |
+
"151651": {
|
| 70 |
+
"content": "<|quad_end|>",
|
| 71 |
+
"lstrip": false,
|
| 72 |
+
"normalized": false,
|
| 73 |
+
"rstrip": false,
|
| 74 |
+
"single_word": false,
|
| 75 |
+
"special": true
|
| 76 |
+
},
|
| 77 |
+
"151652": {
|
| 78 |
+
"content": "<|vision_start|>",
|
| 79 |
+
"lstrip": false,
|
| 80 |
+
"normalized": false,
|
| 81 |
+
"rstrip": false,
|
| 82 |
+
"single_word": false,
|
| 83 |
+
"special": true
|
| 84 |
+
},
|
| 85 |
+
"151653": {
|
| 86 |
+
"content": "<|vision_end|>",
|
| 87 |
+
"lstrip": false,
|
| 88 |
+
"normalized": false,
|
| 89 |
+
"rstrip": false,
|
| 90 |
+
"single_word": false,
|
| 91 |
+
"special": true
|
| 92 |
+
},
|
| 93 |
+
"151654": {
|
| 94 |
+
"content": "<|vision_pad|>",
|
| 95 |
+
"lstrip": false,
|
| 96 |
+
"normalized": false,
|
| 97 |
+
"rstrip": false,
|
| 98 |
+
"single_word": false,
|
| 99 |
+
"special": true
|
| 100 |
+
},
|
| 101 |
+
"151655": {
|
| 102 |
+
"content": "<|image_pad|>",
|
| 103 |
+
"lstrip": false,
|
| 104 |
+
"normalized": false,
|
| 105 |
+
"rstrip": false,
|
| 106 |
+
"single_word": false,
|
| 107 |
+
"special": true
|
| 108 |
+
},
|
| 109 |
+
"151656": {
|
| 110 |
+
"content": "<|video_pad|>",
|
| 111 |
+
"lstrip": false,
|
| 112 |
+
"normalized": false,
|
| 113 |
+
"rstrip": false,
|
| 114 |
+
"single_word": false,
|
| 115 |
+
"special": true
|
| 116 |
+
},
|
| 117 |
+
"151657": {
|
| 118 |
+
"content": "<tool_call>",
|
| 119 |
+
"lstrip": false,
|
| 120 |
+
"normalized": false,
|
| 121 |
+
"rstrip": false,
|
| 122 |
+
"single_word": false,
|
| 123 |
+
"special": false
|
| 124 |
+
},
|
| 125 |
+
"151658": {
|
| 126 |
+
"content": "</tool_call>",
|
| 127 |
+
"lstrip": false,
|
| 128 |
+
"normalized": false,
|
| 129 |
+
"rstrip": false,
|
| 130 |
+
"single_word": false,
|
| 131 |
+
"special": false
|
| 132 |
+
},
|
| 133 |
+
"151659": {
|
| 134 |
+
"content": "<|fim_prefix|>",
|
| 135 |
+
"lstrip": false,
|
| 136 |
+
"normalized": false,
|
| 137 |
+
"rstrip": false,
|
| 138 |
+
"single_word": false,
|
| 139 |
+
"special": false
|
| 140 |
+
},
|
| 141 |
+
"151660": {
|
| 142 |
+
"content": "<|fim_middle|>",
|
| 143 |
+
"lstrip": false,
|
| 144 |
+
"normalized": false,
|
| 145 |
+
"rstrip": false,
|
| 146 |
+
"single_word": false,
|
| 147 |
+
"special": false
|
| 148 |
+
},
|
| 149 |
+
"151661": {
|
| 150 |
+
"content": "<|fim_suffix|>",
|
| 151 |
+
"lstrip": false,
|
| 152 |
+
"normalized": false,
|
| 153 |
+
"rstrip": false,
|
| 154 |
+
"single_word": false,
|
| 155 |
+
"special": false
|
| 156 |
+
},
|
| 157 |
+
"151662": {
|
| 158 |
+
"content": "<|fim_pad|>",
|
| 159 |
+
"lstrip": false,
|
| 160 |
+
"normalized": false,
|
| 161 |
+
"rstrip": false,
|
| 162 |
+
"single_word": false,
|
| 163 |
+
"special": false
|
| 164 |
+
},
|
| 165 |
+
"151663": {
|
| 166 |
+
"content": "<|repo_name|>",
|
| 167 |
+
"lstrip": false,
|
| 168 |
+
"normalized": false,
|
| 169 |
+
"rstrip": false,
|
| 170 |
+
"single_word": false,
|
| 171 |
+
"special": false
|
| 172 |
+
},
|
| 173 |
+
"151664": {
|
| 174 |
+
"content": "<|file_sep|>",
|
| 175 |
+
"lstrip": false,
|
| 176 |
+
"normalized": false,
|
| 177 |
+
"rstrip": false,
|
| 178 |
+
"single_word": false,
|
| 179 |
+
"special": false
|
| 180 |
+
},
|
| 181 |
+
"151665": {
|
| 182 |
+
"content": "<tool_response>",
|
| 183 |
+
"lstrip": false,
|
| 184 |
+
"normalized": false,
|
| 185 |
+
"rstrip": false,
|
| 186 |
+
"single_word": false,
|
| 187 |
+
"special": false
|
| 188 |
+
},
|
| 189 |
+
"151666": {
|
| 190 |
+
"content": "</tool_response>",
|
| 191 |
+
"lstrip": false,
|
| 192 |
+
"normalized": false,
|
| 193 |
+
"rstrip": false,
|
| 194 |
+
"single_word": false,
|
| 195 |
+
"special": false
|
| 196 |
+
},
|
| 197 |
+
"151667": {
|
| 198 |
+
"content": "<think>",
|
| 199 |
+
"lstrip": false,
|
| 200 |
+
"normalized": false,
|
| 201 |
+
"rstrip": false,
|
| 202 |
+
"single_word": false,
|
| 203 |
+
"special": false
|
| 204 |
+
},
|
| 205 |
+
"151668": {
|
| 206 |
+
"content": "</think>",
|
| 207 |
+
"lstrip": false,
|
| 208 |
+
"normalized": false,
|
| 209 |
+
"rstrip": false,
|
| 210 |
+
"single_word": false,
|
| 211 |
+
"special": false
|
| 212 |
+
}
|
| 213 |
+
},
|
| 214 |
+
"additional_special_tokens": [
|
| 215 |
+
"<|im_start|>",
|
| 216 |
+
"<|im_end|>",
|
| 217 |
+
"<|object_ref_start|>",
|
| 218 |
+
"<|object_ref_end|>",
|
| 219 |
+
"<|box_start|>",
|
| 220 |
+
"<|box_end|>",
|
| 221 |
+
"<|quad_start|>",
|
| 222 |
+
"<|quad_end|>",
|
| 223 |
+
"<|vision_start|>",
|
| 224 |
+
"<|vision_end|>",
|
| 225 |
+
"<|vision_pad|>",
|
| 226 |
+
"<|image_pad|>",
|
| 227 |
+
"<|video_pad|>"
|
| 228 |
+
],
|
| 229 |
+
"bos_token": null,
|
| 230 |
+
"clean_up_tokenization_spaces": false,
|
| 231 |
+
"eos_token": "<|im_end|>",
|
| 232 |
+
"errors": "replace",
|
| 233 |
+
"extra_special_tokens": {},
|
| 234 |
+
"model_max_length": 262144,
|
| 235 |
+
"pad_token": "<|endoftext|>",
|
| 236 |
+
"processor_class": "Qwen3VLProcessor",
|
| 237 |
+
"split_special_tokens": false,
|
| 238 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
| 239 |
+
"unk_token": null
|
| 240 |
+
}
|
qwen3-vl4b-agentnet_filter_failure_ws4_lr2e-5_vit1e-5_aligner1e-5_bs384-step500/trainer_state.json
ADDED
|
@@ -0,0 +1,3534 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_global_step": null,
|
| 3 |
+
"best_metric": null,
|
| 4 |
+
"best_model_checkpoint": null,
|
| 5 |
+
"epoch": 0.12748597654258031,
|
| 6 |
+
"eval_steps": 10000.0,
|
| 7 |
+
"global_step": 500,
|
| 8 |
+
"is_hyper_param_search": false,
|
| 9 |
+
"is_local_process_zero": true,
|
| 10 |
+
"is_world_process_zero": true,
|
| 11 |
+
"log_history": [
|
| 12 |
+
{
|
| 13 |
+
"epoch": 0.00025497195308516065,
|
| 14 |
+
"grad_norm": 15.415260314941406,
|
| 15 |
+
"learning_rate": 5.076142131979696e-08,
|
| 16 |
+
"loss": 1.1610933542251587,
|
| 17 |
+
"step": 1
|
| 18 |
+
},
|
| 19 |
+
{
|
| 20 |
+
"epoch": 0.0005099439061703213,
|
| 21 |
+
"grad_norm": 15.637948989868164,
|
| 22 |
+
"learning_rate": 1.0152284263959391e-07,
|
| 23 |
+
"loss": 1.1993461847305298,
|
| 24 |
+
"step": 2
|
| 25 |
+
},
|
| 26 |
+
{
|
| 27 |
+
"epoch": 0.0007649158592554819,
|
| 28 |
+
"grad_norm": 15.91840648651123,
|
| 29 |
+
"learning_rate": 1.5228426395939088e-07,
|
| 30 |
+
"loss": 1.1827669143676758,
|
| 31 |
+
"step": 3
|
| 32 |
+
},
|
| 33 |
+
{
|
| 34 |
+
"epoch": 0.0010198878123406426,
|
| 35 |
+
"grad_norm": 15.478428840637207,
|
| 36 |
+
"learning_rate": 2.0304568527918783e-07,
|
| 37 |
+
"loss": 1.176124930381775,
|
| 38 |
+
"step": 4
|
| 39 |
+
},
|
| 40 |
+
{
|
| 41 |
+
"epoch": 0.0012748597654258032,
|
| 42 |
+
"grad_norm": 15.785908699035645,
|
| 43 |
+
"learning_rate": 2.538071065989848e-07,
|
| 44 |
+
"loss": 1.1965456008911133,
|
| 45 |
+
"step": 5
|
| 46 |
+
},
|
| 47 |
+
{
|
| 48 |
+
"epoch": 0.0015298317185109638,
|
| 49 |
+
"grad_norm": 15.270750999450684,
|
| 50 |
+
"learning_rate": 3.0456852791878176e-07,
|
| 51 |
+
"loss": 1.1675349473953247,
|
| 52 |
+
"step": 6
|
| 53 |
+
},
|
| 54 |
+
{
|
| 55 |
+
"epoch": 0.0017848036715961244,
|
| 56 |
+
"grad_norm": 15.401095390319824,
|
| 57 |
+
"learning_rate": 3.553299492385787e-07,
|
| 58 |
+
"loss": 1.2026066780090332,
|
| 59 |
+
"step": 7
|
| 60 |
+
},
|
| 61 |
+
{
|
| 62 |
+
"epoch": 0.002039775624681285,
|
| 63 |
+
"grad_norm": 14.897509574890137,
|
| 64 |
+
"learning_rate": 4.0609137055837566e-07,
|
| 65 |
+
"loss": 1.1604423522949219,
|
| 66 |
+
"step": 8
|
| 67 |
+
},
|
| 68 |
+
{
|
| 69 |
+
"epoch": 0.0022947475777664456,
|
| 70 |
+
"grad_norm": 15.150520324707031,
|
| 71 |
+
"learning_rate": 4.568527918781726e-07,
|
| 72 |
+
"loss": 1.1517817974090576,
|
| 73 |
+
"step": 9
|
| 74 |
+
},
|
| 75 |
+
{
|
| 76 |
+
"epoch": 0.0025497195308516064,
|
| 77 |
+
"grad_norm": 15.229615211486816,
|
| 78 |
+
"learning_rate": 5.076142131979696e-07,
|
| 79 |
+
"loss": 1.152367115020752,
|
| 80 |
+
"step": 10
|
| 81 |
+
},
|
| 82 |
+
{
|
| 83 |
+
"epoch": 0.0028046914839367667,
|
| 84 |
+
"grad_norm": 12.473063468933105,
|
| 85 |
+
"learning_rate": 5.583756345177665e-07,
|
| 86 |
+
"loss": 1.0538256168365479,
|
| 87 |
+
"step": 11
|
| 88 |
+
},
|
| 89 |
+
{
|
| 90 |
+
"epoch": 0.0030596634370219276,
|
| 91 |
+
"grad_norm": 12.416116714477539,
|
| 92 |
+
"learning_rate": 6.091370558375635e-07,
|
| 93 |
+
"loss": 1.0510058403015137,
|
| 94 |
+
"step": 12
|
| 95 |
+
},
|
| 96 |
+
{
|
| 97 |
+
"epoch": 0.0033146353901070884,
|
| 98 |
+
"grad_norm": 11.904985427856445,
|
| 99 |
+
"learning_rate": 6.598984771573605e-07,
|
| 100 |
+
"loss": 1.0342445373535156,
|
| 101 |
+
"step": 13
|
| 102 |
+
},
|
| 103 |
+
{
|
| 104 |
+
"epoch": 0.0035696073431922487,
|
| 105 |
+
"grad_norm": 7.985447883605957,
|
| 106 |
+
"learning_rate": 7.106598984771574e-07,
|
| 107 |
+
"loss": 0.909122109413147,
|
| 108 |
+
"step": 14
|
| 109 |
+
},
|
| 110 |
+
{
|
| 111 |
+
"epoch": 0.0038245792962774095,
|
| 112 |
+
"grad_norm": 7.608842372894287,
|
| 113 |
+
"learning_rate": 7.614213197969544e-07,
|
| 114 |
+
"loss": 0.900871217250824,
|
| 115 |
+
"step": 15
|
| 116 |
+
},
|
| 117 |
+
{
|
| 118 |
+
"epoch": 0.00407955124936257,
|
| 119 |
+
"grad_norm": 7.21879243850708,
|
| 120 |
+
"learning_rate": 8.121827411167513e-07,
|
| 121 |
+
"loss": 0.8900021314620972,
|
| 122 |
+
"step": 16
|
| 123 |
+
},
|
| 124 |
+
{
|
| 125 |
+
"epoch": 0.004334523202447731,
|
| 126 |
+
"grad_norm": 6.9251909255981445,
|
| 127 |
+
"learning_rate": 8.629441624365482e-07,
|
| 128 |
+
"loss": 0.867794394493103,
|
| 129 |
+
"step": 17
|
| 130 |
+
},
|
| 131 |
+
{
|
| 132 |
+
"epoch": 0.004589495155532891,
|
| 133 |
+
"grad_norm": 6.087664604187012,
|
| 134 |
+
"learning_rate": 9.137055837563452e-07,
|
| 135 |
+
"loss": 0.8714677095413208,
|
| 136 |
+
"step": 18
|
| 137 |
+
},
|
| 138 |
+
{
|
| 139 |
+
"epoch": 0.004844467108618052,
|
| 140 |
+
"grad_norm": 4.437993049621582,
|
| 141 |
+
"learning_rate": 9.644670050761422e-07,
|
| 142 |
+
"loss": 0.7944602370262146,
|
| 143 |
+
"step": 19
|
| 144 |
+
},
|
| 145 |
+
{
|
| 146 |
+
"epoch": 0.005099439061703213,
|
| 147 |
+
"grad_norm": 3.9098119735717773,
|
| 148 |
+
"learning_rate": 1.0152284263959392e-06,
|
| 149 |
+
"loss": 0.7696177959442139,
|
| 150 |
+
"step": 20
|
| 151 |
+
},
|
| 152 |
+
{
|
| 153 |
+
"epoch": 0.0053544110147883735,
|
| 154 |
+
"grad_norm": 5.06033992767334,
|
| 155 |
+
"learning_rate": 1.0659898477157362e-06,
|
| 156 |
+
"loss": 0.7556478381156921,
|
| 157 |
+
"step": 21
|
| 158 |
+
},
|
| 159 |
+
{
|
| 160 |
+
"epoch": 0.0056093829678735335,
|
| 161 |
+
"grad_norm": 3.4315176010131836,
|
| 162 |
+
"learning_rate": 1.116751269035533e-06,
|
| 163 |
+
"loss": 0.766305148601532,
|
| 164 |
+
"step": 22
|
| 165 |
+
},
|
| 166 |
+
{
|
| 167 |
+
"epoch": 0.005864354920958694,
|
| 168 |
+
"grad_norm": 4.819195747375488,
|
| 169 |
+
"learning_rate": 1.16751269035533e-06,
|
| 170 |
+
"loss": 0.7652184367179871,
|
| 171 |
+
"step": 23
|
| 172 |
+
},
|
| 173 |
+
{
|
| 174 |
+
"epoch": 0.006119326874043855,
|
| 175 |
+
"grad_norm": 3.1732325553894043,
|
| 176 |
+
"learning_rate": 1.218274111675127e-06,
|
| 177 |
+
"loss": 0.7531844973564148,
|
| 178 |
+
"step": 24
|
| 179 |
+
},
|
| 180 |
+
{
|
| 181 |
+
"epoch": 0.006374298827129016,
|
| 182 |
+
"grad_norm": 3.403918504714966,
|
| 183 |
+
"learning_rate": 1.2690355329949238e-06,
|
| 184 |
+
"loss": 0.7432605624198914,
|
| 185 |
+
"step": 25
|
| 186 |
+
},
|
| 187 |
+
{
|
| 188 |
+
"epoch": 0.006629270780214177,
|
| 189 |
+
"grad_norm": 6.011890888214111,
|
| 190 |
+
"learning_rate": 1.319796954314721e-06,
|
| 191 |
+
"loss": 0.7286916971206665,
|
| 192 |
+
"step": 26
|
| 193 |
+
},
|
| 194 |
+
{
|
| 195 |
+
"epoch": 0.006884242733299337,
|
| 196 |
+
"grad_norm": 3.864213466644287,
|
| 197 |
+
"learning_rate": 1.3705583756345178e-06,
|
| 198 |
+
"loss": 0.7215209007263184,
|
| 199 |
+
"step": 27
|
| 200 |
+
},
|
| 201 |
+
{
|
| 202 |
+
"epoch": 0.0071392146863844975,
|
| 203 |
+
"grad_norm": 4.094939231872559,
|
| 204 |
+
"learning_rate": 1.4213197969543148e-06,
|
| 205 |
+
"loss": 0.7281020879745483,
|
| 206 |
+
"step": 28
|
| 207 |
+
},
|
| 208 |
+
{
|
| 209 |
+
"epoch": 0.007394186639469658,
|
| 210 |
+
"grad_norm": 3.790905475616455,
|
| 211 |
+
"learning_rate": 1.4720812182741118e-06,
|
| 212 |
+
"loss": 0.7287170886993408,
|
| 213 |
+
"step": 29
|
| 214 |
+
},
|
| 215 |
+
{
|
| 216 |
+
"epoch": 0.007649158592554819,
|
| 217 |
+
"grad_norm": 4.714667797088623,
|
| 218 |
+
"learning_rate": 1.5228426395939088e-06,
|
| 219 |
+
"loss": 0.730525016784668,
|
| 220 |
+
"step": 30
|
| 221 |
+
},
|
| 222 |
+
{
|
| 223 |
+
"epoch": 0.00790413054563998,
|
| 224 |
+
"grad_norm": 3.4293529987335205,
|
| 225 |
+
"learning_rate": 1.5736040609137056e-06,
|
| 226 |
+
"loss": 0.7161718606948853,
|
| 227 |
+
"step": 31
|
| 228 |
+
},
|
| 229 |
+
{
|
| 230 |
+
"epoch": 0.00815910249872514,
|
| 231 |
+
"grad_norm": 2.985097885131836,
|
| 232 |
+
"learning_rate": 1.6243654822335026e-06,
|
| 233 |
+
"loss": 0.70013427734375,
|
| 234 |
+
"step": 32
|
| 235 |
+
},
|
| 236 |
+
{
|
| 237 |
+
"epoch": 0.008414074451810302,
|
| 238 |
+
"grad_norm": 3.2844507694244385,
|
| 239 |
+
"learning_rate": 1.6751269035532996e-06,
|
| 240 |
+
"loss": 0.7102205157279968,
|
| 241 |
+
"step": 33
|
| 242 |
+
},
|
| 243 |
+
{
|
| 244 |
+
"epoch": 0.008669046404895462,
|
| 245 |
+
"grad_norm": 2.9922728538513184,
|
| 246 |
+
"learning_rate": 1.7258883248730964e-06,
|
| 247 |
+
"loss": 0.6986203193664551,
|
| 248 |
+
"step": 34
|
| 249 |
+
},
|
| 250 |
+
{
|
| 251 |
+
"epoch": 0.008924018357980621,
|
| 252 |
+
"grad_norm": 3.494112253189087,
|
| 253 |
+
"learning_rate": 1.7766497461928936e-06,
|
| 254 |
+
"loss": 0.705012321472168,
|
| 255 |
+
"step": 35
|
| 256 |
+
},
|
| 257 |
+
{
|
| 258 |
+
"epoch": 0.009178990311065782,
|
| 259 |
+
"grad_norm": 2.92978572845459,
|
| 260 |
+
"learning_rate": 1.8274111675126904e-06,
|
| 261 |
+
"loss": 0.6996530294418335,
|
| 262 |
+
"step": 36
|
| 263 |
+
},
|
| 264 |
+
{
|
| 265 |
+
"epoch": 0.009433962264150943,
|
| 266 |
+
"grad_norm": 4.036802768707275,
|
| 267 |
+
"learning_rate": 1.8781725888324874e-06,
|
| 268 |
+
"loss": 0.7008537650108337,
|
| 269 |
+
"step": 37
|
| 270 |
+
},
|
| 271 |
+
{
|
| 272 |
+
"epoch": 0.009688934217236104,
|
| 273 |
+
"grad_norm": 7.8610358238220215,
|
| 274 |
+
"learning_rate": 1.9289340101522844e-06,
|
| 275 |
+
"loss": 0.6845177412033081,
|
| 276 |
+
"step": 38
|
| 277 |
+
},
|
| 278 |
+
{
|
| 279 |
+
"epoch": 0.009943906170321265,
|
| 280 |
+
"grad_norm": 3.7339322566986084,
|
| 281 |
+
"learning_rate": 1.9796954314720814e-06,
|
| 282 |
+
"loss": 0.6841769218444824,
|
| 283 |
+
"step": 39
|
| 284 |
+
},
|
| 285 |
+
{
|
| 286 |
+
"epoch": 0.010198878123406425,
|
| 287 |
+
"grad_norm": 2.830705165863037,
|
| 288 |
+
"learning_rate": 2.0304568527918785e-06,
|
| 289 |
+
"loss": 0.699475884437561,
|
| 290 |
+
"step": 40
|
| 291 |
+
},
|
| 292 |
+
{
|
| 293 |
+
"epoch": 0.010453850076491586,
|
| 294 |
+
"grad_norm": 12.568126678466797,
|
| 295 |
+
"learning_rate": 2.0812182741116755e-06,
|
| 296 |
+
"loss": 0.6735811233520508,
|
| 297 |
+
"step": 41
|
| 298 |
+
},
|
| 299 |
+
{
|
| 300 |
+
"epoch": 0.010708822029576747,
|
| 301 |
+
"grad_norm": 3.7829558849334717,
|
| 302 |
+
"learning_rate": 2.1319796954314725e-06,
|
| 303 |
+
"loss": 0.6893086433410645,
|
| 304 |
+
"step": 42
|
| 305 |
+
},
|
| 306 |
+
{
|
| 307 |
+
"epoch": 0.010963793982661908,
|
| 308 |
+
"grad_norm": 4.368283271789551,
|
| 309 |
+
"learning_rate": 2.182741116751269e-06,
|
| 310 |
+
"loss": 0.6826390027999878,
|
| 311 |
+
"step": 43
|
| 312 |
+
},
|
| 313 |
+
{
|
| 314 |
+
"epoch": 0.011218765935747067,
|
| 315 |
+
"grad_norm": 3.3035032749176025,
|
| 316 |
+
"learning_rate": 2.233502538071066e-06,
|
| 317 |
+
"loss": 0.668271541595459,
|
| 318 |
+
"step": 44
|
| 319 |
+
},
|
| 320 |
+
{
|
| 321 |
+
"epoch": 0.011473737888832228,
|
| 322 |
+
"grad_norm": 3.9567983150482178,
|
| 323 |
+
"learning_rate": 2.284263959390863e-06,
|
| 324 |
+
"loss": 0.6784211993217468,
|
| 325 |
+
"step": 45
|
| 326 |
+
},
|
| 327 |
+
{
|
| 328 |
+
"epoch": 0.011728709841917389,
|
| 329 |
+
"grad_norm": 3.4999377727508545,
|
| 330 |
+
"learning_rate": 2.33502538071066e-06,
|
| 331 |
+
"loss": 0.6874396204948425,
|
| 332 |
+
"step": 46
|
| 333 |
+
},
|
| 334 |
+
{
|
| 335 |
+
"epoch": 0.01198368179500255,
|
| 336 |
+
"grad_norm": 3.2631001472473145,
|
| 337 |
+
"learning_rate": 2.385786802030457e-06,
|
| 338 |
+
"loss": 0.6772322654724121,
|
| 339 |
+
"step": 47
|
| 340 |
+
},
|
| 341 |
+
{
|
| 342 |
+
"epoch": 0.01223865374808771,
|
| 343 |
+
"grad_norm": 20.580337524414062,
|
| 344 |
+
"learning_rate": 2.436548223350254e-06,
|
| 345 |
+
"loss": 0.6612566709518433,
|
| 346 |
+
"step": 48
|
| 347 |
+
},
|
| 348 |
+
{
|
| 349 |
+
"epoch": 0.012493625701172871,
|
| 350 |
+
"grad_norm": 8.252683639526367,
|
| 351 |
+
"learning_rate": 2.487309644670051e-06,
|
| 352 |
+
"loss": 0.6630977392196655,
|
| 353 |
+
"step": 49
|
| 354 |
+
},
|
| 355 |
+
{
|
| 356 |
+
"epoch": 0.012748597654258032,
|
| 357 |
+
"grad_norm": 4.531806468963623,
|
| 358 |
+
"learning_rate": 2.5380710659898476e-06,
|
| 359 |
+
"loss": 0.6681995391845703,
|
| 360 |
+
"step": 50
|
| 361 |
+
},
|
| 362 |
+
{
|
| 363 |
+
"epoch": 0.013003569607343193,
|
| 364 |
+
"grad_norm": 3.459275960922241,
|
| 365 |
+
"learning_rate": 2.588832487309645e-06,
|
| 366 |
+
"loss": 0.6613768339157104,
|
| 367 |
+
"step": 51
|
| 368 |
+
},
|
| 369 |
+
{
|
| 370 |
+
"epoch": 0.013258541560428353,
|
| 371 |
+
"grad_norm": 5.5584940910339355,
|
| 372 |
+
"learning_rate": 2.639593908629442e-06,
|
| 373 |
+
"loss": 0.6634055376052856,
|
| 374 |
+
"step": 52
|
| 375 |
+
},
|
| 376 |
+
{
|
| 377 |
+
"epoch": 0.013513513513513514,
|
| 378 |
+
"grad_norm": 5.6429524421691895,
|
| 379 |
+
"learning_rate": 2.6903553299492387e-06,
|
| 380 |
+
"loss": 0.6786404848098755,
|
| 381 |
+
"step": 53
|
| 382 |
+
},
|
| 383 |
+
{
|
| 384 |
+
"epoch": 0.013768485466598673,
|
| 385 |
+
"grad_norm": 4.319962978363037,
|
| 386 |
+
"learning_rate": 2.7411167512690357e-06,
|
| 387 |
+
"loss": 0.654949426651001,
|
| 388 |
+
"step": 54
|
| 389 |
+
},
|
| 390 |
+
{
|
| 391 |
+
"epoch": 0.014023457419683834,
|
| 392 |
+
"grad_norm": 6.052556037902832,
|
| 393 |
+
"learning_rate": 2.7918781725888327e-06,
|
| 394 |
+
"loss": 0.6762086749076843,
|
| 395 |
+
"step": 55
|
| 396 |
+
},
|
| 397 |
+
{
|
| 398 |
+
"epoch": 0.014278429372768995,
|
| 399 |
+
"grad_norm": 5.070164680480957,
|
| 400 |
+
"learning_rate": 2.8426395939086297e-06,
|
| 401 |
+
"loss": 0.6505463123321533,
|
| 402 |
+
"step": 56
|
| 403 |
+
},
|
| 404 |
+
{
|
| 405 |
+
"epoch": 0.014533401325854156,
|
| 406 |
+
"grad_norm": 3.3184974193573,
|
| 407 |
+
"learning_rate": 2.8934010152284262e-06,
|
| 408 |
+
"loss": 0.6489129662513733,
|
| 409 |
+
"step": 57
|
| 410 |
+
},
|
| 411 |
+
{
|
| 412 |
+
"epoch": 0.014788373278939317,
|
| 413 |
+
"grad_norm": 5.315630912780762,
|
| 414 |
+
"learning_rate": 2.9441624365482237e-06,
|
| 415 |
+
"loss": 0.6476598978042603,
|
| 416 |
+
"step": 58
|
| 417 |
+
},
|
| 418 |
+
{
|
| 419 |
+
"epoch": 0.015043345232024477,
|
| 420 |
+
"grad_norm": 3.659990072250366,
|
| 421 |
+
"learning_rate": 2.9949238578680207e-06,
|
| 422 |
+
"loss": 0.6501700282096863,
|
| 423 |
+
"step": 59
|
| 424 |
+
},
|
| 425 |
+
{
|
| 426 |
+
"epoch": 0.015298317185109638,
|
| 427 |
+
"grad_norm": 3.4091506004333496,
|
| 428 |
+
"learning_rate": 3.0456852791878177e-06,
|
| 429 |
+
"loss": 0.6517801880836487,
|
| 430 |
+
"step": 60
|
| 431 |
+
},
|
| 432 |
+
{
|
| 433 |
+
"epoch": 0.015553289138194799,
|
| 434 |
+
"grad_norm": 3.8126204013824463,
|
| 435 |
+
"learning_rate": 3.0964467005076143e-06,
|
| 436 |
+
"loss": 0.6425204277038574,
|
| 437 |
+
"step": 61
|
| 438 |
+
},
|
| 439 |
+
{
|
| 440 |
+
"epoch": 0.01580826109127996,
|
| 441 |
+
"grad_norm": 3.711880922317505,
|
| 442 |
+
"learning_rate": 3.1472081218274113e-06,
|
| 443 |
+
"loss": 0.638529360294342,
|
| 444 |
+
"step": 62
|
| 445 |
+
},
|
| 446 |
+
{
|
| 447 |
+
"epoch": 0.01606323304436512,
|
| 448 |
+
"grad_norm": 7.707905292510986,
|
| 449 |
+
"learning_rate": 3.1979695431472087e-06,
|
| 450 |
+
"loss": 0.6470184922218323,
|
| 451 |
+
"step": 63
|
| 452 |
+
},
|
| 453 |
+
{
|
| 454 |
+
"epoch": 0.01631820499745028,
|
| 455 |
+
"grad_norm": 7.1005072593688965,
|
| 456 |
+
"learning_rate": 3.2487309644670053e-06,
|
| 457 |
+
"loss": 0.6359443664550781,
|
| 458 |
+
"step": 64
|
| 459 |
+
},
|
| 460 |
+
{
|
| 461 |
+
"epoch": 0.01657317695053544,
|
| 462 |
+
"grad_norm": 6.728579521179199,
|
| 463 |
+
"learning_rate": 3.2994923857868023e-06,
|
| 464 |
+
"loss": 0.6561862230300903,
|
| 465 |
+
"step": 65
|
| 466 |
+
},
|
| 467 |
+
{
|
| 468 |
+
"epoch": 0.016828148903620603,
|
| 469 |
+
"grad_norm": 4.356357574462891,
|
| 470 |
+
"learning_rate": 3.3502538071065993e-06,
|
| 471 |
+
"loss": 0.6496514081954956,
|
| 472 |
+
"step": 66
|
| 473 |
+
},
|
| 474 |
+
{
|
| 475 |
+
"epoch": 0.017083120856705762,
|
| 476 |
+
"grad_norm": 5.432864189147949,
|
| 477 |
+
"learning_rate": 3.4010152284263963e-06,
|
| 478 |
+
"loss": 0.6436284184455872,
|
| 479 |
+
"step": 67
|
| 480 |
+
},
|
| 481 |
+
{
|
| 482 |
+
"epoch": 0.017338092809790925,
|
| 483 |
+
"grad_norm": 5.1800408363342285,
|
| 484 |
+
"learning_rate": 3.451776649746193e-06,
|
| 485 |
+
"loss": 0.6394556760787964,
|
| 486 |
+
"step": 68
|
| 487 |
+
},
|
| 488 |
+
{
|
| 489 |
+
"epoch": 0.017593064762876084,
|
| 490 |
+
"grad_norm": 9.765804290771484,
|
| 491 |
+
"learning_rate": 3.5025380710659903e-06,
|
| 492 |
+
"loss": 0.6331816911697388,
|
| 493 |
+
"step": 69
|
| 494 |
+
},
|
| 495 |
+
{
|
| 496 |
+
"epoch": 0.017848036715961243,
|
| 497 |
+
"grad_norm": 4.826832294464111,
|
| 498 |
+
"learning_rate": 3.5532994923857873e-06,
|
| 499 |
+
"loss": 0.6390204429626465,
|
| 500 |
+
"step": 70
|
| 501 |
+
},
|
| 502 |
+
{
|
| 503 |
+
"epoch": 0.018103008669046405,
|
| 504 |
+
"grad_norm": 5.472368240356445,
|
| 505 |
+
"learning_rate": 3.6040609137055843e-06,
|
| 506 |
+
"loss": 0.6334278583526611,
|
| 507 |
+
"step": 71
|
| 508 |
+
},
|
| 509 |
+
{
|
| 510 |
+
"epoch": 0.018357980622131564,
|
| 511 |
+
"grad_norm": 5.457934856414795,
|
| 512 |
+
"learning_rate": 3.654822335025381e-06,
|
| 513 |
+
"loss": 0.6240629553794861,
|
| 514 |
+
"step": 72
|
| 515 |
+
},
|
| 516 |
+
{
|
| 517 |
+
"epoch": 0.018612952575216727,
|
| 518 |
+
"grad_norm": 6.780310153961182,
|
| 519 |
+
"learning_rate": 3.705583756345178e-06,
|
| 520 |
+
"loss": 0.63517826795578,
|
| 521 |
+
"step": 73
|
| 522 |
+
},
|
| 523 |
+
{
|
| 524 |
+
"epoch": 0.018867924528301886,
|
| 525 |
+
"grad_norm": 3.7166168689727783,
|
| 526 |
+
"learning_rate": 3.756345177664975e-06,
|
| 527 |
+
"loss": 0.627025306224823,
|
| 528 |
+
"step": 74
|
| 529 |
+
},
|
| 530 |
+
{
|
| 531 |
+
"epoch": 0.01912289648138705,
|
| 532 |
+
"grad_norm": 4.887142181396484,
|
| 533 |
+
"learning_rate": 3.8071065989847715e-06,
|
| 534 |
+
"loss": 0.6309980154037476,
|
| 535 |
+
"step": 75
|
| 536 |
+
},
|
| 537 |
+
{
|
| 538 |
+
"epoch": 0.019377868434472208,
|
| 539 |
+
"grad_norm": 6.183432579040527,
|
| 540 |
+
"learning_rate": 3.857868020304569e-06,
|
| 541 |
+
"loss": 0.6254815459251404,
|
| 542 |
+
"step": 76
|
| 543 |
+
},
|
| 544 |
+
{
|
| 545 |
+
"epoch": 0.01963284038755737,
|
| 546 |
+
"grad_norm": 4.948214530944824,
|
| 547 |
+
"learning_rate": 3.9086294416243655e-06,
|
| 548 |
+
"loss": 0.6244087219238281,
|
| 549 |
+
"step": 77
|
| 550 |
+
},
|
| 551 |
+
{
|
| 552 |
+
"epoch": 0.01988781234064253,
|
| 553 |
+
"grad_norm": 5.138155460357666,
|
| 554 |
+
"learning_rate": 3.959390862944163e-06,
|
| 555 |
+
"loss": 0.6282638311386108,
|
| 556 |
+
"step": 78
|
| 557 |
+
},
|
| 558 |
+
{
|
| 559 |
+
"epoch": 0.02014278429372769,
|
| 560 |
+
"grad_norm": 4.594997882843018,
|
| 561 |
+
"learning_rate": 4.0101522842639595e-06,
|
| 562 |
+
"loss": 0.6211766004562378,
|
| 563 |
+
"step": 79
|
| 564 |
+
},
|
| 565 |
+
{
|
| 566 |
+
"epoch": 0.02039775624681285,
|
| 567 |
+
"grad_norm": 5.657145023345947,
|
| 568 |
+
"learning_rate": 4.060913705583757e-06,
|
| 569 |
+
"loss": 0.6292088627815247,
|
| 570 |
+
"step": 80
|
| 571 |
+
},
|
| 572 |
+
{
|
| 573 |
+
"epoch": 0.02065272819989801,
|
| 574 |
+
"grad_norm": 7.0994343757629395,
|
| 575 |
+
"learning_rate": 4.1116751269035535e-06,
|
| 576 |
+
"loss": 0.6266737580299377,
|
| 577 |
+
"step": 81
|
| 578 |
+
},
|
| 579 |
+
{
|
| 580 |
+
"epoch": 0.020907700152983173,
|
| 581 |
+
"grad_norm": 4.467260360717773,
|
| 582 |
+
"learning_rate": 4.162436548223351e-06,
|
| 583 |
+
"loss": 0.6084794998168945,
|
| 584 |
+
"step": 82
|
| 585 |
+
},
|
| 586 |
+
{
|
| 587 |
+
"epoch": 0.02116267210606833,
|
| 588 |
+
"grad_norm": 4.804591655731201,
|
| 589 |
+
"learning_rate": 4.2131979695431475e-06,
|
| 590 |
+
"loss": 0.6341028213500977,
|
| 591 |
+
"step": 83
|
| 592 |
+
},
|
| 593 |
+
{
|
| 594 |
+
"epoch": 0.021417644059153494,
|
| 595 |
+
"grad_norm": 4.987437725067139,
|
| 596 |
+
"learning_rate": 4.263959390862945e-06,
|
| 597 |
+
"loss": 0.6339101791381836,
|
| 598 |
+
"step": 84
|
| 599 |
+
},
|
| 600 |
+
{
|
| 601 |
+
"epoch": 0.021672616012238653,
|
| 602 |
+
"grad_norm": 6.195011138916016,
|
| 603 |
+
"learning_rate": 4.3147208121827415e-06,
|
| 604 |
+
"loss": 0.6330238580703735,
|
| 605 |
+
"step": 85
|
| 606 |
+
},
|
| 607 |
+
{
|
| 608 |
+
"epoch": 0.021927587965323816,
|
| 609 |
+
"grad_norm": 5.589010715484619,
|
| 610 |
+
"learning_rate": 4.365482233502538e-06,
|
| 611 |
+
"loss": 0.6271764636039734,
|
| 612 |
+
"step": 86
|
| 613 |
+
},
|
| 614 |
+
{
|
| 615 |
+
"epoch": 0.022182559918408975,
|
| 616 |
+
"grad_norm": 10.114912033081055,
|
| 617 |
+
"learning_rate": 4.4162436548223355e-06,
|
| 618 |
+
"loss": 0.638175904750824,
|
| 619 |
+
"step": 87
|
| 620 |
+
},
|
| 621 |
+
{
|
| 622 |
+
"epoch": 0.022437531871494134,
|
| 623 |
+
"grad_norm": 7.669949054718018,
|
| 624 |
+
"learning_rate": 4.467005076142132e-06,
|
| 625 |
+
"loss": 0.624021053314209,
|
| 626 |
+
"step": 88
|
| 627 |
+
},
|
| 628 |
+
{
|
| 629 |
+
"epoch": 0.022692503824579296,
|
| 630 |
+
"grad_norm": 8.180469512939453,
|
| 631 |
+
"learning_rate": 4.5177664974619295e-06,
|
| 632 |
+
"loss": 0.6178176403045654,
|
| 633 |
+
"step": 89
|
| 634 |
+
},
|
| 635 |
+
{
|
| 636 |
+
"epoch": 0.022947475777664456,
|
| 637 |
+
"grad_norm": 5.518604755401611,
|
| 638 |
+
"learning_rate": 4.568527918781726e-06,
|
| 639 |
+
"loss": 0.6195391416549683,
|
| 640 |
+
"step": 90
|
| 641 |
+
},
|
| 642 |
+
{
|
| 643 |
+
"epoch": 0.023202447730749618,
|
| 644 |
+
"grad_norm": 5.258211612701416,
|
| 645 |
+
"learning_rate": 4.6192893401015235e-06,
|
| 646 |
+
"loss": 0.6231352686882019,
|
| 647 |
+
"step": 91
|
| 648 |
+
},
|
| 649 |
+
{
|
| 650 |
+
"epoch": 0.023457419683834777,
|
| 651 |
+
"grad_norm": 3.893946647644043,
|
| 652 |
+
"learning_rate": 4.67005076142132e-06,
|
| 653 |
+
"loss": 0.6193073987960815,
|
| 654 |
+
"step": 92
|
| 655 |
+
},
|
| 656 |
+
{
|
| 657 |
+
"epoch": 0.02371239163691994,
|
| 658 |
+
"grad_norm": 5.802011489868164,
|
| 659 |
+
"learning_rate": 4.7208121827411175e-06,
|
| 660 |
+
"loss": 0.6172696948051453,
|
| 661 |
+
"step": 93
|
| 662 |
+
},
|
| 663 |
+
{
|
| 664 |
+
"epoch": 0.0239673635900051,
|
| 665 |
+
"grad_norm": 5.073032855987549,
|
| 666 |
+
"learning_rate": 4.771573604060914e-06,
|
| 667 |
+
"loss": 0.6240885853767395,
|
| 668 |
+
"step": 94
|
| 669 |
+
},
|
| 670 |
+
{
|
| 671 |
+
"epoch": 0.02422233554309026,
|
| 672 |
+
"grad_norm": 5.177947998046875,
|
| 673 |
+
"learning_rate": 4.822335025380711e-06,
|
| 674 |
+
"loss": 0.6277825236320496,
|
| 675 |
+
"step": 95
|
| 676 |
+
},
|
| 677 |
+
{
|
| 678 |
+
"epoch": 0.02447730749617542,
|
| 679 |
+
"grad_norm": 5.730579376220703,
|
| 680 |
+
"learning_rate": 4.873096446700508e-06,
|
| 681 |
+
"loss": 0.6149629950523376,
|
| 682 |
+
"step": 96
|
| 683 |
+
},
|
| 684 |
+
{
|
| 685 |
+
"epoch": 0.024732279449260583,
|
| 686 |
+
"grad_norm": 6.5996551513671875,
|
| 687 |
+
"learning_rate": 4.923857868020305e-06,
|
| 688 |
+
"loss": 0.6126458644866943,
|
| 689 |
+
"step": 97
|
| 690 |
+
},
|
| 691 |
+
{
|
| 692 |
+
"epoch": 0.024987251402345742,
|
| 693 |
+
"grad_norm": 13.988277435302734,
|
| 694 |
+
"learning_rate": 4.974619289340102e-06,
|
| 695 |
+
"loss": 0.6055952310562134,
|
| 696 |
+
"step": 98
|
| 697 |
+
},
|
| 698 |
+
{
|
| 699 |
+
"epoch": 0.0252422233554309,
|
| 700 |
+
"grad_norm": 5.046289443969727,
|
| 701 |
+
"learning_rate": 5.025380710659899e-06,
|
| 702 |
+
"loss": 0.6105412244796753,
|
| 703 |
+
"step": 99
|
| 704 |
+
},
|
| 705 |
+
{
|
| 706 |
+
"epoch": 0.025497195308516064,
|
| 707 |
+
"grad_norm": 5.086366176605225,
|
| 708 |
+
"learning_rate": 5.076142131979695e-06,
|
| 709 |
+
"loss": 0.6258758902549744,
|
| 710 |
+
"step": 100
|
| 711 |
+
},
|
| 712 |
+
{
|
| 713 |
+
"epoch": 0.025752167261601223,
|
| 714 |
+
"grad_norm": 7.642775058746338,
|
| 715 |
+
"learning_rate": 5.126903553299493e-06,
|
| 716 |
+
"loss": 0.6233373880386353,
|
| 717 |
+
"step": 101
|
| 718 |
+
},
|
| 719 |
+
{
|
| 720 |
+
"epoch": 0.026007139214686385,
|
| 721 |
+
"grad_norm": 7.112648963928223,
|
| 722 |
+
"learning_rate": 5.17766497461929e-06,
|
| 723 |
+
"loss": 0.6140401363372803,
|
| 724 |
+
"step": 102
|
| 725 |
+
},
|
| 726 |
+
{
|
| 727 |
+
"epoch": 0.026262111167771544,
|
| 728 |
+
"grad_norm": 5.693024158477783,
|
| 729 |
+
"learning_rate": 5.228426395939087e-06,
|
| 730 |
+
"loss": 0.6101027727127075,
|
| 731 |
+
"step": 103
|
| 732 |
+
},
|
| 733 |
+
{
|
| 734 |
+
"epoch": 0.026517083120856707,
|
| 735 |
+
"grad_norm": 4.558701515197754,
|
| 736 |
+
"learning_rate": 5.279187817258884e-06,
|
| 737 |
+
"loss": 0.6059219837188721,
|
| 738 |
+
"step": 104
|
| 739 |
+
},
|
| 740 |
+
{
|
| 741 |
+
"epoch": 0.026772055073941866,
|
| 742 |
+
"grad_norm": 4.841275691986084,
|
| 743 |
+
"learning_rate": 5.329949238578681e-06,
|
| 744 |
+
"loss": 0.643490731716156,
|
| 745 |
+
"step": 105
|
| 746 |
+
},
|
| 747 |
+
{
|
| 748 |
+
"epoch": 0.02702702702702703,
|
| 749 |
+
"grad_norm": 5.6230363845825195,
|
| 750 |
+
"learning_rate": 5.380710659898477e-06,
|
| 751 |
+
"loss": 0.6232346296310425,
|
| 752 |
+
"step": 106
|
| 753 |
+
},
|
| 754 |
+
{
|
| 755 |
+
"epoch": 0.027281998980112188,
|
| 756 |
+
"grad_norm": 4.623135089874268,
|
| 757 |
+
"learning_rate": 5.431472081218274e-06,
|
| 758 |
+
"loss": 0.612013578414917,
|
| 759 |
+
"step": 107
|
| 760 |
+
},
|
| 761 |
+
{
|
| 762 |
+
"epoch": 0.027536970933197347,
|
| 763 |
+
"grad_norm": 9.732264518737793,
|
| 764 |
+
"learning_rate": 5.482233502538071e-06,
|
| 765 |
+
"loss": 0.5976157188415527,
|
| 766 |
+
"step": 108
|
| 767 |
+
},
|
| 768 |
+
{
|
| 769 |
+
"epoch": 0.02779194288628251,
|
| 770 |
+
"grad_norm": 6.726062774658203,
|
| 771 |
+
"learning_rate": 5.532994923857869e-06,
|
| 772 |
+
"loss": 0.6107317209243774,
|
| 773 |
+
"step": 109
|
| 774 |
+
},
|
| 775 |
+
{
|
| 776 |
+
"epoch": 0.02804691483936767,
|
| 777 |
+
"grad_norm": 7.107174396514893,
|
| 778 |
+
"learning_rate": 5.583756345177665e-06,
|
| 779 |
+
"loss": 0.6086596846580505,
|
| 780 |
+
"step": 110
|
| 781 |
+
},
|
| 782 |
+
{
|
| 783 |
+
"epoch": 0.02830188679245283,
|
| 784 |
+
"grad_norm": 6.202098846435547,
|
| 785 |
+
"learning_rate": 5.634517766497463e-06,
|
| 786 |
+
"loss": 0.6037451028823853,
|
| 787 |
+
"step": 111
|
| 788 |
+
},
|
| 789 |
+
{
|
| 790 |
+
"epoch": 0.02855685874553799,
|
| 791 |
+
"grad_norm": 7.4830851554870605,
|
| 792 |
+
"learning_rate": 5.685279187817259e-06,
|
| 793 |
+
"loss": 0.6132713556289673,
|
| 794 |
+
"step": 112
|
| 795 |
+
},
|
| 796 |
+
{
|
| 797 |
+
"epoch": 0.028811830698623152,
|
| 798 |
+
"grad_norm": 3.917173147201538,
|
| 799 |
+
"learning_rate": 5.736040609137057e-06,
|
| 800 |
+
"loss": 0.6098322868347168,
|
| 801 |
+
"step": 113
|
| 802 |
+
},
|
| 803 |
+
{
|
| 804 |
+
"epoch": 0.02906680265170831,
|
| 805 |
+
"grad_norm": 7.616724014282227,
|
| 806 |
+
"learning_rate": 5.7868020304568525e-06,
|
| 807 |
+
"loss": 0.6145272254943848,
|
| 808 |
+
"step": 114
|
| 809 |
+
},
|
| 810 |
+
{
|
| 811 |
+
"epoch": 0.029321774604793474,
|
| 812 |
+
"grad_norm": 4.091442108154297,
|
| 813 |
+
"learning_rate": 5.83756345177665e-06,
|
| 814 |
+
"loss": 0.6086658239364624,
|
| 815 |
+
"step": 115
|
| 816 |
+
},
|
| 817 |
+
{
|
| 818 |
+
"epoch": 0.029576746557878633,
|
| 819 |
+
"grad_norm": 6.2335124015808105,
|
| 820 |
+
"learning_rate": 5.888324873096447e-06,
|
| 821 |
+
"loss": 0.6011253595352173,
|
| 822 |
+
"step": 116
|
| 823 |
+
},
|
| 824 |
+
{
|
| 825 |
+
"epoch": 0.029831718510963796,
|
| 826 |
+
"grad_norm": 5.550269603729248,
|
| 827 |
+
"learning_rate": 5.939086294416244e-06,
|
| 828 |
+
"loss": 0.6046299338340759,
|
| 829 |
+
"step": 117
|
| 830 |
+
},
|
| 831 |
+
{
|
| 832 |
+
"epoch": 0.030086690464048955,
|
| 833 |
+
"grad_norm": 7.084855079650879,
|
| 834 |
+
"learning_rate": 5.989847715736041e-06,
|
| 835 |
+
"loss": 0.6061999201774597,
|
| 836 |
+
"step": 118
|
| 837 |
+
},
|
| 838 |
+
{
|
| 839 |
+
"epoch": 0.030341662417134114,
|
| 840 |
+
"grad_norm": 10.455710411071777,
|
| 841 |
+
"learning_rate": 6.040609137055839e-06,
|
| 842 |
+
"loss": 0.6251656413078308,
|
| 843 |
+
"step": 119
|
| 844 |
+
},
|
| 845 |
+
{
|
| 846 |
+
"epoch": 0.030596634370219276,
|
| 847 |
+
"grad_norm": 8.010490417480469,
|
| 848 |
+
"learning_rate": 6.091370558375635e-06,
|
| 849 |
+
"loss": 0.6025846004486084,
|
| 850 |
+
"step": 120
|
| 851 |
+
},
|
| 852 |
+
{
|
| 853 |
+
"epoch": 0.030851606323304435,
|
| 854 |
+
"grad_norm": 7.11653470993042,
|
| 855 |
+
"learning_rate": 6.142131979695432e-06,
|
| 856 |
+
"loss": 0.6091961860656738,
|
| 857 |
+
"step": 121
|
| 858 |
+
},
|
| 859 |
+
{
|
| 860 |
+
"epoch": 0.031106578276389598,
|
| 861 |
+
"grad_norm": 4.968122959136963,
|
| 862 |
+
"learning_rate": 6.1928934010152285e-06,
|
| 863 |
+
"loss": 0.6093355417251587,
|
| 864 |
+
"step": 122
|
| 865 |
+
},
|
| 866 |
+
{
|
| 867 |
+
"epoch": 0.03136155022947476,
|
| 868 |
+
"grad_norm": 10.246641159057617,
|
| 869 |
+
"learning_rate": 6.243654822335026e-06,
|
| 870 |
+
"loss": 0.6043275594711304,
|
| 871 |
+
"step": 123
|
| 872 |
+
},
|
| 873 |
+
{
|
| 874 |
+
"epoch": 0.03161652218255992,
|
| 875 |
+
"grad_norm": 7.461697578430176,
|
| 876 |
+
"learning_rate": 6.2944162436548225e-06,
|
| 877 |
+
"loss": 0.5993828773498535,
|
| 878 |
+
"step": 124
|
| 879 |
+
},
|
| 880 |
+
{
|
| 881 |
+
"epoch": 0.03187149413564508,
|
| 882 |
+
"grad_norm": 13.019267082214355,
|
| 883 |
+
"learning_rate": 6.34517766497462e-06,
|
| 884 |
+
"loss": 0.6082757711410522,
|
| 885 |
+
"step": 125
|
| 886 |
+
},
|
| 887 |
+
{
|
| 888 |
+
"epoch": 0.03212646608873024,
|
| 889 |
+
"grad_norm": 5.950469493865967,
|
| 890 |
+
"learning_rate": 6.395939086294417e-06,
|
| 891 |
+
"loss": 0.6167939901351929,
|
| 892 |
+
"step": 126
|
| 893 |
+
},
|
| 894 |
+
{
|
| 895 |
+
"epoch": 0.0323814380418154,
|
| 896 |
+
"grad_norm": 5.954137325286865,
|
| 897 |
+
"learning_rate": 6.446700507614214e-06,
|
| 898 |
+
"loss": 0.597322940826416,
|
| 899 |
+
"step": 127
|
| 900 |
+
},
|
| 901 |
+
{
|
| 902 |
+
"epoch": 0.03263640999490056,
|
| 903 |
+
"grad_norm": 7.5997443199157715,
|
| 904 |
+
"learning_rate": 6.4974619289340105e-06,
|
| 905 |
+
"loss": 0.6099976301193237,
|
| 906 |
+
"step": 128
|
| 907 |
+
},
|
| 908 |
+
{
|
| 909 |
+
"epoch": 0.03289138194798572,
|
| 910 |
+
"grad_norm": 8.977588653564453,
|
| 911 |
+
"learning_rate": 6.548223350253807e-06,
|
| 912 |
+
"loss": 0.6011739373207092,
|
| 913 |
+
"step": 129
|
| 914 |
+
},
|
| 915 |
+
{
|
| 916 |
+
"epoch": 0.03314635390107088,
|
| 917 |
+
"grad_norm": 17.733882904052734,
|
| 918 |
+
"learning_rate": 6.5989847715736045e-06,
|
| 919 |
+
"loss": 0.6014074087142944,
|
| 920 |
+
"step": 130
|
| 921 |
+
},
|
| 922 |
+
{
|
| 923 |
+
"epoch": 0.03340132585415604,
|
| 924 |
+
"grad_norm": 5.899418830871582,
|
| 925 |
+
"learning_rate": 6.649746192893401e-06,
|
| 926 |
+
"loss": 0.6007720828056335,
|
| 927 |
+
"step": 131
|
| 928 |
+
},
|
| 929 |
+
{
|
| 930 |
+
"epoch": 0.033656297807241206,
|
| 931 |
+
"grad_norm": 8.74870777130127,
|
| 932 |
+
"learning_rate": 6.7005076142131985e-06,
|
| 933 |
+
"loss": 0.6171366572380066,
|
| 934 |
+
"step": 132
|
| 935 |
+
},
|
| 936 |
+
{
|
| 937 |
+
"epoch": 0.033911269760326365,
|
| 938 |
+
"grad_norm": 4.3337788581848145,
|
| 939 |
+
"learning_rate": 6.751269035532996e-06,
|
| 940 |
+
"loss": 0.614408552646637,
|
| 941 |
+
"step": 133
|
| 942 |
+
},
|
| 943 |
+
{
|
| 944 |
+
"epoch": 0.034166241713411524,
|
| 945 |
+
"grad_norm": 8.11375904083252,
|
| 946 |
+
"learning_rate": 6.8020304568527926e-06,
|
| 947 |
+
"loss": 0.5979299545288086,
|
| 948 |
+
"step": 134
|
| 949 |
+
},
|
| 950 |
+
{
|
| 951 |
+
"epoch": 0.03442121366649668,
|
| 952 |
+
"grad_norm": 7.533430099487305,
|
| 953 |
+
"learning_rate": 6.852791878172589e-06,
|
| 954 |
+
"loss": 0.616156280040741,
|
| 955 |
+
"step": 135
|
| 956 |
+
},
|
| 957 |
+
{
|
| 958 |
+
"epoch": 0.03467618561958185,
|
| 959 |
+
"grad_norm": 8.658021926879883,
|
| 960 |
+
"learning_rate": 6.903553299492386e-06,
|
| 961 |
+
"loss": 0.5952839255332947,
|
| 962 |
+
"step": 136
|
| 963 |
+
},
|
| 964 |
+
{
|
| 965 |
+
"epoch": 0.03493115757266701,
|
| 966 |
+
"grad_norm": 4.664230823516846,
|
| 967 |
+
"learning_rate": 6.954314720812183e-06,
|
| 968 |
+
"loss": 0.6029950380325317,
|
| 969 |
+
"step": 137
|
| 970 |
+
},
|
| 971 |
+
{
|
| 972 |
+
"epoch": 0.03518612952575217,
|
| 973 |
+
"grad_norm": 6.2738237380981445,
|
| 974 |
+
"learning_rate": 7.0050761421319806e-06,
|
| 975 |
+
"loss": 0.6155085563659668,
|
| 976 |
+
"step": 138
|
| 977 |
+
},
|
| 978 |
+
{
|
| 979 |
+
"epoch": 0.03544110147883733,
|
| 980 |
+
"grad_norm": 6.849208354949951,
|
| 981 |
+
"learning_rate": 7.055837563451777e-06,
|
| 982 |
+
"loss": 0.6097654104232788,
|
| 983 |
+
"step": 139
|
| 984 |
+
},
|
| 985 |
+
{
|
| 986 |
+
"epoch": 0.035696073431922486,
|
| 987 |
+
"grad_norm": 5.106319427490234,
|
| 988 |
+
"learning_rate": 7.106598984771575e-06,
|
| 989 |
+
"loss": 0.6000968217849731,
|
| 990 |
+
"step": 140
|
| 991 |
+
},
|
| 992 |
+
{
|
| 993 |
+
"epoch": 0.03595104538500765,
|
| 994 |
+
"grad_norm": 4.99149751663208,
|
| 995 |
+
"learning_rate": 7.157360406091371e-06,
|
| 996 |
+
"loss": 0.5965438485145569,
|
| 997 |
+
"step": 141
|
| 998 |
+
},
|
| 999 |
+
{
|
| 1000 |
+
"epoch": 0.03620601733809281,
|
| 1001 |
+
"grad_norm": 4.150666236877441,
|
| 1002 |
+
"learning_rate": 7.208121827411169e-06,
|
| 1003 |
+
"loss": 0.6034414768218994,
|
| 1004 |
+
"step": 142
|
| 1005 |
+
},
|
| 1006 |
+
{
|
| 1007 |
+
"epoch": 0.03646098929117797,
|
| 1008 |
+
"grad_norm": 4.380922794342041,
|
| 1009 |
+
"learning_rate": 7.258883248730964e-06,
|
| 1010 |
+
"loss": 0.5983131527900696,
|
| 1011 |
+
"step": 143
|
| 1012 |
+
},
|
| 1013 |
+
{
|
| 1014 |
+
"epoch": 0.03671596124426313,
|
| 1015 |
+
"grad_norm": 4.286844730377197,
|
| 1016 |
+
"learning_rate": 7.309644670050762e-06,
|
| 1017 |
+
"loss": 0.6075978875160217,
|
| 1018 |
+
"step": 144
|
| 1019 |
+
},
|
| 1020 |
+
{
|
| 1021 |
+
"epoch": 0.036970933197348295,
|
| 1022 |
+
"grad_norm": 4.61534309387207,
|
| 1023 |
+
"learning_rate": 7.360406091370559e-06,
|
| 1024 |
+
"loss": 0.6174564957618713,
|
| 1025 |
+
"step": 145
|
| 1026 |
+
},
|
| 1027 |
+
{
|
| 1028 |
+
"epoch": 0.037225905150433454,
|
| 1029 |
+
"grad_norm": 7.377719402313232,
|
| 1030 |
+
"learning_rate": 7.411167512690356e-06,
|
| 1031 |
+
"loss": 0.6060669422149658,
|
| 1032 |
+
"step": 146
|
| 1033 |
+
},
|
| 1034 |
+
{
|
| 1035 |
+
"epoch": 0.03748087710351861,
|
| 1036 |
+
"grad_norm": 4.636322975158691,
|
| 1037 |
+
"learning_rate": 7.461928934010153e-06,
|
| 1038 |
+
"loss": 0.5887423753738403,
|
| 1039 |
+
"step": 147
|
| 1040 |
+
},
|
| 1041 |
+
{
|
| 1042 |
+
"epoch": 0.03773584905660377,
|
| 1043 |
+
"grad_norm": 3.755432367324829,
|
| 1044 |
+
"learning_rate": 7.51269035532995e-06,
|
| 1045 |
+
"loss": 0.5913705229759216,
|
| 1046 |
+
"step": 148
|
| 1047 |
+
},
|
| 1048 |
+
{
|
| 1049 |
+
"epoch": 0.03799082100968893,
|
| 1050 |
+
"grad_norm": 5.489928722381592,
|
| 1051 |
+
"learning_rate": 7.563451776649747e-06,
|
| 1052 |
+
"loss": 0.6052175760269165,
|
| 1053 |
+
"step": 149
|
| 1054 |
+
},
|
| 1055 |
+
{
|
| 1056 |
+
"epoch": 0.0382457929627741,
|
| 1057 |
+
"grad_norm": 5.9897027015686035,
|
| 1058 |
+
"learning_rate": 7.614213197969543e-06,
|
| 1059 |
+
"loss": 0.5902068018913269,
|
| 1060 |
+
"step": 150
|
| 1061 |
+
},
|
| 1062 |
+
{
|
| 1063 |
+
"epoch": 0.038500764915859256,
|
| 1064 |
+
"grad_norm": 8.362554550170898,
|
| 1065 |
+
"learning_rate": 7.664974619289341e-06,
|
| 1066 |
+
"loss": 0.5992493033409119,
|
| 1067 |
+
"step": 151
|
| 1068 |
+
},
|
| 1069 |
+
{
|
| 1070 |
+
"epoch": 0.038755736868944415,
|
| 1071 |
+
"grad_norm": 5.351855754852295,
|
| 1072 |
+
"learning_rate": 7.715736040609138e-06,
|
| 1073 |
+
"loss": 0.6087163090705872,
|
| 1074 |
+
"step": 152
|
| 1075 |
+
},
|
| 1076 |
+
{
|
| 1077 |
+
"epoch": 0.039010708822029574,
|
| 1078 |
+
"grad_norm": 5.387552261352539,
|
| 1079 |
+
"learning_rate": 7.766497461928934e-06,
|
| 1080 |
+
"loss": 0.6069482564926147,
|
| 1081 |
+
"step": 153
|
| 1082 |
+
},
|
| 1083 |
+
{
|
| 1084 |
+
"epoch": 0.03926568077511474,
|
| 1085 |
+
"grad_norm": 5.964528560638428,
|
| 1086 |
+
"learning_rate": 7.817258883248731e-06,
|
| 1087 |
+
"loss": 0.5993782877922058,
|
| 1088 |
+
"step": 154
|
| 1089 |
+
},
|
| 1090 |
+
{
|
| 1091 |
+
"epoch": 0.0395206527281999,
|
| 1092 |
+
"grad_norm": 10.254500389099121,
|
| 1093 |
+
"learning_rate": 7.86802030456853e-06,
|
| 1094 |
+
"loss": 0.6070284247398376,
|
| 1095 |
+
"step": 155
|
| 1096 |
+
},
|
| 1097 |
+
{
|
| 1098 |
+
"epoch": 0.03977562468128506,
|
| 1099 |
+
"grad_norm": 7.0304341316223145,
|
| 1100 |
+
"learning_rate": 7.918781725888326e-06,
|
| 1101 |
+
"loss": 0.6082167625427246,
|
| 1102 |
+
"step": 156
|
| 1103 |
+
},
|
| 1104 |
+
{
|
| 1105 |
+
"epoch": 0.04003059663437022,
|
| 1106 |
+
"grad_norm": 5.818995475769043,
|
| 1107 |
+
"learning_rate": 7.969543147208122e-06,
|
| 1108 |
+
"loss": 0.6076909303665161,
|
| 1109 |
+
"step": 157
|
| 1110 |
+
},
|
| 1111 |
+
{
|
| 1112 |
+
"epoch": 0.04028556858745538,
|
| 1113 |
+
"grad_norm": 29.615108489990234,
|
| 1114 |
+
"learning_rate": 8.020304568527919e-06,
|
| 1115 |
+
"loss": 0.6017455458641052,
|
| 1116 |
+
"step": 158
|
| 1117 |
+
},
|
| 1118 |
+
{
|
| 1119 |
+
"epoch": 0.04054054054054054,
|
| 1120 |
+
"grad_norm": 3.735245704650879,
|
| 1121 |
+
"learning_rate": 8.071065989847716e-06,
|
| 1122 |
+
"loss": 0.6166393160820007,
|
| 1123 |
+
"step": 159
|
| 1124 |
+
},
|
| 1125 |
+
{
|
| 1126 |
+
"epoch": 0.0407955124936257,
|
| 1127 |
+
"grad_norm": 5.8766703605651855,
|
| 1128 |
+
"learning_rate": 8.121827411167514e-06,
|
| 1129 |
+
"loss": 0.5874968767166138,
|
| 1130 |
+
"step": 160
|
| 1131 |
+
},
|
| 1132 |
+
{
|
| 1133 |
+
"epoch": 0.04105048444671086,
|
| 1134 |
+
"grad_norm": 3.799036979675293,
|
| 1135 |
+
"learning_rate": 8.17258883248731e-06,
|
| 1136 |
+
"loss": 0.6069945693016052,
|
| 1137 |
+
"step": 161
|
| 1138 |
+
},
|
| 1139 |
+
{
|
| 1140 |
+
"epoch": 0.04130545639979602,
|
| 1141 |
+
"grad_norm": 4.457949161529541,
|
| 1142 |
+
"learning_rate": 8.223350253807107e-06,
|
| 1143 |
+
"loss": 0.6015027761459351,
|
| 1144 |
+
"step": 162
|
| 1145 |
+
},
|
| 1146 |
+
{
|
| 1147 |
+
"epoch": 0.041560428352881186,
|
| 1148 |
+
"grad_norm": 9.537139892578125,
|
| 1149 |
+
"learning_rate": 8.274111675126905e-06,
|
| 1150 |
+
"loss": 0.5889110565185547,
|
| 1151 |
+
"step": 163
|
| 1152 |
+
},
|
| 1153 |
+
{
|
| 1154 |
+
"epoch": 0.041815400305966345,
|
| 1155 |
+
"grad_norm": 4.916431903839111,
|
| 1156 |
+
"learning_rate": 8.324873096446702e-06,
|
| 1157 |
+
"loss": 0.6008636951446533,
|
| 1158 |
+
"step": 164
|
| 1159 |
+
},
|
| 1160 |
+
{
|
| 1161 |
+
"epoch": 0.042070372259051504,
|
| 1162 |
+
"grad_norm": 3.8718481063842773,
|
| 1163 |
+
"learning_rate": 8.375634517766498e-06,
|
| 1164 |
+
"loss": 0.5849786996841431,
|
| 1165 |
+
"step": 165
|
| 1166 |
+
},
|
| 1167 |
+
{
|
| 1168 |
+
"epoch": 0.04232534421213666,
|
| 1169 |
+
"grad_norm": 4.909853458404541,
|
| 1170 |
+
"learning_rate": 8.426395939086295e-06,
|
| 1171 |
+
"loss": 0.5965617299079895,
|
| 1172 |
+
"step": 166
|
| 1173 |
+
},
|
| 1174 |
+
{
|
| 1175 |
+
"epoch": 0.04258031616522182,
|
| 1176 |
+
"grad_norm": 5.692605495452881,
|
| 1177 |
+
"learning_rate": 8.477157360406092e-06,
|
| 1178 |
+
"loss": 0.6011509299278259,
|
| 1179 |
+
"step": 167
|
| 1180 |
+
},
|
| 1181 |
+
{
|
| 1182 |
+
"epoch": 0.04283528811830699,
|
| 1183 |
+
"grad_norm": 5.997374057769775,
|
| 1184 |
+
"learning_rate": 8.52791878172589e-06,
|
| 1185 |
+
"loss": 0.5989026427268982,
|
| 1186 |
+
"step": 168
|
| 1187 |
+
},
|
| 1188 |
+
{
|
| 1189 |
+
"epoch": 0.04309026007139215,
|
| 1190 |
+
"grad_norm": 4.384658336639404,
|
| 1191 |
+
"learning_rate": 8.578680203045686e-06,
|
| 1192 |
+
"loss": 0.6050680875778198,
|
| 1193 |
+
"step": 169
|
| 1194 |
+
},
|
| 1195 |
+
{
|
| 1196 |
+
"epoch": 0.043345232024477306,
|
| 1197 |
+
"grad_norm": 7.642217636108398,
|
| 1198 |
+
"learning_rate": 8.629441624365483e-06,
|
| 1199 |
+
"loss": 0.6081173419952393,
|
| 1200 |
+
"step": 170
|
| 1201 |
+
},
|
| 1202 |
+
{
|
| 1203 |
+
"epoch": 0.043600203977562466,
|
| 1204 |
+
"grad_norm": 3.865013360977173,
|
| 1205 |
+
"learning_rate": 8.68020304568528e-06,
|
| 1206 |
+
"loss": 0.5977111458778381,
|
| 1207 |
+
"step": 171
|
| 1208 |
+
},
|
| 1209 |
+
{
|
| 1210 |
+
"epoch": 0.04385517593064763,
|
| 1211 |
+
"grad_norm": 3.2660181522369385,
|
| 1212 |
+
"learning_rate": 8.730964467005076e-06,
|
| 1213 |
+
"loss": 0.6077733039855957,
|
| 1214 |
+
"step": 172
|
| 1215 |
+
},
|
| 1216 |
+
{
|
| 1217 |
+
"epoch": 0.04411014788373279,
|
| 1218 |
+
"grad_norm": 6.390474796295166,
|
| 1219 |
+
"learning_rate": 8.781725888324873e-06,
|
| 1220 |
+
"loss": 0.5887953639030457,
|
| 1221 |
+
"step": 173
|
| 1222 |
+
},
|
| 1223 |
+
{
|
| 1224 |
+
"epoch": 0.04436511983681795,
|
| 1225 |
+
"grad_norm": 3.376460313796997,
|
| 1226 |
+
"learning_rate": 8.832487309644671e-06,
|
| 1227 |
+
"loss": 0.6023260951042175,
|
| 1228 |
+
"step": 174
|
| 1229 |
+
},
|
| 1230 |
+
{
|
| 1231 |
+
"epoch": 0.04462009178990311,
|
| 1232 |
+
"grad_norm": 11.863870620727539,
|
| 1233 |
+
"learning_rate": 8.883248730964468e-06,
|
| 1234 |
+
"loss": 0.581910252571106,
|
| 1235 |
+
"step": 175
|
| 1236 |
+
},
|
| 1237 |
+
{
|
| 1238 |
+
"epoch": 0.04487506374298827,
|
| 1239 |
+
"grad_norm": 3.767972707748413,
|
| 1240 |
+
"learning_rate": 8.934010152284264e-06,
|
| 1241 |
+
"loss": 0.5987359285354614,
|
| 1242 |
+
"step": 176
|
| 1243 |
+
},
|
| 1244 |
+
{
|
| 1245 |
+
"epoch": 0.045130035696073434,
|
| 1246 |
+
"grad_norm": 4.307549953460693,
|
| 1247 |
+
"learning_rate": 8.984771573604062e-06,
|
| 1248 |
+
"loss": 0.5949980020523071,
|
| 1249 |
+
"step": 177
|
| 1250 |
+
},
|
| 1251 |
+
{
|
| 1252 |
+
"epoch": 0.04538500764915859,
|
| 1253 |
+
"grad_norm": 3.665287494659424,
|
| 1254 |
+
"learning_rate": 9.035532994923859e-06,
|
| 1255 |
+
"loss": 0.5925557017326355,
|
| 1256 |
+
"step": 178
|
| 1257 |
+
},
|
| 1258 |
+
{
|
| 1259 |
+
"epoch": 0.04563997960224375,
|
| 1260 |
+
"grad_norm": 3.1785333156585693,
|
| 1261 |
+
"learning_rate": 9.086294416243656e-06,
|
| 1262 |
+
"loss": 0.6000990271568298,
|
| 1263 |
+
"step": 179
|
| 1264 |
+
},
|
| 1265 |
+
{
|
| 1266 |
+
"epoch": 0.04589495155532891,
|
| 1267 |
+
"grad_norm": 7.793868541717529,
|
| 1268 |
+
"learning_rate": 9.137055837563452e-06,
|
| 1269 |
+
"loss": 0.588386058807373,
|
| 1270 |
+
"step": 180
|
| 1271 |
+
},
|
| 1272 |
+
{
|
| 1273 |
+
"epoch": 0.04614992350841408,
|
| 1274 |
+
"grad_norm": 3.8479087352752686,
|
| 1275 |
+
"learning_rate": 9.187817258883249e-06,
|
| 1276 |
+
"loss": 0.6026387214660645,
|
| 1277 |
+
"step": 181
|
| 1278 |
+
},
|
| 1279 |
+
{
|
| 1280 |
+
"epoch": 0.046404895461499236,
|
| 1281 |
+
"grad_norm": 4.099995136260986,
|
| 1282 |
+
"learning_rate": 9.238578680203047e-06,
|
| 1283 |
+
"loss": 0.6077677607536316,
|
| 1284 |
+
"step": 182
|
| 1285 |
+
},
|
| 1286 |
+
{
|
| 1287 |
+
"epoch": 0.046659867414584395,
|
| 1288 |
+
"grad_norm": 4.00807523727417,
|
| 1289 |
+
"learning_rate": 9.289340101522844e-06,
|
| 1290 |
+
"loss": 0.5968591570854187,
|
| 1291 |
+
"step": 183
|
| 1292 |
+
},
|
| 1293 |
+
{
|
| 1294 |
+
"epoch": 0.046914839367669554,
|
| 1295 |
+
"grad_norm": 3.527108669281006,
|
| 1296 |
+
"learning_rate": 9.34010152284264e-06,
|
| 1297 |
+
"loss": 0.6021297574043274,
|
| 1298 |
+
"step": 184
|
| 1299 |
+
},
|
| 1300 |
+
{
|
| 1301 |
+
"epoch": 0.04716981132075472,
|
| 1302 |
+
"grad_norm": 3.72705078125,
|
| 1303 |
+
"learning_rate": 9.390862944162438e-06,
|
| 1304 |
+
"loss": 0.6009560823440552,
|
| 1305 |
+
"step": 185
|
| 1306 |
+
},
|
| 1307 |
+
{
|
| 1308 |
+
"epoch": 0.04742478327383988,
|
| 1309 |
+
"grad_norm": 3.00913143157959,
|
| 1310 |
+
"learning_rate": 9.441624365482235e-06,
|
| 1311 |
+
"loss": 0.61063551902771,
|
| 1312 |
+
"step": 186
|
| 1313 |
+
},
|
| 1314 |
+
{
|
| 1315 |
+
"epoch": 0.04767975522692504,
|
| 1316 |
+
"grad_norm": 3.3247106075286865,
|
| 1317 |
+
"learning_rate": 9.492385786802032e-06,
|
| 1318 |
+
"loss": 0.5803219676017761,
|
| 1319 |
+
"step": 187
|
| 1320 |
+
},
|
| 1321 |
+
{
|
| 1322 |
+
"epoch": 0.0479347271800102,
|
| 1323 |
+
"grad_norm": 4.032495498657227,
|
| 1324 |
+
"learning_rate": 9.543147208121828e-06,
|
| 1325 |
+
"loss": 0.5938379168510437,
|
| 1326 |
+
"step": 188
|
| 1327 |
+
},
|
| 1328 |
+
{
|
| 1329 |
+
"epoch": 0.04818969913309536,
|
| 1330 |
+
"grad_norm": 2.833737373352051,
|
| 1331 |
+
"learning_rate": 9.593908629441625e-06,
|
| 1332 |
+
"loss": 0.597266674041748,
|
| 1333 |
+
"step": 189
|
| 1334 |
+
},
|
| 1335 |
+
{
|
| 1336 |
+
"epoch": 0.04844467108618052,
|
| 1337 |
+
"grad_norm": 4.320077419281006,
|
| 1338 |
+
"learning_rate": 9.644670050761421e-06,
|
| 1339 |
+
"loss": 0.6046103835105896,
|
| 1340 |
+
"step": 190
|
| 1341 |
+
},
|
| 1342 |
+
{
|
| 1343 |
+
"epoch": 0.04869964303926568,
|
| 1344 |
+
"grad_norm": 4.185924530029297,
|
| 1345 |
+
"learning_rate": 9.69543147208122e-06,
|
| 1346 |
+
"loss": 0.6062490344047546,
|
| 1347 |
+
"step": 191
|
| 1348 |
+
},
|
| 1349 |
+
{
|
| 1350 |
+
"epoch": 0.04895461499235084,
|
| 1351 |
+
"grad_norm": 5.10711669921875,
|
| 1352 |
+
"learning_rate": 9.746192893401016e-06,
|
| 1353 |
+
"loss": 0.6057544946670532,
|
| 1354 |
+
"step": 192
|
| 1355 |
+
},
|
| 1356 |
+
{
|
| 1357 |
+
"epoch": 0.049209586945436,
|
| 1358 |
+
"grad_norm": 3.324521780014038,
|
| 1359 |
+
"learning_rate": 9.796954314720813e-06,
|
| 1360 |
+
"loss": 0.5799339413642883,
|
| 1361 |
+
"step": 193
|
| 1362 |
+
},
|
| 1363 |
+
{
|
| 1364 |
+
"epoch": 0.049464558898521166,
|
| 1365 |
+
"grad_norm": 3.1842339038848877,
|
| 1366 |
+
"learning_rate": 9.84771573604061e-06,
|
| 1367 |
+
"loss": 0.6013438105583191,
|
| 1368 |
+
"step": 194
|
| 1369 |
+
},
|
| 1370 |
+
{
|
| 1371 |
+
"epoch": 0.049719530851606325,
|
| 1372 |
+
"grad_norm": 2.3341190814971924,
|
| 1373 |
+
"learning_rate": 9.898477157360406e-06,
|
| 1374 |
+
"loss": 0.59135502576828,
|
| 1375 |
+
"step": 195
|
| 1376 |
+
},
|
| 1377 |
+
{
|
| 1378 |
+
"epoch": 0.049974502804691484,
|
| 1379 |
+
"grad_norm": 2.7749569416046143,
|
| 1380 |
+
"learning_rate": 9.949238578680204e-06,
|
| 1381 |
+
"loss": 0.5952393412590027,
|
| 1382 |
+
"step": 196
|
| 1383 |
+
},
|
| 1384 |
+
{
|
| 1385 |
+
"epoch": 0.05022947475777664,
|
| 1386 |
+
"grad_norm": 3.0547854900360107,
|
| 1387 |
+
"learning_rate": 1e-05,
|
| 1388 |
+
"loss": 0.5911858081817627,
|
| 1389 |
+
"step": 197
|
| 1390 |
+
},
|
| 1391 |
+
{
|
| 1392 |
+
"epoch": 0.0504844467108618,
|
| 1393 |
+
"grad_norm": 3.5078237056732178,
|
| 1394 |
+
"learning_rate": 9.999998221773107e-06,
|
| 1395 |
+
"loss": 0.5847702026367188,
|
| 1396 |
+
"step": 198
|
| 1397 |
+
},
|
| 1398 |
+
{
|
| 1399 |
+
"epoch": 0.05073941866394697,
|
| 1400 |
+
"grad_norm": 3.5228848457336426,
|
| 1401 |
+
"learning_rate": 9.999992887093691e-06,
|
| 1402 |
+
"loss": 0.6045140624046326,
|
| 1403 |
+
"step": 199
|
| 1404 |
+
},
|
| 1405 |
+
{
|
| 1406 |
+
"epoch": 0.05099439061703213,
|
| 1407 |
+
"grad_norm": 2.6987292766571045,
|
| 1408 |
+
"learning_rate": 9.999983995965547e-06,
|
| 1409 |
+
"loss": 0.604773223400116,
|
| 1410 |
+
"step": 200
|
| 1411 |
+
},
|
| 1412 |
+
{
|
| 1413 |
+
"epoch": 0.051249362570117286,
|
| 1414 |
+
"grad_norm": 2.957871198654175,
|
| 1415 |
+
"learning_rate": 9.999971548395e-06,
|
| 1416 |
+
"loss": 0.5873357057571411,
|
| 1417 |
+
"step": 201
|
| 1418 |
+
},
|
| 1419 |
+
{
|
| 1420 |
+
"epoch": 0.051504334523202445,
|
| 1421 |
+
"grad_norm": 3.11552357673645,
|
| 1422 |
+
"learning_rate": 9.999955544390902e-06,
|
| 1423 |
+
"loss": 0.5930721759796143,
|
| 1424 |
+
"step": 202
|
| 1425 |
+
},
|
| 1426 |
+
{
|
| 1427 |
+
"epoch": 0.05175930647628761,
|
| 1428 |
+
"grad_norm": 2.396313428878784,
|
| 1429 |
+
"learning_rate": 9.999935983964639e-06,
|
| 1430 |
+
"loss": 0.5927582383155823,
|
| 1431 |
+
"step": 203
|
| 1432 |
+
},
|
| 1433 |
+
{
|
| 1434 |
+
"epoch": 0.05201427842937277,
|
| 1435 |
+
"grad_norm": 2.3981285095214844,
|
| 1436 |
+
"learning_rate": 9.999912867130124e-06,
|
| 1437 |
+
"loss": 0.5999355316162109,
|
| 1438 |
+
"step": 204
|
| 1439 |
+
},
|
| 1440 |
+
{
|
| 1441 |
+
"epoch": 0.05226925038245793,
|
| 1442 |
+
"grad_norm": 2.930799722671509,
|
| 1443 |
+
"learning_rate": 9.999886193903796e-06,
|
| 1444 |
+
"loss": 0.5816469192504883,
|
| 1445 |
+
"step": 205
|
| 1446 |
+
},
|
| 1447 |
+
{
|
| 1448 |
+
"epoch": 0.05252422233554309,
|
| 1449 |
+
"grad_norm": 3.259716272354126,
|
| 1450 |
+
"learning_rate": 9.999855964304633e-06,
|
| 1451 |
+
"loss": 0.5927892327308655,
|
| 1452 |
+
"step": 206
|
| 1453 |
+
},
|
| 1454 |
+
{
|
| 1455 |
+
"epoch": 0.05277919428862825,
|
| 1456 |
+
"grad_norm": 2.8784027099609375,
|
| 1457 |
+
"learning_rate": 9.999822178354131e-06,
|
| 1458 |
+
"loss": 0.59906005859375,
|
| 1459 |
+
"step": 207
|
| 1460 |
+
},
|
| 1461 |
+
{
|
| 1462 |
+
"epoch": 0.053034166241713414,
|
| 1463 |
+
"grad_norm": 5.081634998321533,
|
| 1464 |
+
"learning_rate": 9.999784836076325e-06,
|
| 1465 |
+
"loss": 0.5926652550697327,
|
| 1466 |
+
"step": 208
|
| 1467 |
+
},
|
| 1468 |
+
{
|
| 1469 |
+
"epoch": 0.05328913819479857,
|
| 1470 |
+
"grad_norm": 2.9275574684143066,
|
| 1471 |
+
"learning_rate": 9.999743937497778e-06,
|
| 1472 |
+
"loss": 0.6022918224334717,
|
| 1473 |
+
"step": 209
|
| 1474 |
+
},
|
| 1475 |
+
{
|
| 1476 |
+
"epoch": 0.05354411014788373,
|
| 1477 |
+
"grad_norm": 3.017028570175171,
|
| 1478 |
+
"learning_rate": 9.999699482647578e-06,
|
| 1479 |
+
"loss": 0.5827761888504028,
|
| 1480 |
+
"step": 210
|
| 1481 |
+
},
|
| 1482 |
+
{
|
| 1483 |
+
"epoch": 0.05379908210096889,
|
| 1484 |
+
"grad_norm": 2.75286602973938,
|
| 1485 |
+
"learning_rate": 9.999651471557346e-06,
|
| 1486 |
+
"loss": 0.5874055027961731,
|
| 1487 |
+
"step": 211
|
| 1488 |
+
},
|
| 1489 |
+
{
|
| 1490 |
+
"epoch": 0.05405405405405406,
|
| 1491 |
+
"grad_norm": 15.714319229125977,
|
| 1492 |
+
"learning_rate": 9.99959990426123e-06,
|
| 1493 |
+
"loss": 0.6002755165100098,
|
| 1494 |
+
"step": 212
|
| 1495 |
+
},
|
| 1496 |
+
{
|
| 1497 |
+
"epoch": 0.054309026007139216,
|
| 1498 |
+
"grad_norm": 4.887640476226807,
|
| 1499 |
+
"learning_rate": 9.999544780795913e-06,
|
| 1500 |
+
"loss": 0.5951391458511353,
|
| 1501 |
+
"step": 213
|
| 1502 |
+
},
|
| 1503 |
+
{
|
| 1504 |
+
"epoch": 0.054563997960224375,
|
| 1505 |
+
"grad_norm": 4.7820844650268555,
|
| 1506 |
+
"learning_rate": 9.999486101200603e-06,
|
| 1507 |
+
"loss": 0.5926157832145691,
|
| 1508 |
+
"step": 214
|
| 1509 |
+
},
|
| 1510 |
+
{
|
| 1511 |
+
"epoch": 0.054818969913309534,
|
| 1512 |
+
"grad_norm": 3.6625335216522217,
|
| 1513 |
+
"learning_rate": 9.999423865517037e-06,
|
| 1514 |
+
"loss": 0.5840062499046326,
|
| 1515 |
+
"step": 215
|
| 1516 |
+
},
|
| 1517 |
+
{
|
| 1518 |
+
"epoch": 0.05507394186639469,
|
| 1519 |
+
"grad_norm": 2.7337467670440674,
|
| 1520 |
+
"learning_rate": 9.999358073789481e-06,
|
| 1521 |
+
"loss": 0.5910326242446899,
|
| 1522 |
+
"step": 216
|
| 1523 |
+
},
|
| 1524 |
+
{
|
| 1525 |
+
"epoch": 0.05532891381947986,
|
| 1526 |
+
"grad_norm": 2.746720790863037,
|
| 1527 |
+
"learning_rate": 9.999288726064735e-06,
|
| 1528 |
+
"loss": 0.5885810852050781,
|
| 1529 |
+
"step": 217
|
| 1530 |
+
},
|
| 1531 |
+
{
|
| 1532 |
+
"epoch": 0.05558388577256502,
|
| 1533 |
+
"grad_norm": 2.9541351795196533,
|
| 1534 |
+
"learning_rate": 9.999215822392125e-06,
|
| 1535 |
+
"loss": 0.5852217674255371,
|
| 1536 |
+
"step": 218
|
| 1537 |
+
},
|
| 1538 |
+
{
|
| 1539 |
+
"epoch": 0.05583885772565018,
|
| 1540 |
+
"grad_norm": 3.7349913120269775,
|
| 1541 |
+
"learning_rate": 9.999139362823507e-06,
|
| 1542 |
+
"loss": 0.5871468782424927,
|
| 1543 |
+
"step": 219
|
| 1544 |
+
},
|
| 1545 |
+
{
|
| 1546 |
+
"epoch": 0.05609382967873534,
|
| 1547 |
+
"grad_norm": 2.559229612350464,
|
| 1548 |
+
"learning_rate": 9.999059347413262e-06,
|
| 1549 |
+
"loss": 0.5802211761474609,
|
| 1550 |
+
"step": 220
|
| 1551 |
+
},
|
| 1552 |
+
{
|
| 1553 |
+
"epoch": 0.0563488016318205,
|
| 1554 |
+
"grad_norm": 3.2847959995269775,
|
| 1555 |
+
"learning_rate": 9.99897577621831e-06,
|
| 1556 |
+
"loss": 0.5856022834777832,
|
| 1557 |
+
"step": 221
|
| 1558 |
+
},
|
| 1559 |
+
{
|
| 1560 |
+
"epoch": 0.05660377358490566,
|
| 1561 |
+
"grad_norm": 4.062271595001221,
|
| 1562 |
+
"learning_rate": 9.99888864929809e-06,
|
| 1563 |
+
"loss": 0.5967508554458618,
|
| 1564 |
+
"step": 222
|
| 1565 |
+
},
|
| 1566 |
+
{
|
| 1567 |
+
"epoch": 0.05685874553799082,
|
| 1568 |
+
"grad_norm": 4.350281238555908,
|
| 1569 |
+
"learning_rate": 9.99879796671458e-06,
|
| 1570 |
+
"loss": 0.5894291400909424,
|
| 1571 |
+
"step": 223
|
| 1572 |
+
},
|
| 1573 |
+
{
|
| 1574 |
+
"epoch": 0.05711371749107598,
|
| 1575 |
+
"grad_norm": 2.316976547241211,
|
| 1576 |
+
"learning_rate": 9.998703728532273e-06,
|
| 1577 |
+
"loss": 0.5789750218391418,
|
| 1578 |
+
"step": 224
|
| 1579 |
+
},
|
| 1580 |
+
{
|
| 1581 |
+
"epoch": 0.05736868944416114,
|
| 1582 |
+
"grad_norm": 2.7369654178619385,
|
| 1583 |
+
"learning_rate": 9.998605934818208e-06,
|
| 1584 |
+
"loss": 0.5857868790626526,
|
| 1585 |
+
"step": 225
|
| 1586 |
+
},
|
| 1587 |
+
{
|
| 1588 |
+
"epoch": 0.057623661397246305,
|
| 1589 |
+
"grad_norm": 3.066457748413086,
|
| 1590 |
+
"learning_rate": 9.998504585641941e-06,
|
| 1591 |
+
"loss": 0.5850772857666016,
|
| 1592 |
+
"step": 226
|
| 1593 |
+
},
|
| 1594 |
+
{
|
| 1595 |
+
"epoch": 0.057878633350331464,
|
| 1596 |
+
"grad_norm": 3.2670044898986816,
|
| 1597 |
+
"learning_rate": 9.998399681075562e-06,
|
| 1598 |
+
"loss": 0.5871639251708984,
|
| 1599 |
+
"step": 227
|
| 1600 |
+
},
|
| 1601 |
+
{
|
| 1602 |
+
"epoch": 0.05813360530341662,
|
| 1603 |
+
"grad_norm": 3.2137832641601562,
|
| 1604 |
+
"learning_rate": 9.998291221193685e-06,
|
| 1605 |
+
"loss": 0.5901861190795898,
|
| 1606 |
+
"step": 228
|
| 1607 |
+
},
|
| 1608 |
+
{
|
| 1609 |
+
"epoch": 0.05838857725650178,
|
| 1610 |
+
"grad_norm": 4.253380298614502,
|
| 1611 |
+
"learning_rate": 9.998179206073461e-06,
|
| 1612 |
+
"loss": 0.5958875417709351,
|
| 1613 |
+
"step": 229
|
| 1614 |
+
},
|
| 1615 |
+
{
|
| 1616 |
+
"epoch": 0.05864354920958695,
|
| 1617 |
+
"grad_norm": 2.9854331016540527,
|
| 1618 |
+
"learning_rate": 9.998063635794566e-06,
|
| 1619 |
+
"loss": 0.5908941626548767,
|
| 1620 |
+
"step": 230
|
| 1621 |
+
},
|
| 1622 |
+
{
|
| 1623 |
+
"epoch": 0.05889852116267211,
|
| 1624 |
+
"grad_norm": 2.664669990539551,
|
| 1625 |
+
"learning_rate": 9.9979445104392e-06,
|
| 1626 |
+
"loss": 0.574123740196228,
|
| 1627 |
+
"step": 231
|
| 1628 |
+
},
|
| 1629 |
+
{
|
| 1630 |
+
"epoch": 0.059153493115757266,
|
| 1631 |
+
"grad_norm": 2.4796957969665527,
|
| 1632 |
+
"learning_rate": 9.997821830092095e-06,
|
| 1633 |
+
"loss": 0.5850093364715576,
|
| 1634 |
+
"step": 232
|
| 1635 |
+
},
|
| 1636 |
+
{
|
| 1637 |
+
"epoch": 0.059408465068842425,
|
| 1638 |
+
"grad_norm": 2.0589680671691895,
|
| 1639 |
+
"learning_rate": 9.99769559484052e-06,
|
| 1640 |
+
"loss": 0.5854530334472656,
|
| 1641 |
+
"step": 233
|
| 1642 |
+
},
|
| 1643 |
+
{
|
| 1644 |
+
"epoch": 0.05966343702192759,
|
| 1645 |
+
"grad_norm": 1.7592800855636597,
|
| 1646 |
+
"learning_rate": 9.997565804774257e-06,
|
| 1647 |
+
"loss": 0.5807881951332092,
|
| 1648 |
+
"step": 234
|
| 1649 |
+
},
|
| 1650 |
+
{
|
| 1651 |
+
"epoch": 0.05991840897501275,
|
| 1652 |
+
"grad_norm": 1.856603980064392,
|
| 1653 |
+
"learning_rate": 9.997432459985627e-06,
|
| 1654 |
+
"loss": 0.5874162912368774,
|
| 1655 |
+
"step": 235
|
| 1656 |
+
},
|
| 1657 |
+
{
|
| 1658 |
+
"epoch": 0.06017338092809791,
|
| 1659 |
+
"grad_norm": 1.8138952255249023,
|
| 1660 |
+
"learning_rate": 9.997295560569477e-06,
|
| 1661 |
+
"loss": 0.5984858274459839,
|
| 1662 |
+
"step": 236
|
| 1663 |
+
},
|
| 1664 |
+
{
|
| 1665 |
+
"epoch": 0.06042835288118307,
|
| 1666 |
+
"grad_norm": 1.8532931804656982,
|
| 1667 |
+
"learning_rate": 9.997155106623184e-06,
|
| 1668 |
+
"loss": 0.586401104927063,
|
| 1669 |
+
"step": 237
|
| 1670 |
+
},
|
| 1671 |
+
{
|
| 1672 |
+
"epoch": 0.06068332483426823,
|
| 1673 |
+
"grad_norm": 2.2513363361358643,
|
| 1674 |
+
"learning_rate": 9.99701109824665e-06,
|
| 1675 |
+
"loss": 0.5933905839920044,
|
| 1676 |
+
"step": 238
|
| 1677 |
+
},
|
| 1678 |
+
{
|
| 1679 |
+
"epoch": 0.060938296787353394,
|
| 1680 |
+
"grad_norm": 2.3893911838531494,
|
| 1681 |
+
"learning_rate": 9.996863535542306e-06,
|
| 1682 |
+
"loss": 0.5808255672454834,
|
| 1683 |
+
"step": 239
|
| 1684 |
+
},
|
| 1685 |
+
{
|
| 1686 |
+
"epoch": 0.06119326874043855,
|
| 1687 |
+
"grad_norm": 2.2882018089294434,
|
| 1688 |
+
"learning_rate": 9.996712418615116e-06,
|
| 1689 |
+
"loss": 0.5888140201568604,
|
| 1690 |
+
"step": 240
|
| 1691 |
+
},
|
| 1692 |
+
{
|
| 1693 |
+
"epoch": 0.06144824069352371,
|
| 1694 |
+
"grad_norm": 2.062934637069702,
|
| 1695 |
+
"learning_rate": 9.996557747572562e-06,
|
| 1696 |
+
"loss": 0.589434027671814,
|
| 1697 |
+
"step": 241
|
| 1698 |
+
},
|
| 1699 |
+
{
|
| 1700 |
+
"epoch": 0.06170321264660887,
|
| 1701 |
+
"grad_norm": 2.081850051879883,
|
| 1702 |
+
"learning_rate": 9.996399522524664e-06,
|
| 1703 |
+
"loss": 0.5899481773376465,
|
| 1704 |
+
"step": 242
|
| 1705 |
+
},
|
| 1706 |
+
{
|
| 1707 |
+
"epoch": 0.06195818459969404,
|
| 1708 |
+
"grad_norm": 2.06208872795105,
|
| 1709 |
+
"learning_rate": 9.996237743583965e-06,
|
| 1710 |
+
"loss": 0.5857259631156921,
|
| 1711 |
+
"step": 243
|
| 1712 |
+
},
|
| 1713 |
+
{
|
| 1714 |
+
"epoch": 0.062213156552779196,
|
| 1715 |
+
"grad_norm": 1.8559035062789917,
|
| 1716 |
+
"learning_rate": 9.996072410865538e-06,
|
| 1717 |
+
"loss": 0.5844748020172119,
|
| 1718 |
+
"step": 244
|
| 1719 |
+
},
|
| 1720 |
+
{
|
| 1721 |
+
"epoch": 0.062468128505864355,
|
| 1722 |
+
"grad_norm": 1.9922292232513428,
|
| 1723 |
+
"learning_rate": 9.99590352448698e-06,
|
| 1724 |
+
"loss": 0.5953148603439331,
|
| 1725 |
+
"step": 245
|
| 1726 |
+
},
|
| 1727 |
+
{
|
| 1728 |
+
"epoch": 0.06272310045894952,
|
| 1729 |
+
"grad_norm": 2.6719133853912354,
|
| 1730 |
+
"learning_rate": 9.995731084568421e-06,
|
| 1731 |
+
"loss": 0.5793883204460144,
|
| 1732 |
+
"step": 246
|
| 1733 |
+
},
|
| 1734 |
+
{
|
| 1735 |
+
"epoch": 0.06297807241203468,
|
| 1736 |
+
"grad_norm": 1.8634369373321533,
|
| 1737 |
+
"learning_rate": 9.995555091232516e-06,
|
| 1738 |
+
"loss": 0.5814319849014282,
|
| 1739 |
+
"step": 247
|
| 1740 |
+
},
|
| 1741 |
+
{
|
| 1742 |
+
"epoch": 0.06323304436511984,
|
| 1743 |
+
"grad_norm": 1.8876395225524902,
|
| 1744 |
+
"learning_rate": 9.995375544604447e-06,
|
| 1745 |
+
"loss": 0.572151780128479,
|
| 1746 |
+
"step": 248
|
| 1747 |
+
},
|
| 1748 |
+
{
|
| 1749 |
+
"epoch": 0.063488016318205,
|
| 1750 |
+
"grad_norm": 1.8171889781951904,
|
| 1751 |
+
"learning_rate": 9.99519244481192e-06,
|
| 1752 |
+
"loss": 0.5862112045288086,
|
| 1753 |
+
"step": 249
|
| 1754 |
+
},
|
| 1755 |
+
{
|
| 1756 |
+
"epoch": 0.06374298827129016,
|
| 1757 |
+
"grad_norm": 2.4239213466644287,
|
| 1758 |
+
"learning_rate": 9.995005791985178e-06,
|
| 1759 |
+
"loss": 0.579311728477478,
|
| 1760 |
+
"step": 250
|
| 1761 |
+
},
|
| 1762 |
+
{
|
| 1763 |
+
"epoch": 0.06399796022437532,
|
| 1764 |
+
"grad_norm": 2.0270440578460693,
|
| 1765 |
+
"learning_rate": 9.99481558625698e-06,
|
| 1766 |
+
"loss": 0.5841118097305298,
|
| 1767 |
+
"step": 251
|
| 1768 |
+
},
|
| 1769 |
+
{
|
| 1770 |
+
"epoch": 0.06425293217746048,
|
| 1771 |
+
"grad_norm": 1.6712284088134766,
|
| 1772 |
+
"learning_rate": 9.994621827762624e-06,
|
| 1773 |
+
"loss": 0.5896538496017456,
|
| 1774 |
+
"step": 252
|
| 1775 |
+
},
|
| 1776 |
+
{
|
| 1777 |
+
"epoch": 0.06450790413054563,
|
| 1778 |
+
"grad_norm": 1.8382529020309448,
|
| 1779 |
+
"learning_rate": 9.994424516639924e-06,
|
| 1780 |
+
"loss": 0.5876548290252686,
|
| 1781 |
+
"step": 253
|
| 1782 |
+
},
|
| 1783 |
+
{
|
| 1784 |
+
"epoch": 0.0647628760836308,
|
| 1785 |
+
"grad_norm": 2.464630603790283,
|
| 1786 |
+
"learning_rate": 9.994223653029225e-06,
|
| 1787 |
+
"loss": 0.56418776512146,
|
| 1788 |
+
"step": 254
|
| 1789 |
+
},
|
| 1790 |
+
{
|
| 1791 |
+
"epoch": 0.06501784803671597,
|
| 1792 |
+
"grad_norm": 5.462632656097412,
|
| 1793 |
+
"learning_rate": 9.994019237073402e-06,
|
| 1794 |
+
"loss": 0.5843555927276611,
|
| 1795 |
+
"step": 255
|
| 1796 |
+
},
|
| 1797 |
+
{
|
| 1798 |
+
"epoch": 0.06527281998980113,
|
| 1799 |
+
"grad_norm": 2.105456829071045,
|
| 1800 |
+
"learning_rate": 9.993811268917854e-06,
|
| 1801 |
+
"loss": 0.5954089164733887,
|
| 1802 |
+
"step": 256
|
| 1803 |
+
},
|
| 1804 |
+
{
|
| 1805 |
+
"epoch": 0.06552779194288628,
|
| 1806 |
+
"grad_norm": 2.2847952842712402,
|
| 1807 |
+
"learning_rate": 9.993599748710505e-06,
|
| 1808 |
+
"loss": 0.58359694480896,
|
| 1809 |
+
"step": 257
|
| 1810 |
+
},
|
| 1811 |
+
{
|
| 1812 |
+
"epoch": 0.06578276389597144,
|
| 1813 |
+
"grad_norm": 1.971805453300476,
|
| 1814 |
+
"learning_rate": 9.99338467660181e-06,
|
| 1815 |
+
"loss": 0.5963630676269531,
|
| 1816 |
+
"step": 258
|
| 1817 |
+
},
|
| 1818 |
+
{
|
| 1819 |
+
"epoch": 0.0660377358490566,
|
| 1820 |
+
"grad_norm": 2.609140396118164,
|
| 1821 |
+
"learning_rate": 9.993166052744745e-06,
|
| 1822 |
+
"loss": 0.5824004411697388,
|
| 1823 |
+
"step": 259
|
| 1824 |
+
},
|
| 1825 |
+
{
|
| 1826 |
+
"epoch": 0.06629270780214176,
|
| 1827 |
+
"grad_norm": 5.869304180145264,
|
| 1828 |
+
"learning_rate": 9.992943877294817e-06,
|
| 1829 |
+
"loss": 0.5748361349105835,
|
| 1830 |
+
"step": 260
|
| 1831 |
+
},
|
| 1832 |
+
{
|
| 1833 |
+
"epoch": 0.06654767975522692,
|
| 1834 |
+
"grad_norm": 4.773970603942871,
|
| 1835 |
+
"learning_rate": 9.992718150410054e-06,
|
| 1836 |
+
"loss": 0.5913362503051758,
|
| 1837 |
+
"step": 261
|
| 1838 |
+
},
|
| 1839 |
+
{
|
| 1840 |
+
"epoch": 0.06680265170831208,
|
| 1841 |
+
"grad_norm": 2.3107783794403076,
|
| 1842 |
+
"learning_rate": 9.992488872251019e-06,
|
| 1843 |
+
"loss": 0.5675320625305176,
|
| 1844 |
+
"step": 262
|
| 1845 |
+
},
|
| 1846 |
+
{
|
| 1847 |
+
"epoch": 0.06705762366139725,
|
| 1848 |
+
"grad_norm": 3.1674349308013916,
|
| 1849 |
+
"learning_rate": 9.992256042980792e-06,
|
| 1850 |
+
"loss": 0.5810559988021851,
|
| 1851 |
+
"step": 263
|
| 1852 |
+
},
|
| 1853 |
+
{
|
| 1854 |
+
"epoch": 0.06731259561448241,
|
| 1855 |
+
"grad_norm": 2.4077420234680176,
|
| 1856 |
+
"learning_rate": 9.992019662764982e-06,
|
| 1857 |
+
"loss": 0.586556613445282,
|
| 1858 |
+
"step": 264
|
| 1859 |
+
},
|
| 1860 |
+
{
|
| 1861 |
+
"epoch": 0.06756756756756757,
|
| 1862 |
+
"grad_norm": 2.182682514190674,
|
| 1863 |
+
"learning_rate": 9.991779731771727e-06,
|
| 1864 |
+
"loss": 0.5913389325141907,
|
| 1865 |
+
"step": 265
|
| 1866 |
+
},
|
| 1867 |
+
{
|
| 1868 |
+
"epoch": 0.06782253952065273,
|
| 1869 |
+
"grad_norm": 2.2735114097595215,
|
| 1870 |
+
"learning_rate": 9.991536250171683e-06,
|
| 1871 |
+
"loss": 0.5736482739448547,
|
| 1872 |
+
"step": 266
|
| 1873 |
+
},
|
| 1874 |
+
{
|
| 1875 |
+
"epoch": 0.06807751147373789,
|
| 1876 |
+
"grad_norm": 2.0414175987243652,
|
| 1877 |
+
"learning_rate": 9.991289218138042e-06,
|
| 1878 |
+
"loss": 0.5860854983329773,
|
| 1879 |
+
"step": 267
|
| 1880 |
+
},
|
| 1881 |
+
{
|
| 1882 |
+
"epoch": 0.06833248342682305,
|
| 1883 |
+
"grad_norm": 2.2997677326202393,
|
| 1884 |
+
"learning_rate": 9.99103863584651e-06,
|
| 1885 |
+
"loss": 0.5764031410217285,
|
| 1886 |
+
"step": 268
|
| 1887 |
+
},
|
| 1888 |
+
{
|
| 1889 |
+
"epoch": 0.06858745537990821,
|
| 1890 |
+
"grad_norm": 2.6660847663879395,
|
| 1891 |
+
"learning_rate": 9.990784503475327e-06,
|
| 1892 |
+
"loss": 0.5681920051574707,
|
| 1893 |
+
"step": 269
|
| 1894 |
+
},
|
| 1895 |
+
{
|
| 1896 |
+
"epoch": 0.06884242733299337,
|
| 1897 |
+
"grad_norm": 3.4867351055145264,
|
| 1898 |
+
"learning_rate": 9.990526821205256e-06,
|
| 1899 |
+
"loss": 0.5747722387313843,
|
| 1900 |
+
"step": 270
|
| 1901 |
+
},
|
| 1902 |
+
{
|
| 1903 |
+
"epoch": 0.06909739928607853,
|
| 1904 |
+
"grad_norm": 2.430447816848755,
|
| 1905 |
+
"learning_rate": 9.990265589219578e-06,
|
| 1906 |
+
"loss": 0.5789008140563965,
|
| 1907 |
+
"step": 271
|
| 1908 |
+
},
|
| 1909 |
+
{
|
| 1910 |
+
"epoch": 0.0693523712391637,
|
| 1911 |
+
"grad_norm": 2.5677506923675537,
|
| 1912 |
+
"learning_rate": 9.990000807704114e-06,
|
| 1913 |
+
"loss": 0.5765048265457153,
|
| 1914 |
+
"step": 272
|
| 1915 |
+
},
|
| 1916 |
+
{
|
| 1917 |
+
"epoch": 0.06960734319224886,
|
| 1918 |
+
"grad_norm": 2.7650086879730225,
|
| 1919 |
+
"learning_rate": 9.989732476847194e-06,
|
| 1920 |
+
"loss": 0.575411319732666,
|
| 1921 |
+
"step": 273
|
| 1922 |
+
},
|
| 1923 |
+
{
|
| 1924 |
+
"epoch": 0.06986231514533402,
|
| 1925 |
+
"grad_norm": 1.8177183866500854,
|
| 1926 |
+
"learning_rate": 9.989460596839681e-06,
|
| 1927 |
+
"loss": 0.5772970914840698,
|
| 1928 |
+
"step": 274
|
| 1929 |
+
},
|
| 1930 |
+
{
|
| 1931 |
+
"epoch": 0.07011728709841918,
|
| 1932 |
+
"grad_norm": 4.586569786071777,
|
| 1933 |
+
"learning_rate": 9.98918516787496e-06,
|
| 1934 |
+
"loss": 0.581605076789856,
|
| 1935 |
+
"step": 275
|
| 1936 |
+
},
|
| 1937 |
+
{
|
| 1938 |
+
"epoch": 0.07037225905150434,
|
| 1939 |
+
"grad_norm": 3.1498584747314453,
|
| 1940 |
+
"learning_rate": 9.988906190148944e-06,
|
| 1941 |
+
"loss": 0.5844799876213074,
|
| 1942 |
+
"step": 276
|
| 1943 |
+
},
|
| 1944 |
+
{
|
| 1945 |
+
"epoch": 0.0706272310045895,
|
| 1946 |
+
"grad_norm": 4.407031536102295,
|
| 1947 |
+
"learning_rate": 9.988623663860064e-06,
|
| 1948 |
+
"loss": 0.5937627553939819,
|
| 1949 |
+
"step": 277
|
| 1950 |
+
},
|
| 1951 |
+
{
|
| 1952 |
+
"epoch": 0.07088220295767465,
|
| 1953 |
+
"grad_norm": 2.287809371948242,
|
| 1954 |
+
"learning_rate": 9.988337589209281e-06,
|
| 1955 |
+
"loss": 0.5812350511550903,
|
| 1956 |
+
"step": 278
|
| 1957 |
+
},
|
| 1958 |
+
{
|
| 1959 |
+
"epoch": 0.07113717491075981,
|
| 1960 |
+
"grad_norm": 3.0038914680480957,
|
| 1961 |
+
"learning_rate": 9.988047966400074e-06,
|
| 1962 |
+
"loss": 0.5812468528747559,
|
| 1963 |
+
"step": 279
|
| 1964 |
+
},
|
| 1965 |
+
{
|
| 1966 |
+
"epoch": 0.07139214686384497,
|
| 1967 |
+
"grad_norm": 2.2336087226867676,
|
| 1968 |
+
"learning_rate": 9.987754795638451e-06,
|
| 1969 |
+
"loss": 0.5780528783798218,
|
| 1970 |
+
"step": 280
|
| 1971 |
+
},
|
| 1972 |
+
{
|
| 1973 |
+
"epoch": 0.07164711881693014,
|
| 1974 |
+
"grad_norm": 2.0841615200042725,
|
| 1975 |
+
"learning_rate": 9.987458077132943e-06,
|
| 1976 |
+
"loss": 0.5742005705833435,
|
| 1977 |
+
"step": 281
|
| 1978 |
+
},
|
| 1979 |
+
{
|
| 1980 |
+
"epoch": 0.0719020907700153,
|
| 1981 |
+
"grad_norm": 2.2732021808624268,
|
| 1982 |
+
"learning_rate": 9.9871578110946e-06,
|
| 1983 |
+
"loss": 0.5748374462127686,
|
| 1984 |
+
"step": 282
|
| 1985 |
+
},
|
| 1986 |
+
{
|
| 1987 |
+
"epoch": 0.07215706272310046,
|
| 1988 |
+
"grad_norm": 2.061392307281494,
|
| 1989 |
+
"learning_rate": 9.986853997737e-06,
|
| 1990 |
+
"loss": 0.5818248987197876,
|
| 1991 |
+
"step": 283
|
| 1992 |
+
},
|
| 1993 |
+
{
|
| 1994 |
+
"epoch": 0.07241203467618562,
|
| 1995 |
+
"grad_norm": 2.114393949508667,
|
| 1996 |
+
"learning_rate": 9.986546637276245e-06,
|
| 1997 |
+
"loss": 0.5788212418556213,
|
| 1998 |
+
"step": 284
|
| 1999 |
+
},
|
| 2000 |
+
{
|
| 2001 |
+
"epoch": 0.07266700662927078,
|
| 2002 |
+
"grad_norm": 2.8290114402770996,
|
| 2003 |
+
"learning_rate": 9.986235729930954e-06,
|
| 2004 |
+
"loss": 0.5592154264450073,
|
| 2005 |
+
"step": 285
|
| 2006 |
+
},
|
| 2007 |
+
{
|
| 2008 |
+
"epoch": 0.07292197858235594,
|
| 2009 |
+
"grad_norm": 2.5851333141326904,
|
| 2010 |
+
"learning_rate": 9.985921275922275e-06,
|
| 2011 |
+
"loss": 0.5769827961921692,
|
| 2012 |
+
"step": 286
|
| 2013 |
+
},
|
| 2014 |
+
{
|
| 2015 |
+
"epoch": 0.0731769505354411,
|
| 2016 |
+
"grad_norm": 3.3514719009399414,
|
| 2017 |
+
"learning_rate": 9.985603275473874e-06,
|
| 2018 |
+
"loss": 0.5761103630065918,
|
| 2019 |
+
"step": 287
|
| 2020 |
+
},
|
| 2021 |
+
{
|
| 2022 |
+
"epoch": 0.07343192248852626,
|
| 2023 |
+
"grad_norm": 2.6545956134796143,
|
| 2024 |
+
"learning_rate": 9.985281728811943e-06,
|
| 2025 |
+
"loss": 0.5879877805709839,
|
| 2026 |
+
"step": 288
|
| 2027 |
+
},
|
| 2028 |
+
{
|
| 2029 |
+
"epoch": 0.07368689444161142,
|
| 2030 |
+
"grad_norm": 3.3587162494659424,
|
| 2031 |
+
"learning_rate": 9.984956636165194e-06,
|
| 2032 |
+
"loss": 0.5736678838729858,
|
| 2033 |
+
"step": 289
|
| 2034 |
+
},
|
| 2035 |
+
{
|
| 2036 |
+
"epoch": 0.07394186639469659,
|
| 2037 |
+
"grad_norm": 4.441765785217285,
|
| 2038 |
+
"learning_rate": 9.984627997764866e-06,
|
| 2039 |
+
"loss": 0.5688061118125916,
|
| 2040 |
+
"step": 290
|
| 2041 |
+
},
|
| 2042 |
+
{
|
| 2043 |
+
"epoch": 0.07419683834778175,
|
| 2044 |
+
"grad_norm": 3.293834924697876,
|
| 2045 |
+
"learning_rate": 9.984295813844714e-06,
|
| 2046 |
+
"loss": 0.5717458128929138,
|
| 2047 |
+
"step": 291
|
| 2048 |
+
},
|
| 2049 |
+
{
|
| 2050 |
+
"epoch": 0.07445181030086691,
|
| 2051 |
+
"grad_norm": 5.738956928253174,
|
| 2052 |
+
"learning_rate": 9.983960084641014e-06,
|
| 2053 |
+
"loss": 0.5693488121032715,
|
| 2054 |
+
"step": 292
|
| 2055 |
+
},
|
| 2056 |
+
{
|
| 2057 |
+
"epoch": 0.07470678225395207,
|
| 2058 |
+
"grad_norm": 2.3275930881500244,
|
| 2059 |
+
"learning_rate": 9.983620810392574e-06,
|
| 2060 |
+
"loss": 0.5773096084594727,
|
| 2061 |
+
"step": 293
|
| 2062 |
+
},
|
| 2063 |
+
{
|
| 2064 |
+
"epoch": 0.07496175420703723,
|
| 2065 |
+
"grad_norm": 20.73316192626953,
|
| 2066 |
+
"learning_rate": 9.983277991340709e-06,
|
| 2067 |
+
"loss": 0.5704731345176697,
|
| 2068 |
+
"step": 294
|
| 2069 |
+
},
|
| 2070 |
+
{
|
| 2071 |
+
"epoch": 0.07521672616012239,
|
| 2072 |
+
"grad_norm": 2.5347342491149902,
|
| 2073 |
+
"learning_rate": 9.98293162772927e-06,
|
| 2074 |
+
"loss": 0.5738517045974731,
|
| 2075 |
+
"step": 295
|
| 2076 |
+
},
|
| 2077 |
+
{
|
| 2078 |
+
"epoch": 0.07547169811320754,
|
| 2079 |
+
"grad_norm": 2.9725821018218994,
|
| 2080 |
+
"learning_rate": 9.98258171980462e-06,
|
| 2081 |
+
"loss": 0.5762280225753784,
|
| 2082 |
+
"step": 296
|
| 2083 |
+
},
|
| 2084 |
+
{
|
| 2085 |
+
"epoch": 0.0757266700662927,
|
| 2086 |
+
"grad_norm": 2.1470696926116943,
|
| 2087 |
+
"learning_rate": 9.982228267815644e-06,
|
| 2088 |
+
"loss": 0.5746186375617981,
|
| 2089 |
+
"step": 297
|
| 2090 |
+
},
|
| 2091 |
+
{
|
| 2092 |
+
"epoch": 0.07598164201937786,
|
| 2093 |
+
"grad_norm": 3.3097052574157715,
|
| 2094 |
+
"learning_rate": 9.981871272013747e-06,
|
| 2095 |
+
"loss": 0.571082353591919,
|
| 2096 |
+
"step": 298
|
| 2097 |
+
},
|
| 2098 |
+
{
|
| 2099 |
+
"epoch": 0.07623661397246304,
|
| 2100 |
+
"grad_norm": 2.7459795475006104,
|
| 2101 |
+
"learning_rate": 9.981510732652862e-06,
|
| 2102 |
+
"loss": 0.5818139910697937,
|
| 2103 |
+
"step": 299
|
| 2104 |
+
},
|
| 2105 |
+
{
|
| 2106 |
+
"epoch": 0.0764915859255482,
|
| 2107 |
+
"grad_norm": 18.801685333251953,
|
| 2108 |
+
"learning_rate": 9.981146649989435e-06,
|
| 2109 |
+
"loss": 0.5743539333343506,
|
| 2110 |
+
"step": 300
|
| 2111 |
+
},
|
| 2112 |
+
{
|
| 2113 |
+
"epoch": 0.07674655787863335,
|
| 2114 |
+
"grad_norm": 2.2822065353393555,
|
| 2115 |
+
"learning_rate": 9.980779024282434e-06,
|
| 2116 |
+
"loss": 0.5851568579673767,
|
| 2117 |
+
"step": 301
|
| 2118 |
+
},
|
| 2119 |
+
{
|
| 2120 |
+
"epoch": 0.07700152983171851,
|
| 2121 |
+
"grad_norm": 4.970335006713867,
|
| 2122 |
+
"learning_rate": 9.980407855793348e-06,
|
| 2123 |
+
"loss": 0.567683756351471,
|
| 2124 |
+
"step": 302
|
| 2125 |
+
},
|
| 2126 |
+
{
|
| 2127 |
+
"epoch": 0.07725650178480367,
|
| 2128 |
+
"grad_norm": 2.375314950942993,
|
| 2129 |
+
"learning_rate": 9.980033144786186e-06,
|
| 2130 |
+
"loss": 0.5673696994781494,
|
| 2131 |
+
"step": 303
|
| 2132 |
+
},
|
| 2133 |
+
{
|
| 2134 |
+
"epoch": 0.07751147373788883,
|
| 2135 |
+
"grad_norm": 3.8067612648010254,
|
| 2136 |
+
"learning_rate": 9.979654891527476e-06,
|
| 2137 |
+
"loss": 0.5791069865226746,
|
| 2138 |
+
"step": 304
|
| 2139 |
+
},
|
| 2140 |
+
{
|
| 2141 |
+
"epoch": 0.07776644569097399,
|
| 2142 |
+
"grad_norm": 2.5518550872802734,
|
| 2143 |
+
"learning_rate": 9.979273096286268e-06,
|
| 2144 |
+
"loss": 0.5585265159606934,
|
| 2145 |
+
"step": 305
|
| 2146 |
+
},
|
| 2147 |
+
{
|
| 2148 |
+
"epoch": 0.07802141764405915,
|
| 2149 |
+
"grad_norm": 5.341617584228516,
|
| 2150 |
+
"learning_rate": 9.978887759334125e-06,
|
| 2151 |
+
"loss": 0.5657647848129272,
|
| 2152 |
+
"step": 306
|
| 2153 |
+
},
|
| 2154 |
+
{
|
| 2155 |
+
"epoch": 0.07827638959714431,
|
| 2156 |
+
"grad_norm": 2.304340124130249,
|
| 2157 |
+
"learning_rate": 9.978498880945138e-06,
|
| 2158 |
+
"loss": 0.5609466433525085,
|
| 2159 |
+
"step": 307
|
| 2160 |
+
},
|
| 2161 |
+
{
|
| 2162 |
+
"epoch": 0.07853136155022948,
|
| 2163 |
+
"grad_norm": 4.493840217590332,
|
| 2164 |
+
"learning_rate": 9.978106461395912e-06,
|
| 2165 |
+
"loss": 0.5843234062194824,
|
| 2166 |
+
"step": 308
|
| 2167 |
+
},
|
| 2168 |
+
{
|
| 2169 |
+
"epoch": 0.07878633350331464,
|
| 2170 |
+
"grad_norm": 3.806673526763916,
|
| 2171 |
+
"learning_rate": 9.97771050096557e-06,
|
| 2172 |
+
"loss": 0.5767306089401245,
|
| 2173 |
+
"step": 309
|
| 2174 |
+
},
|
| 2175 |
+
{
|
| 2176 |
+
"epoch": 0.0790413054563998,
|
| 2177 |
+
"grad_norm": 4.547685623168945,
|
| 2178 |
+
"learning_rate": 9.977310999935756e-06,
|
| 2179 |
+
"loss": 0.5610491037368774,
|
| 2180 |
+
"step": 310
|
| 2181 |
+
},
|
| 2182 |
+
{
|
| 2183 |
+
"epoch": 0.07929627740948496,
|
| 2184 |
+
"grad_norm": 2.6244962215423584,
|
| 2185 |
+
"learning_rate": 9.976907958590629e-06,
|
| 2186 |
+
"loss": 0.563437819480896,
|
| 2187 |
+
"step": 311
|
| 2188 |
+
},
|
| 2189 |
+
{
|
| 2190 |
+
"epoch": 0.07955124936257012,
|
| 2191 |
+
"grad_norm": 2.8524208068847656,
|
| 2192 |
+
"learning_rate": 9.976501377216871e-06,
|
| 2193 |
+
"loss": 0.5713075995445251,
|
| 2194 |
+
"step": 312
|
| 2195 |
+
},
|
| 2196 |
+
{
|
| 2197 |
+
"epoch": 0.07980622131565528,
|
| 2198 |
+
"grad_norm": 3.662938117980957,
|
| 2199 |
+
"learning_rate": 9.97609125610368e-06,
|
| 2200 |
+
"loss": 0.5592581629753113,
|
| 2201 |
+
"step": 313
|
| 2202 |
+
},
|
| 2203 |
+
{
|
| 2204 |
+
"epoch": 0.08006119326874044,
|
| 2205 |
+
"grad_norm": 2.5013678073883057,
|
| 2206 |
+
"learning_rate": 9.97567759554277e-06,
|
| 2207 |
+
"loss": 0.571389377117157,
|
| 2208 |
+
"step": 314
|
| 2209 |
+
},
|
| 2210 |
+
{
|
| 2211 |
+
"epoch": 0.0803161652218256,
|
| 2212 |
+
"grad_norm": 3.6687936782836914,
|
| 2213 |
+
"learning_rate": 9.975260395828376e-06,
|
| 2214 |
+
"loss": 0.575724720954895,
|
| 2215 |
+
"step": 315
|
| 2216 |
+
},
|
| 2217 |
+
{
|
| 2218 |
+
"epoch": 0.08057113717491075,
|
| 2219 |
+
"grad_norm": 2.705265760421753,
|
| 2220 |
+
"learning_rate": 9.974839657257245e-06,
|
| 2221 |
+
"loss": 0.5768415331840515,
|
| 2222 |
+
"step": 316
|
| 2223 |
+
},
|
| 2224 |
+
{
|
| 2225 |
+
"epoch": 0.08082610912799593,
|
| 2226 |
+
"grad_norm": 3.3716695308685303,
|
| 2227 |
+
"learning_rate": 9.974415380128646e-06,
|
| 2228 |
+
"loss": 0.5781106948852539,
|
| 2229 |
+
"step": 317
|
| 2230 |
+
},
|
| 2231 |
+
{
|
| 2232 |
+
"epoch": 0.08108108108108109,
|
| 2233 |
+
"grad_norm": 2.1914381980895996,
|
| 2234 |
+
"learning_rate": 9.973987564744363e-06,
|
| 2235 |
+
"loss": 0.5832979679107666,
|
| 2236 |
+
"step": 318
|
| 2237 |
+
},
|
| 2238 |
+
{
|
| 2239 |
+
"epoch": 0.08133605303416624,
|
| 2240 |
+
"grad_norm": 2.789609432220459,
|
| 2241 |
+
"learning_rate": 9.973556211408699e-06,
|
| 2242 |
+
"loss": 0.5669206380844116,
|
| 2243 |
+
"step": 319
|
| 2244 |
+
},
|
| 2245 |
+
{
|
| 2246 |
+
"epoch": 0.0815910249872514,
|
| 2247 |
+
"grad_norm": 2.268644332885742,
|
| 2248 |
+
"learning_rate": 9.97312132042847e-06,
|
| 2249 |
+
"loss": 0.5540966391563416,
|
| 2250 |
+
"step": 320
|
| 2251 |
+
},
|
| 2252 |
+
{
|
| 2253 |
+
"epoch": 0.08184599694033656,
|
| 2254 |
+
"grad_norm": 5.483611583709717,
|
| 2255 |
+
"learning_rate": 9.972682892113009e-06,
|
| 2256 |
+
"loss": 0.5671651363372803,
|
| 2257 |
+
"step": 321
|
| 2258 |
+
},
|
| 2259 |
+
{
|
| 2260 |
+
"epoch": 0.08210096889342172,
|
| 2261 |
+
"grad_norm": 2.727654457092285,
|
| 2262 |
+
"learning_rate": 9.972240926774167e-06,
|
| 2263 |
+
"loss": 0.5680763125419617,
|
| 2264 |
+
"step": 322
|
| 2265 |
+
},
|
| 2266 |
+
{
|
| 2267 |
+
"epoch": 0.08235594084650688,
|
| 2268 |
+
"grad_norm": 3.385113000869751,
|
| 2269 |
+
"learning_rate": 9.97179542472631e-06,
|
| 2270 |
+
"loss": 0.5710451006889343,
|
| 2271 |
+
"step": 323
|
| 2272 |
+
},
|
| 2273 |
+
{
|
| 2274 |
+
"epoch": 0.08261091279959204,
|
| 2275 |
+
"grad_norm": 2.97533917427063,
|
| 2276 |
+
"learning_rate": 9.971346386286323e-06,
|
| 2277 |
+
"loss": 0.5777047872543335,
|
| 2278 |
+
"step": 324
|
| 2279 |
+
},
|
| 2280 |
+
{
|
| 2281 |
+
"epoch": 0.0828658847526772,
|
| 2282 |
+
"grad_norm": 2.553302526473999,
|
| 2283 |
+
"learning_rate": 9.970893811773597e-06,
|
| 2284 |
+
"loss": 0.5666846036911011,
|
| 2285 |
+
"step": 325
|
| 2286 |
+
},
|
| 2287 |
+
{
|
| 2288 |
+
"epoch": 0.08312085670576237,
|
| 2289 |
+
"grad_norm": 2.8742709159851074,
|
| 2290 |
+
"learning_rate": 9.970437701510047e-06,
|
| 2291 |
+
"loss": 0.5720920562744141,
|
| 2292 |
+
"step": 326
|
| 2293 |
+
},
|
| 2294 |
+
{
|
| 2295 |
+
"epoch": 0.08337582865884753,
|
| 2296 |
+
"grad_norm": 5.297033786773682,
|
| 2297 |
+
"learning_rate": 9.969978055820099e-06,
|
| 2298 |
+
"loss": 0.5806701183319092,
|
| 2299 |
+
"step": 327
|
| 2300 |
+
},
|
| 2301 |
+
{
|
| 2302 |
+
"epoch": 0.08363080061193269,
|
| 2303 |
+
"grad_norm": 5.130199432373047,
|
| 2304 |
+
"learning_rate": 9.969514875030695e-06,
|
| 2305 |
+
"loss": 0.5766419768333435,
|
| 2306 |
+
"step": 328
|
| 2307 |
+
},
|
| 2308 |
+
{
|
| 2309 |
+
"epoch": 0.08388577256501785,
|
| 2310 |
+
"grad_norm": 5.532764911651611,
|
| 2311 |
+
"learning_rate": 9.969048159471291e-06,
|
| 2312 |
+
"loss": 0.5834259390830994,
|
| 2313 |
+
"step": 329
|
| 2314 |
+
},
|
| 2315 |
+
{
|
| 2316 |
+
"epoch": 0.08414074451810301,
|
| 2317 |
+
"grad_norm": 2.856757640838623,
|
| 2318 |
+
"learning_rate": 9.96857790947386e-06,
|
| 2319 |
+
"loss": 0.5710228085517883,
|
| 2320 |
+
"step": 330
|
| 2321 |
+
},
|
| 2322 |
+
{
|
| 2323 |
+
"epoch": 0.08439571647118817,
|
| 2324 |
+
"grad_norm": 2.8127498626708984,
|
| 2325 |
+
"learning_rate": 9.968104125372883e-06,
|
| 2326 |
+
"loss": 0.5596293210983276,
|
| 2327 |
+
"step": 331
|
| 2328 |
+
},
|
| 2329 |
+
{
|
| 2330 |
+
"epoch": 0.08465068842427333,
|
| 2331 |
+
"grad_norm": 3.476436138153076,
|
| 2332 |
+
"learning_rate": 9.967626807505359e-06,
|
| 2333 |
+
"loss": 0.5636457800865173,
|
| 2334 |
+
"step": 332
|
| 2335 |
+
},
|
| 2336 |
+
{
|
| 2337 |
+
"epoch": 0.08490566037735849,
|
| 2338 |
+
"grad_norm": 3.897481679916382,
|
| 2339 |
+
"learning_rate": 9.967145956210801e-06,
|
| 2340 |
+
"loss": 0.579216480255127,
|
| 2341 |
+
"step": 333
|
| 2342 |
+
},
|
| 2343 |
+
{
|
| 2344 |
+
"epoch": 0.08516063233044364,
|
| 2345 |
+
"grad_norm": 4.0459818840026855,
|
| 2346 |
+
"learning_rate": 9.966661571831235e-06,
|
| 2347 |
+
"loss": 0.5644032955169678,
|
| 2348 |
+
"step": 334
|
| 2349 |
+
},
|
| 2350 |
+
{
|
| 2351 |
+
"epoch": 0.08541560428352882,
|
| 2352 |
+
"grad_norm": 2.3585076332092285,
|
| 2353 |
+
"learning_rate": 9.966173654711197e-06,
|
| 2354 |
+
"loss": 0.5744975805282593,
|
| 2355 |
+
"step": 335
|
| 2356 |
+
},
|
| 2357 |
+
{
|
| 2358 |
+
"epoch": 0.08567057623661398,
|
| 2359 |
+
"grad_norm": 4.57792854309082,
|
| 2360 |
+
"learning_rate": 9.965682205197737e-06,
|
| 2361 |
+
"loss": 0.5631759762763977,
|
| 2362 |
+
"step": 336
|
| 2363 |
+
},
|
| 2364 |
+
{
|
| 2365 |
+
"epoch": 0.08592554818969914,
|
| 2366 |
+
"grad_norm": 2.656183958053589,
|
| 2367 |
+
"learning_rate": 9.965187223640422e-06,
|
| 2368 |
+
"loss": 0.5689008235931396,
|
| 2369 |
+
"step": 337
|
| 2370 |
+
},
|
| 2371 |
+
{
|
| 2372 |
+
"epoch": 0.0861805201427843,
|
| 2373 |
+
"grad_norm": 2.8403210639953613,
|
| 2374 |
+
"learning_rate": 9.964688710391325e-06,
|
| 2375 |
+
"loss": 0.5751459002494812,
|
| 2376 |
+
"step": 338
|
| 2377 |
+
},
|
| 2378 |
+
{
|
| 2379 |
+
"epoch": 0.08643549209586945,
|
| 2380 |
+
"grad_norm": 2.4729552268981934,
|
| 2381 |
+
"learning_rate": 9.964186665805034e-06,
|
| 2382 |
+
"loss": 0.5721454620361328,
|
| 2383 |
+
"step": 339
|
| 2384 |
+
},
|
| 2385 |
+
{
|
| 2386 |
+
"epoch": 0.08669046404895461,
|
| 2387 |
+
"grad_norm": 2.7285823822021484,
|
| 2388 |
+
"learning_rate": 9.96368109023865e-06,
|
| 2389 |
+
"loss": 0.5654371380805969,
|
| 2390 |
+
"step": 340
|
| 2391 |
+
},
|
| 2392 |
+
{
|
| 2393 |
+
"epoch": 0.08694543600203977,
|
| 2394 |
+
"grad_norm": 2.1327974796295166,
|
| 2395 |
+
"learning_rate": 9.963171984051786e-06,
|
| 2396 |
+
"loss": 0.5701696276664734,
|
| 2397 |
+
"step": 341
|
| 2398 |
+
},
|
| 2399 |
+
{
|
| 2400 |
+
"epoch": 0.08720040795512493,
|
| 2401 |
+
"grad_norm": 2.0096259117126465,
|
| 2402 |
+
"learning_rate": 9.96265934760656e-06,
|
| 2403 |
+
"loss": 0.5614428520202637,
|
| 2404 |
+
"step": 342
|
| 2405 |
+
},
|
| 2406 |
+
{
|
| 2407 |
+
"epoch": 0.08745537990821009,
|
| 2408 |
+
"grad_norm": 2.1693127155303955,
|
| 2409 |
+
"learning_rate": 9.962143181267607e-06,
|
| 2410 |
+
"loss": 0.559285581111908,
|
| 2411 |
+
"step": 343
|
| 2412 |
+
},
|
| 2413 |
+
{
|
| 2414 |
+
"epoch": 0.08771035186129526,
|
| 2415 |
+
"grad_norm": 21.574602127075195,
|
| 2416 |
+
"learning_rate": 9.961623485402074e-06,
|
| 2417 |
+
"loss": 0.5767900347709656,
|
| 2418 |
+
"step": 344
|
| 2419 |
+
},
|
| 2420 |
+
{
|
| 2421 |
+
"epoch": 0.08796532381438042,
|
| 2422 |
+
"grad_norm": 3.6397855281829834,
|
| 2423 |
+
"learning_rate": 9.961100260379612e-06,
|
| 2424 |
+
"loss": 0.5654720067977905,
|
| 2425 |
+
"step": 345
|
| 2426 |
+
},
|
| 2427 |
+
{
|
| 2428 |
+
"epoch": 0.08822029576746558,
|
| 2429 |
+
"grad_norm": 2.2064383029937744,
|
| 2430 |
+
"learning_rate": 9.960573506572391e-06,
|
| 2431 |
+
"loss": 0.5701004266738892,
|
| 2432 |
+
"step": 346
|
| 2433 |
+
},
|
| 2434 |
+
{
|
| 2435 |
+
"epoch": 0.08847526772055074,
|
| 2436 |
+
"grad_norm": 8.230388641357422,
|
| 2437 |
+
"learning_rate": 9.960043224355081e-06,
|
| 2438 |
+
"loss": 0.5593109130859375,
|
| 2439 |
+
"step": 347
|
| 2440 |
+
},
|
| 2441 |
+
{
|
| 2442 |
+
"epoch": 0.0887302396736359,
|
| 2443 |
+
"grad_norm": 2.8151967525482178,
|
| 2444 |
+
"learning_rate": 9.959509414104868e-06,
|
| 2445 |
+
"loss": 0.5906691551208496,
|
| 2446 |
+
"step": 348
|
| 2447 |
+
},
|
| 2448 |
+
{
|
| 2449 |
+
"epoch": 0.08898521162672106,
|
| 2450 |
+
"grad_norm": 2.6584460735321045,
|
| 2451 |
+
"learning_rate": 9.95897207620145e-06,
|
| 2452 |
+
"loss": 0.5554200410842896,
|
| 2453 |
+
"step": 349
|
| 2454 |
+
},
|
| 2455 |
+
{
|
| 2456 |
+
"epoch": 0.08924018357980622,
|
| 2457 |
+
"grad_norm": 2.230492353439331,
|
| 2458 |
+
"learning_rate": 9.958431211027026e-06,
|
| 2459 |
+
"loss": 0.5893738269805908,
|
| 2460 |
+
"step": 350
|
| 2461 |
+
},
|
| 2462 |
+
{
|
| 2463 |
+
"epoch": 0.08949515553289138,
|
| 2464 |
+
"grad_norm": 2.6074323654174805,
|
| 2465 |
+
"learning_rate": 9.95788681896631e-06,
|
| 2466 |
+
"loss": 0.5782200694084167,
|
| 2467 |
+
"step": 351
|
| 2468 |
+
},
|
| 2469 |
+
{
|
| 2470 |
+
"epoch": 0.08975012748597654,
|
| 2471 |
+
"grad_norm": 1.678154706954956,
|
| 2472 |
+
"learning_rate": 9.957338900406525e-06,
|
| 2473 |
+
"loss": 0.5617006421089172,
|
| 2474 |
+
"step": 352
|
| 2475 |
+
},
|
| 2476 |
+
{
|
| 2477 |
+
"epoch": 0.09000509943906171,
|
| 2478 |
+
"grad_norm": 1.8922593593597412,
|
| 2479 |
+
"learning_rate": 9.956787455737397e-06,
|
| 2480 |
+
"loss": 0.5668175220489502,
|
| 2481 |
+
"step": 353
|
| 2482 |
+
},
|
| 2483 |
+
{
|
| 2484 |
+
"epoch": 0.09026007139214687,
|
| 2485 |
+
"grad_norm": 2.508108615875244,
|
| 2486 |
+
"learning_rate": 9.956232485351167e-06,
|
| 2487 |
+
"loss": 0.5639225244522095,
|
| 2488 |
+
"step": 354
|
| 2489 |
+
},
|
| 2490 |
+
{
|
| 2491 |
+
"epoch": 0.09051504334523203,
|
| 2492 |
+
"grad_norm": 3.1573591232299805,
|
| 2493 |
+
"learning_rate": 9.955673989642578e-06,
|
| 2494 |
+
"loss": 0.557616651058197,
|
| 2495 |
+
"step": 355
|
| 2496 |
+
},
|
| 2497 |
+
{
|
| 2498 |
+
"epoch": 0.09077001529831719,
|
| 2499 |
+
"grad_norm": 2.6363086700439453,
|
| 2500 |
+
"learning_rate": 9.955111969008884e-06,
|
| 2501 |
+
"loss": 0.5727308988571167,
|
| 2502 |
+
"step": 356
|
| 2503 |
+
},
|
| 2504 |
+
{
|
| 2505 |
+
"epoch": 0.09102498725140235,
|
| 2506 |
+
"grad_norm": 3.0296366214752197,
|
| 2507 |
+
"learning_rate": 9.954546423849842e-06,
|
| 2508 |
+
"loss": 0.5857377052307129,
|
| 2509 |
+
"step": 357
|
| 2510 |
+
},
|
| 2511 |
+
{
|
| 2512 |
+
"epoch": 0.0912799592044875,
|
| 2513 |
+
"grad_norm": 2.211289644241333,
|
| 2514 |
+
"learning_rate": 9.953977354567723e-06,
|
| 2515 |
+
"loss": 0.5680918097496033,
|
| 2516 |
+
"step": 358
|
| 2517 |
+
},
|
| 2518 |
+
{
|
| 2519 |
+
"epoch": 0.09153493115757266,
|
| 2520 |
+
"grad_norm": 2.4168450832366943,
|
| 2521 |
+
"learning_rate": 9.953404761567299e-06,
|
| 2522 |
+
"loss": 0.5729773044586182,
|
| 2523 |
+
"step": 359
|
| 2524 |
+
},
|
| 2525 |
+
{
|
| 2526 |
+
"epoch": 0.09178990311065782,
|
| 2527 |
+
"grad_norm": 2.44561767578125,
|
| 2528 |
+
"learning_rate": 9.952828645255849e-06,
|
| 2529 |
+
"loss": 0.5714361667633057,
|
| 2530 |
+
"step": 360
|
| 2531 |
+
},
|
| 2532 |
+
{
|
| 2533 |
+
"epoch": 0.09204487506374298,
|
| 2534 |
+
"grad_norm": 2.3818702697753906,
|
| 2535 |
+
"learning_rate": 9.952249006043163e-06,
|
| 2536 |
+
"loss": 0.5708685517311096,
|
| 2537 |
+
"step": 361
|
| 2538 |
+
},
|
| 2539 |
+
{
|
| 2540 |
+
"epoch": 0.09229984701682815,
|
| 2541 |
+
"grad_norm": 2.3030588626861572,
|
| 2542 |
+
"learning_rate": 9.95166584434153e-06,
|
| 2543 |
+
"loss": 0.5894932746887207,
|
| 2544 |
+
"step": 362
|
| 2545 |
+
},
|
| 2546 |
+
{
|
| 2547 |
+
"epoch": 0.09255481896991331,
|
| 2548 |
+
"grad_norm": 6.469595432281494,
|
| 2549 |
+
"learning_rate": 9.951079160565747e-06,
|
| 2550 |
+
"loss": 0.5663866400718689,
|
| 2551 |
+
"step": 363
|
| 2552 |
+
},
|
| 2553 |
+
{
|
| 2554 |
+
"epoch": 0.09280979092299847,
|
| 2555 |
+
"grad_norm": 3.4183993339538574,
|
| 2556 |
+
"learning_rate": 9.950488955133118e-06,
|
| 2557 |
+
"loss": 0.5638302564620972,
|
| 2558 |
+
"step": 364
|
| 2559 |
+
},
|
| 2560 |
+
{
|
| 2561 |
+
"epoch": 0.09306476287608363,
|
| 2562 |
+
"grad_norm": 2.77966570854187,
|
| 2563 |
+
"learning_rate": 9.94989522846345e-06,
|
| 2564 |
+
"loss": 0.5765042304992676,
|
| 2565 |
+
"step": 365
|
| 2566 |
+
},
|
| 2567 |
+
{
|
| 2568 |
+
"epoch": 0.09331973482916879,
|
| 2569 |
+
"grad_norm": 3.0297207832336426,
|
| 2570 |
+
"learning_rate": 9.949297980979056e-06,
|
| 2571 |
+
"loss": 0.5630312561988831,
|
| 2572 |
+
"step": 366
|
| 2573 |
+
},
|
| 2574 |
+
{
|
| 2575 |
+
"epoch": 0.09357470678225395,
|
| 2576 |
+
"grad_norm": 2.405850410461426,
|
| 2577 |
+
"learning_rate": 9.948697213104754e-06,
|
| 2578 |
+
"loss": 0.5837424993515015,
|
| 2579 |
+
"step": 367
|
| 2580 |
+
},
|
| 2581 |
+
{
|
| 2582 |
+
"epoch": 0.09382967873533911,
|
| 2583 |
+
"grad_norm": 3.138538122177124,
|
| 2584 |
+
"learning_rate": 9.94809292526786e-06,
|
| 2585 |
+
"loss": 0.5750604271888733,
|
| 2586 |
+
"step": 368
|
| 2587 |
+
},
|
| 2588 |
+
{
|
| 2589 |
+
"epoch": 0.09408465068842427,
|
| 2590 |
+
"grad_norm": 2.2397854328155518,
|
| 2591 |
+
"learning_rate": 9.947485117898204e-06,
|
| 2592 |
+
"loss": 0.5760766267776489,
|
| 2593 |
+
"step": 369
|
| 2594 |
+
},
|
| 2595 |
+
{
|
| 2596 |
+
"epoch": 0.09433962264150944,
|
| 2597 |
+
"grad_norm": 3.172715425491333,
|
| 2598 |
+
"learning_rate": 9.946873791428108e-06,
|
| 2599 |
+
"loss": 0.5685843229293823,
|
| 2600 |
+
"step": 370
|
| 2601 |
+
},
|
| 2602 |
+
{
|
| 2603 |
+
"epoch": 0.0945945945945946,
|
| 2604 |
+
"grad_norm": 1.991998553276062,
|
| 2605 |
+
"learning_rate": 9.94625894629241e-06,
|
| 2606 |
+
"loss": 0.5787516832351685,
|
| 2607 |
+
"step": 371
|
| 2608 |
+
},
|
| 2609 |
+
{
|
| 2610 |
+
"epoch": 0.09484956654767976,
|
| 2611 |
+
"grad_norm": 2.286336898803711,
|
| 2612 |
+
"learning_rate": 9.945640582928438e-06,
|
| 2613 |
+
"loss": 0.5736852884292603,
|
| 2614 |
+
"step": 372
|
| 2615 |
+
},
|
| 2616 |
+
{
|
| 2617 |
+
"epoch": 0.09510453850076492,
|
| 2618 |
+
"grad_norm": 3.257596492767334,
|
| 2619 |
+
"learning_rate": 9.945018701776027e-06,
|
| 2620 |
+
"loss": 0.5641451478004456,
|
| 2621 |
+
"step": 373
|
| 2622 |
+
},
|
| 2623 |
+
{
|
| 2624 |
+
"epoch": 0.09535951045385008,
|
| 2625 |
+
"grad_norm": 1.9430432319641113,
|
| 2626 |
+
"learning_rate": 9.944393303277523e-06,
|
| 2627 |
+
"loss": 0.5590602159500122,
|
| 2628 |
+
"step": 374
|
| 2629 |
+
},
|
| 2630 |
+
{
|
| 2631 |
+
"epoch": 0.09561448240693524,
|
| 2632 |
+
"grad_norm": 1.9836829900741577,
|
| 2633 |
+
"learning_rate": 9.943764387877758e-06,
|
| 2634 |
+
"loss": 0.5627750158309937,
|
| 2635 |
+
"step": 375
|
| 2636 |
+
},
|
| 2637 |
+
{
|
| 2638 |
+
"epoch": 0.0958694543600204,
|
| 2639 |
+
"grad_norm": 3.3282463550567627,
|
| 2640 |
+
"learning_rate": 9.943131956024078e-06,
|
| 2641 |
+
"loss": 0.5622991323471069,
|
| 2642 |
+
"step": 376
|
| 2643 |
+
},
|
| 2644 |
+
{
|
| 2645 |
+
"epoch": 0.09612442631310555,
|
| 2646 |
+
"grad_norm": 2.969663143157959,
|
| 2647 |
+
"learning_rate": 9.942496008166325e-06,
|
| 2648 |
+
"loss": 0.5768574476242065,
|
| 2649 |
+
"step": 377
|
| 2650 |
+
},
|
| 2651 |
+
{
|
| 2652 |
+
"epoch": 0.09637939826619071,
|
| 2653 |
+
"grad_norm": 4.455136775970459,
|
| 2654 |
+
"learning_rate": 9.941856544756843e-06,
|
| 2655 |
+
"loss": 0.5683542490005493,
|
| 2656 |
+
"step": 378
|
| 2657 |
+
},
|
| 2658 |
+
{
|
| 2659 |
+
"epoch": 0.09663437021927589,
|
| 2660 |
+
"grad_norm": 2.2980382442474365,
|
| 2661 |
+
"learning_rate": 9.941213566250475e-06,
|
| 2662 |
+
"loss": 0.5575302839279175,
|
| 2663 |
+
"step": 379
|
| 2664 |
+
},
|
| 2665 |
+
{
|
| 2666 |
+
"epoch": 0.09688934217236105,
|
| 2667 |
+
"grad_norm": 2.662888526916504,
|
| 2668 |
+
"learning_rate": 9.940567073104568e-06,
|
| 2669 |
+
"loss": 0.5679932236671448,
|
| 2670 |
+
"step": 380
|
| 2671 |
+
},
|
| 2672 |
+
{
|
| 2673 |
+
"epoch": 0.0971443141254462,
|
| 2674 |
+
"grad_norm": 5.441934585571289,
|
| 2675 |
+
"learning_rate": 9.939917065778965e-06,
|
| 2676 |
+
"loss": 0.5602290034294128,
|
| 2677 |
+
"step": 381
|
| 2678 |
+
},
|
| 2679 |
+
{
|
| 2680 |
+
"epoch": 0.09739928607853136,
|
| 2681 |
+
"grad_norm": 2.7203729152679443,
|
| 2682 |
+
"learning_rate": 9.93926354473601e-06,
|
| 2683 |
+
"loss": 0.5430388450622559,
|
| 2684 |
+
"step": 382
|
| 2685 |
+
},
|
| 2686 |
+
{
|
| 2687 |
+
"epoch": 0.09765425803161652,
|
| 2688 |
+
"grad_norm": 3.4668338298797607,
|
| 2689 |
+
"learning_rate": 9.938606510440548e-06,
|
| 2690 |
+
"loss": 0.5614120960235596,
|
| 2691 |
+
"step": 383
|
| 2692 |
+
},
|
| 2693 |
+
{
|
| 2694 |
+
"epoch": 0.09790922998470168,
|
| 2695 |
+
"grad_norm": 2.841843605041504,
|
| 2696 |
+
"learning_rate": 9.937945963359919e-06,
|
| 2697 |
+
"loss": 0.5806660056114197,
|
| 2698 |
+
"step": 384
|
| 2699 |
+
},
|
| 2700 |
+
{
|
| 2701 |
+
"epoch": 0.09816420193778684,
|
| 2702 |
+
"grad_norm": 2.8140835762023926,
|
| 2703 |
+
"learning_rate": 9.937281903963968e-06,
|
| 2704 |
+
"loss": 0.5649043321609497,
|
| 2705 |
+
"step": 385
|
| 2706 |
+
},
|
| 2707 |
+
{
|
| 2708 |
+
"epoch": 0.098419173890872,
|
| 2709 |
+
"grad_norm": 1.9643291234970093,
|
| 2710 |
+
"learning_rate": 9.93661433272503e-06,
|
| 2711 |
+
"loss": 0.5647992491722107,
|
| 2712 |
+
"step": 386
|
| 2713 |
+
},
|
| 2714 |
+
{
|
| 2715 |
+
"epoch": 0.09867414584395716,
|
| 2716 |
+
"grad_norm": 2.129157543182373,
|
| 2717 |
+
"learning_rate": 9.935943250117945e-06,
|
| 2718 |
+
"loss": 0.5809118151664734,
|
| 2719 |
+
"step": 387
|
| 2720 |
+
},
|
| 2721 |
+
{
|
| 2722 |
+
"epoch": 0.09892911779704233,
|
| 2723 |
+
"grad_norm": 3.388709545135498,
|
| 2724 |
+
"learning_rate": 9.935268656620048e-06,
|
| 2725 |
+
"loss": 0.5615958571434021,
|
| 2726 |
+
"step": 388
|
| 2727 |
+
},
|
| 2728 |
+
{
|
| 2729 |
+
"epoch": 0.09918408975012749,
|
| 2730 |
+
"grad_norm": 3.151108741760254,
|
| 2731 |
+
"learning_rate": 9.934590552711167e-06,
|
| 2732 |
+
"loss": 0.5755165815353394,
|
| 2733 |
+
"step": 389
|
| 2734 |
+
},
|
| 2735 |
+
{
|
| 2736 |
+
"epoch": 0.09943906170321265,
|
| 2737 |
+
"grad_norm": 3.6108310222625732,
|
| 2738 |
+
"learning_rate": 9.933908938873638e-06,
|
| 2739 |
+
"loss": 0.5648122429847717,
|
| 2740 |
+
"step": 390
|
| 2741 |
+
},
|
| 2742 |
+
{
|
| 2743 |
+
"epoch": 0.09969403365629781,
|
| 2744 |
+
"grad_norm": 4.878504753112793,
|
| 2745 |
+
"learning_rate": 9.933223815592278e-06,
|
| 2746 |
+
"loss": 0.5667652487754822,
|
| 2747 |
+
"step": 391
|
| 2748 |
+
},
|
| 2749 |
+
{
|
| 2750 |
+
"epoch": 0.09994900560938297,
|
| 2751 |
+
"grad_norm": 3.92559814453125,
|
| 2752 |
+
"learning_rate": 9.932535183354418e-06,
|
| 2753 |
+
"loss": 0.5649821162223816,
|
| 2754 |
+
"step": 392
|
| 2755 |
+
},
|
| 2756 |
+
{
|
| 2757 |
+
"epoch": 0.10020397756246813,
|
| 2758 |
+
"grad_norm": 4.201918601989746,
|
| 2759 |
+
"learning_rate": 9.93184304264987e-06,
|
| 2760 |
+
"loss": 0.5741337537765503,
|
| 2761 |
+
"step": 393
|
| 2762 |
+
},
|
| 2763 |
+
{
|
| 2764 |
+
"epoch": 0.10045894951555329,
|
| 2765 |
+
"grad_norm": 4.567728519439697,
|
| 2766 |
+
"learning_rate": 9.931147393970949e-06,
|
| 2767 |
+
"loss": 0.5604985952377319,
|
| 2768 |
+
"step": 394
|
| 2769 |
+
},
|
| 2770 |
+
{
|
| 2771 |
+
"epoch": 0.10071392146863845,
|
| 2772 |
+
"grad_norm": 4.432600498199463,
|
| 2773 |
+
"learning_rate": 9.930448237812462e-06,
|
| 2774 |
+
"loss": 0.5782884359359741,
|
| 2775 |
+
"step": 395
|
| 2776 |
+
},
|
| 2777 |
+
{
|
| 2778 |
+
"epoch": 0.1009688934217236,
|
| 2779 |
+
"grad_norm": 7.759515762329102,
|
| 2780 |
+
"learning_rate": 9.929745574671714e-06,
|
| 2781 |
+
"loss": 0.58075350522995,
|
| 2782 |
+
"step": 396
|
| 2783 |
+
},
|
| 2784 |
+
{
|
| 2785 |
+
"epoch": 0.10122386537480878,
|
| 2786 |
+
"grad_norm": 4.055099964141846,
|
| 2787 |
+
"learning_rate": 9.929039405048502e-06,
|
| 2788 |
+
"loss": 0.5670657157897949,
|
| 2789 |
+
"step": 397
|
| 2790 |
+
},
|
| 2791 |
+
{
|
| 2792 |
+
"epoch": 0.10147883732789394,
|
| 2793 |
+
"grad_norm": 5.6480326652526855,
|
| 2794 |
+
"learning_rate": 9.928329729445118e-06,
|
| 2795 |
+
"loss": 0.5497553944587708,
|
| 2796 |
+
"step": 398
|
| 2797 |
+
},
|
| 2798 |
+
{
|
| 2799 |
+
"epoch": 0.1017338092809791,
|
| 2800 |
+
"grad_norm": 5.648945331573486,
|
| 2801 |
+
"learning_rate": 9.92761654836635e-06,
|
| 2802 |
+
"loss": 0.5727936029434204,
|
| 2803 |
+
"step": 399
|
| 2804 |
+
},
|
| 2805 |
+
{
|
| 2806 |
+
"epoch": 0.10198878123406425,
|
| 2807 |
+
"grad_norm": 8.808309555053711,
|
| 2808 |
+
"learning_rate": 9.926899862319472e-06,
|
| 2809 |
+
"loss": 0.5711077451705933,
|
| 2810 |
+
"step": 400
|
| 2811 |
+
},
|
| 2812 |
+
{
|
| 2813 |
+
"epoch": 0.10224375318714941,
|
| 2814 |
+
"grad_norm": 4.987074375152588,
|
| 2815 |
+
"learning_rate": 9.92617967181426e-06,
|
| 2816 |
+
"loss": 0.5715692043304443,
|
| 2817 |
+
"step": 401
|
| 2818 |
+
},
|
| 2819 |
+
{
|
| 2820 |
+
"epoch": 0.10249872514023457,
|
| 2821 |
+
"grad_norm": 10.667113304138184,
|
| 2822 |
+
"learning_rate": 9.92545597736298e-06,
|
| 2823 |
+
"loss": 0.579121470451355,
|
| 2824 |
+
"step": 402
|
| 2825 |
+
},
|
| 2826 |
+
{
|
| 2827 |
+
"epoch": 0.10275369709331973,
|
| 2828 |
+
"grad_norm": 3.9461591243743896,
|
| 2829 |
+
"learning_rate": 9.924728779480386e-06,
|
| 2830 |
+
"loss": 0.5666054487228394,
|
| 2831 |
+
"step": 403
|
| 2832 |
+
},
|
| 2833 |
+
{
|
| 2834 |
+
"epoch": 0.10300866904640489,
|
| 2835 |
+
"grad_norm": 4.880352020263672,
|
| 2836 |
+
"learning_rate": 9.923998078683728e-06,
|
| 2837 |
+
"loss": 0.5608178377151489,
|
| 2838 |
+
"step": 404
|
| 2839 |
+
},
|
| 2840 |
+
{
|
| 2841 |
+
"epoch": 0.10326364099949005,
|
| 2842 |
+
"grad_norm": 2.8450400829315186,
|
| 2843 |
+
"learning_rate": 9.923263875492745e-06,
|
| 2844 |
+
"loss": 0.5613754987716675,
|
| 2845 |
+
"step": 405
|
| 2846 |
+
},
|
| 2847 |
+
{
|
| 2848 |
+
"epoch": 0.10351861295257522,
|
| 2849 |
+
"grad_norm": 2.3046202659606934,
|
| 2850 |
+
"learning_rate": 9.922526170429675e-06,
|
| 2851 |
+
"loss": 0.5492349863052368,
|
| 2852 |
+
"step": 406
|
| 2853 |
+
},
|
| 2854 |
+
{
|
| 2855 |
+
"epoch": 0.10377358490566038,
|
| 2856 |
+
"grad_norm": 3.4868693351745605,
|
| 2857 |
+
"learning_rate": 9.921784964019234e-06,
|
| 2858 |
+
"loss": 0.552125871181488,
|
| 2859 |
+
"step": 407
|
| 2860 |
+
},
|
| 2861 |
+
{
|
| 2862 |
+
"epoch": 0.10402855685874554,
|
| 2863 |
+
"grad_norm": 2.966796875,
|
| 2864 |
+
"learning_rate": 9.92104025678864e-06,
|
| 2865 |
+
"loss": 0.5744848251342773,
|
| 2866 |
+
"step": 408
|
| 2867 |
+
},
|
| 2868 |
+
{
|
| 2869 |
+
"epoch": 0.1042835288118307,
|
| 2870 |
+
"grad_norm": 3.2738051414489746,
|
| 2871 |
+
"learning_rate": 9.920292049267592e-06,
|
| 2872 |
+
"loss": 0.5550822615623474,
|
| 2873 |
+
"step": 409
|
| 2874 |
+
},
|
| 2875 |
+
{
|
| 2876 |
+
"epoch": 0.10453850076491586,
|
| 2877 |
+
"grad_norm": 2.2583632469177246,
|
| 2878 |
+
"learning_rate": 9.919540341988287e-06,
|
| 2879 |
+
"loss": 0.5528494119644165,
|
| 2880 |
+
"step": 410
|
| 2881 |
+
},
|
| 2882 |
+
{
|
| 2883 |
+
"epoch": 0.10479347271800102,
|
| 2884 |
+
"grad_norm": 1.9360980987548828,
|
| 2885 |
+
"learning_rate": 9.918785135485405e-06,
|
| 2886 |
+
"loss": 0.5590968728065491,
|
| 2887 |
+
"step": 411
|
| 2888 |
+
},
|
| 2889 |
+
{
|
| 2890 |
+
"epoch": 0.10504844467108618,
|
| 2891 |
+
"grad_norm": 1.826249599456787,
|
| 2892 |
+
"learning_rate": 9.918026430296119e-06,
|
| 2893 |
+
"loss": 0.5546989440917969,
|
| 2894 |
+
"step": 412
|
| 2895 |
+
},
|
| 2896 |
+
{
|
| 2897 |
+
"epoch": 0.10530341662417134,
|
| 2898 |
+
"grad_norm": 4.0869879722595215,
|
| 2899 |
+
"learning_rate": 9.917264226960088e-06,
|
| 2900 |
+
"loss": 0.5490781664848328,
|
| 2901 |
+
"step": 413
|
| 2902 |
+
},
|
| 2903 |
+
{
|
| 2904 |
+
"epoch": 0.1055583885772565,
|
| 2905 |
+
"grad_norm": 2.0648045539855957,
|
| 2906 |
+
"learning_rate": 9.916498526019461e-06,
|
| 2907 |
+
"loss": 0.5518783330917358,
|
| 2908 |
+
"step": 414
|
| 2909 |
+
},
|
| 2910 |
+
{
|
| 2911 |
+
"epoch": 0.10581336053034167,
|
| 2912 |
+
"grad_norm": 2.43099045753479,
|
| 2913 |
+
"learning_rate": 9.915729328018874e-06,
|
| 2914 |
+
"loss": 0.5636767745018005,
|
| 2915 |
+
"step": 415
|
| 2916 |
+
},
|
| 2917 |
+
{
|
| 2918 |
+
"epoch": 0.10606833248342683,
|
| 2919 |
+
"grad_norm": 11.354096412658691,
|
| 2920 |
+
"learning_rate": 9.914956633505449e-06,
|
| 2921 |
+
"loss": 0.5413601398468018,
|
| 2922 |
+
"step": 416
|
| 2923 |
+
},
|
| 2924 |
+
{
|
| 2925 |
+
"epoch": 0.10632330443651199,
|
| 2926 |
+
"grad_norm": 2.1528172492980957,
|
| 2927 |
+
"learning_rate": 9.914180443028798e-06,
|
| 2928 |
+
"loss": 0.5820633172988892,
|
| 2929 |
+
"step": 417
|
| 2930 |
+
},
|
| 2931 |
+
{
|
| 2932 |
+
"epoch": 0.10657827638959715,
|
| 2933 |
+
"grad_norm": 1.944624423980713,
|
| 2934 |
+
"learning_rate": 9.913400757141016e-06,
|
| 2935 |
+
"loss": 0.569353461265564,
|
| 2936 |
+
"step": 418
|
| 2937 |
+
},
|
| 2938 |
+
{
|
| 2939 |
+
"epoch": 0.1068332483426823,
|
| 2940 |
+
"grad_norm": 1.8753156661987305,
|
| 2941 |
+
"learning_rate": 9.91261757639669e-06,
|
| 2942 |
+
"loss": 0.5503973960876465,
|
| 2943 |
+
"step": 419
|
| 2944 |
+
},
|
| 2945 |
+
{
|
| 2946 |
+
"epoch": 0.10708822029576746,
|
| 2947 |
+
"grad_norm": 4.639176368713379,
|
| 2948 |
+
"learning_rate": 9.911830901352887e-06,
|
| 2949 |
+
"loss": 0.5602145195007324,
|
| 2950 |
+
"step": 420
|
| 2951 |
+
},
|
| 2952 |
+
{
|
| 2953 |
+
"epoch": 0.10734319224885262,
|
| 2954 |
+
"grad_norm": 2.0952956676483154,
|
| 2955 |
+
"learning_rate": 9.91104073256916e-06,
|
| 2956 |
+
"loss": 0.5641953945159912,
|
| 2957 |
+
"step": 421
|
| 2958 |
+
},
|
| 2959 |
+
{
|
| 2960 |
+
"epoch": 0.10759816420193778,
|
| 2961 |
+
"grad_norm": 2.922534465789795,
|
| 2962 |
+
"learning_rate": 9.91024707060755e-06,
|
| 2963 |
+
"loss": 0.5575719475746155,
|
| 2964 |
+
"step": 422
|
| 2965 |
+
},
|
| 2966 |
+
{
|
| 2967 |
+
"epoch": 0.10785313615502294,
|
| 2968 |
+
"grad_norm": 2.3282814025878906,
|
| 2969 |
+
"learning_rate": 9.909449916032586e-06,
|
| 2970 |
+
"loss": 0.5521407127380371,
|
| 2971 |
+
"step": 423
|
| 2972 |
+
},
|
| 2973 |
+
{
|
| 2974 |
+
"epoch": 0.10810810810810811,
|
| 2975 |
+
"grad_norm": 3.6761107444763184,
|
| 2976 |
+
"learning_rate": 9.90864926941127e-06,
|
| 2977 |
+
"loss": 0.545198917388916,
|
| 2978 |
+
"step": 424
|
| 2979 |
+
},
|
| 2980 |
+
{
|
| 2981 |
+
"epoch": 0.10836308006119327,
|
| 2982 |
+
"grad_norm": 3.0300190448760986,
|
| 2983 |
+
"learning_rate": 9.907845131313097e-06,
|
| 2984 |
+
"loss": 0.553956925868988,
|
| 2985 |
+
"step": 425
|
| 2986 |
+
},
|
| 2987 |
+
{
|
| 2988 |
+
"epoch": 0.10861805201427843,
|
| 2989 |
+
"grad_norm": 2.0869300365448,
|
| 2990 |
+
"learning_rate": 9.907037502310045e-06,
|
| 2991 |
+
"loss": 0.5557433366775513,
|
| 2992 |
+
"step": 426
|
| 2993 |
+
},
|
| 2994 |
+
{
|
| 2995 |
+
"epoch": 0.10887302396736359,
|
| 2996 |
+
"grad_norm": 8.301857948303223,
|
| 2997 |
+
"learning_rate": 9.906226382976568e-06,
|
| 2998 |
+
"loss": 0.5531321167945862,
|
| 2999 |
+
"step": 427
|
| 3000 |
+
},
|
| 3001 |
+
{
|
| 3002 |
+
"epoch": 0.10912799592044875,
|
| 3003 |
+
"grad_norm": 1.706969141960144,
|
| 3004 |
+
"learning_rate": 9.905411773889613e-06,
|
| 3005 |
+
"loss": 0.5832129716873169,
|
| 3006 |
+
"step": 428
|
| 3007 |
+
},
|
| 3008 |
+
{
|
| 3009 |
+
"epoch": 0.10938296787353391,
|
| 3010 |
+
"grad_norm": 4.29292106628418,
|
| 3011 |
+
"learning_rate": 9.904593675628603e-06,
|
| 3012 |
+
"loss": 0.5588259100914001,
|
| 3013 |
+
"step": 429
|
| 3014 |
+
},
|
| 3015 |
+
{
|
| 3016 |
+
"epoch": 0.10963793982661907,
|
| 3017 |
+
"grad_norm": 1.8968133926391602,
|
| 3018 |
+
"learning_rate": 9.903772088775441e-06,
|
| 3019 |
+
"loss": 0.5617460608482361,
|
| 3020 |
+
"step": 430
|
| 3021 |
+
},
|
| 3022 |
+
{
|
| 3023 |
+
"epoch": 0.10989291177970423,
|
| 3024 |
+
"grad_norm": 2.2897067070007324,
|
| 3025 |
+
"learning_rate": 9.902947013914515e-06,
|
| 3026 |
+
"loss": 0.56639564037323,
|
| 3027 |
+
"step": 431
|
| 3028 |
+
},
|
| 3029 |
+
{
|
| 3030 |
+
"epoch": 0.11014788373278939,
|
| 3031 |
+
"grad_norm": 1.9766414165496826,
|
| 3032 |
+
"learning_rate": 9.902118451632694e-06,
|
| 3033 |
+
"loss": 0.5575860738754272,
|
| 3034 |
+
"step": 432
|
| 3035 |
+
},
|
| 3036 |
+
{
|
| 3037 |
+
"epoch": 0.11040285568587456,
|
| 3038 |
+
"grad_norm": 1.9631874561309814,
|
| 3039 |
+
"learning_rate": 9.901286402519328e-06,
|
| 3040 |
+
"loss": 0.5484806895256042,
|
| 3041 |
+
"step": 433
|
| 3042 |
+
},
|
| 3043 |
+
{
|
| 3044 |
+
"epoch": 0.11065782763895972,
|
| 3045 |
+
"grad_norm": 1.556809425354004,
|
| 3046 |
+
"learning_rate": 9.900450867166244e-06,
|
| 3047 |
+
"loss": 0.5607021450996399,
|
| 3048 |
+
"step": 434
|
| 3049 |
+
},
|
| 3050 |
+
{
|
| 3051 |
+
"epoch": 0.11091279959204488,
|
| 3052 |
+
"grad_norm": 2.1358542442321777,
|
| 3053 |
+
"learning_rate": 9.89961184616775e-06,
|
| 3054 |
+
"loss": 0.5543813109397888,
|
| 3055 |
+
"step": 435
|
| 3056 |
+
},
|
| 3057 |
+
{
|
| 3058 |
+
"epoch": 0.11116777154513004,
|
| 3059 |
+
"grad_norm": 1.9221220016479492,
|
| 3060 |
+
"learning_rate": 9.898769340120635e-06,
|
| 3061 |
+
"loss": 0.5601315498352051,
|
| 3062 |
+
"step": 436
|
| 3063 |
+
},
|
| 3064 |
+
{
|
| 3065 |
+
"epoch": 0.1114227434982152,
|
| 3066 |
+
"grad_norm": 1.6563795804977417,
|
| 3067 |
+
"learning_rate": 9.897923349624165e-06,
|
| 3068 |
+
"loss": 0.5403985977172852,
|
| 3069 |
+
"step": 437
|
| 3070 |
+
},
|
| 3071 |
+
{
|
| 3072 |
+
"epoch": 0.11167771545130036,
|
| 3073 |
+
"grad_norm": 1.8465486764907837,
|
| 3074 |
+
"learning_rate": 9.897073875280088e-06,
|
| 3075 |
+
"loss": 0.5579530000686646,
|
| 3076 |
+
"step": 438
|
| 3077 |
+
},
|
| 3078 |
+
{
|
| 3079 |
+
"epoch": 0.11193268740438551,
|
| 3080 |
+
"grad_norm": 1.7812130451202393,
|
| 3081 |
+
"learning_rate": 9.896220917692624e-06,
|
| 3082 |
+
"loss": 0.5482833385467529,
|
| 3083 |
+
"step": 439
|
| 3084 |
+
},
|
| 3085 |
+
{
|
| 3086 |
+
"epoch": 0.11218765935747067,
|
| 3087 |
+
"grad_norm": 1.6004902124404907,
|
| 3088 |
+
"learning_rate": 9.895364477468474e-06,
|
| 3089 |
+
"loss": 0.5627224445343018,
|
| 3090 |
+
"step": 440
|
| 3091 |
+
},
|
| 3092 |
+
{
|
| 3093 |
+
"epoch": 0.11244263131055583,
|
| 3094 |
+
"grad_norm": 2.030223846435547,
|
| 3095 |
+
"learning_rate": 9.894504555216818e-06,
|
| 3096 |
+
"loss": 0.5554012656211853,
|
| 3097 |
+
"step": 441
|
| 3098 |
+
},
|
| 3099 |
+
{
|
| 3100 |
+
"epoch": 0.112697603263641,
|
| 3101 |
+
"grad_norm": 2.268024444580078,
|
| 3102 |
+
"learning_rate": 9.893641151549309e-06,
|
| 3103 |
+
"loss": 0.5493656992912292,
|
| 3104 |
+
"step": 442
|
| 3105 |
+
},
|
| 3106 |
+
{
|
| 3107 |
+
"epoch": 0.11295257521672616,
|
| 3108 |
+
"grad_norm": 17.941709518432617,
|
| 3109 |
+
"learning_rate": 9.89277426708008e-06,
|
| 3110 |
+
"loss": 0.5542835593223572,
|
| 3111 |
+
"step": 443
|
| 3112 |
+
},
|
| 3113 |
+
{
|
| 3114 |
+
"epoch": 0.11320754716981132,
|
| 3115 |
+
"grad_norm": 1.722589373588562,
|
| 3116 |
+
"learning_rate": 9.891903902425735e-06,
|
| 3117 |
+
"loss": 0.5496931076049805,
|
| 3118 |
+
"step": 444
|
| 3119 |
+
},
|
| 3120 |
+
{
|
| 3121 |
+
"epoch": 0.11346251912289648,
|
| 3122 |
+
"grad_norm": 2.5744998455047607,
|
| 3123 |
+
"learning_rate": 9.891030058205359e-06,
|
| 3124 |
+
"loss": 0.5635861158370972,
|
| 3125 |
+
"step": 445
|
| 3126 |
+
},
|
| 3127 |
+
{
|
| 3128 |
+
"epoch": 0.11371749107598164,
|
| 3129 |
+
"grad_norm": 4.437044143676758,
|
| 3130 |
+
"learning_rate": 9.890152735040508e-06,
|
| 3131 |
+
"loss": 0.5610167980194092,
|
| 3132 |
+
"step": 446
|
| 3133 |
+
},
|
| 3134 |
+
{
|
| 3135 |
+
"epoch": 0.1139724630290668,
|
| 3136 |
+
"grad_norm": 2.3134236335754395,
|
| 3137 |
+
"learning_rate": 9.889271933555214e-06,
|
| 3138 |
+
"loss": 0.5595861077308655,
|
| 3139 |
+
"step": 447
|
| 3140 |
+
},
|
| 3141 |
+
{
|
| 3142 |
+
"epoch": 0.11422743498215196,
|
| 3143 |
+
"grad_norm": 2.3492934703826904,
|
| 3144 |
+
"learning_rate": 9.888387654375982e-06,
|
| 3145 |
+
"loss": 0.5650231242179871,
|
| 3146 |
+
"step": 448
|
| 3147 |
+
},
|
| 3148 |
+
{
|
| 3149 |
+
"epoch": 0.11448240693523712,
|
| 3150 |
+
"grad_norm": 2.3988776206970215,
|
| 3151 |
+
"learning_rate": 9.887499898131794e-06,
|
| 3152 |
+
"loss": 0.5635617971420288,
|
| 3153 |
+
"step": 449
|
| 3154 |
+
},
|
| 3155 |
+
{
|
| 3156 |
+
"epoch": 0.11473737888832228,
|
| 3157 |
+
"grad_norm": 1.8519774675369263,
|
| 3158 |
+
"learning_rate": 9.886608665454103e-06,
|
| 3159 |
+
"loss": 0.5491594076156616,
|
| 3160 |
+
"step": 450
|
| 3161 |
+
},
|
| 3162 |
+
{
|
| 3163 |
+
"epoch": 0.11499235084140745,
|
| 3164 |
+
"grad_norm": 3.4155073165893555,
|
| 3165 |
+
"learning_rate": 9.885713956976831e-06,
|
| 3166 |
+
"loss": 0.5530607104301453,
|
| 3167 |
+
"step": 451
|
| 3168 |
+
},
|
| 3169 |
+
{
|
| 3170 |
+
"epoch": 0.11524732279449261,
|
| 3171 |
+
"grad_norm": 2.399628162384033,
|
| 3172 |
+
"learning_rate": 9.884815773336378e-06,
|
| 3173 |
+
"loss": 0.556371808052063,
|
| 3174 |
+
"step": 452
|
| 3175 |
+
},
|
| 3176 |
+
{
|
| 3177 |
+
"epoch": 0.11550229474757777,
|
| 3178 |
+
"grad_norm": 2.0557265281677246,
|
| 3179 |
+
"learning_rate": 9.883914115171614e-06,
|
| 3180 |
+
"loss": 0.5491721034049988,
|
| 3181 |
+
"step": 453
|
| 3182 |
+
},
|
| 3183 |
+
{
|
| 3184 |
+
"epoch": 0.11575726670066293,
|
| 3185 |
+
"grad_norm": 1.9038746356964111,
|
| 3186 |
+
"learning_rate": 9.883008983123881e-06,
|
| 3187 |
+
"loss": 0.5566811561584473,
|
| 3188 |
+
"step": 454
|
| 3189 |
+
},
|
| 3190 |
+
{
|
| 3191 |
+
"epoch": 0.11601223865374809,
|
| 3192 |
+
"grad_norm": 2.2605245113372803,
|
| 3193 |
+
"learning_rate": 9.882100377836988e-06,
|
| 3194 |
+
"loss": 0.5654865503311157,
|
| 3195 |
+
"step": 455
|
| 3196 |
+
},
|
| 3197 |
+
{
|
| 3198 |
+
"epoch": 0.11626721060683325,
|
| 3199 |
+
"grad_norm": 1.8456274271011353,
|
| 3200 |
+
"learning_rate": 9.88118829995722e-06,
|
| 3201 |
+
"loss": 0.5562974214553833,
|
| 3202 |
+
"step": 456
|
| 3203 |
+
},
|
| 3204 |
+
{
|
| 3205 |
+
"epoch": 0.1165221825599184,
|
| 3206 |
+
"grad_norm": 1.7836940288543701,
|
| 3207 |
+
"learning_rate": 9.880272750133328e-06,
|
| 3208 |
+
"loss": 0.566531777381897,
|
| 3209 |
+
"step": 457
|
| 3210 |
+
},
|
| 3211 |
+
{
|
| 3212 |
+
"epoch": 0.11677715451300356,
|
| 3213 |
+
"grad_norm": 2.3698477745056152,
|
| 3214 |
+
"learning_rate": 9.879353729016537e-06,
|
| 3215 |
+
"loss": 0.557073175907135,
|
| 3216 |
+
"step": 458
|
| 3217 |
+
},
|
| 3218 |
+
{
|
| 3219 |
+
"epoch": 0.11703212646608872,
|
| 3220 |
+
"grad_norm": 3.380236864089966,
|
| 3221 |
+
"learning_rate": 9.878431237260535e-06,
|
| 3222 |
+
"loss": 0.5533016920089722,
|
| 3223 |
+
"step": 459
|
| 3224 |
+
},
|
| 3225 |
+
{
|
| 3226 |
+
"epoch": 0.1172870984191739,
|
| 3227 |
+
"grad_norm": 2.136101245880127,
|
| 3228 |
+
"learning_rate": 9.877505275521485e-06,
|
| 3229 |
+
"loss": 0.555318295955658,
|
| 3230 |
+
"step": 460
|
| 3231 |
+
},
|
| 3232 |
+
{
|
| 3233 |
+
"epoch": 0.11754207037225906,
|
| 3234 |
+
"grad_norm": 4.435114860534668,
|
| 3235 |
+
"learning_rate": 9.876575844458012e-06,
|
| 3236 |
+
"loss": 0.5532917976379395,
|
| 3237 |
+
"step": 461
|
| 3238 |
+
},
|
| 3239 |
+
{
|
| 3240 |
+
"epoch": 0.11779704232534421,
|
| 3241 |
+
"grad_norm": 2.546670913696289,
|
| 3242 |
+
"learning_rate": 9.875642944731212e-06,
|
| 3243 |
+
"loss": 0.5604023337364197,
|
| 3244 |
+
"step": 462
|
| 3245 |
+
},
|
| 3246 |
+
{
|
| 3247 |
+
"epoch": 0.11805201427842937,
|
| 3248 |
+
"grad_norm": 3.9529716968536377,
|
| 3249 |
+
"learning_rate": 9.87470657700465e-06,
|
| 3250 |
+
"loss": 0.5603578090667725,
|
| 3251 |
+
"step": 463
|
| 3252 |
+
},
|
| 3253 |
+
{
|
| 3254 |
+
"epoch": 0.11830698623151453,
|
| 3255 |
+
"grad_norm": 2.1415586471557617,
|
| 3256 |
+
"learning_rate": 9.873766741944353e-06,
|
| 3257 |
+
"loss": 0.5529968738555908,
|
| 3258 |
+
"step": 464
|
| 3259 |
+
},
|
| 3260 |
+
{
|
| 3261 |
+
"epoch": 0.11856195818459969,
|
| 3262 |
+
"grad_norm": 2.085867166519165,
|
| 3263 |
+
"learning_rate": 9.872823440218821e-06,
|
| 3264 |
+
"loss": 0.5548291206359863,
|
| 3265 |
+
"step": 465
|
| 3266 |
+
},
|
| 3267 |
+
{
|
| 3268 |
+
"epoch": 0.11881693013768485,
|
| 3269 |
+
"grad_norm": 3.555215358734131,
|
| 3270 |
+
"learning_rate": 9.871876672499012e-06,
|
| 3271 |
+
"loss": 0.5481231212615967,
|
| 3272 |
+
"step": 466
|
| 3273 |
+
},
|
| 3274 |
+
{
|
| 3275 |
+
"epoch": 0.11907190209077001,
|
| 3276 |
+
"grad_norm": 2.137446641921997,
|
| 3277 |
+
"learning_rate": 9.870926439458355e-06,
|
| 3278 |
+
"loss": 0.5487592220306396,
|
| 3279 |
+
"step": 467
|
| 3280 |
+
},
|
| 3281 |
+
{
|
| 3282 |
+
"epoch": 0.11932687404385518,
|
| 3283 |
+
"grad_norm": 2.8710625171661377,
|
| 3284 |
+
"learning_rate": 9.86997274177274e-06,
|
| 3285 |
+
"loss": 0.5602512955665588,
|
| 3286 |
+
"step": 468
|
| 3287 |
+
},
|
| 3288 |
+
{
|
| 3289 |
+
"epoch": 0.11958184599694034,
|
| 3290 |
+
"grad_norm": 2.24103045463562,
|
| 3291 |
+
"learning_rate": 9.869015580120527e-06,
|
| 3292 |
+
"loss": 0.5430268049240112,
|
| 3293 |
+
"step": 469
|
| 3294 |
+
},
|
| 3295 |
+
{
|
| 3296 |
+
"epoch": 0.1198368179500255,
|
| 3297 |
+
"grad_norm": 2.0165767669677734,
|
| 3298 |
+
"learning_rate": 9.868054955182533e-06,
|
| 3299 |
+
"loss": 0.5526243448257446,
|
| 3300 |
+
"step": 470
|
| 3301 |
+
},
|
| 3302 |
+
{
|
| 3303 |
+
"epoch": 0.12009178990311066,
|
| 3304 |
+
"grad_norm": 2.7446656227111816,
|
| 3305 |
+
"learning_rate": 9.867090867642042e-06,
|
| 3306 |
+
"loss": 0.5715802311897278,
|
| 3307 |
+
"step": 471
|
| 3308 |
+
},
|
| 3309 |
+
{
|
| 3310 |
+
"epoch": 0.12034676185619582,
|
| 3311 |
+
"grad_norm": 4.814818382263184,
|
| 3312 |
+
"learning_rate": 9.866123318184803e-06,
|
| 3313 |
+
"loss": 0.5400905609130859,
|
| 3314 |
+
"step": 472
|
| 3315 |
+
},
|
| 3316 |
+
{
|
| 3317 |
+
"epoch": 0.12060173380928098,
|
| 3318 |
+
"grad_norm": 2.0347468852996826,
|
| 3319 |
+
"learning_rate": 9.865152307499022e-06,
|
| 3320 |
+
"loss": 0.5547370314598083,
|
| 3321 |
+
"step": 473
|
| 3322 |
+
},
|
| 3323 |
+
{
|
| 3324 |
+
"epoch": 0.12085670576236614,
|
| 3325 |
+
"grad_norm": 1.9471986293792725,
|
| 3326 |
+
"learning_rate": 9.864177836275371e-06,
|
| 3327 |
+
"loss": 0.5558183193206787,
|
| 3328 |
+
"step": 474
|
| 3329 |
+
},
|
| 3330 |
+
{
|
| 3331 |
+
"epoch": 0.1211116777154513,
|
| 3332 |
+
"grad_norm": 2.60526180267334,
|
| 3333 |
+
"learning_rate": 9.863199905206983e-06,
|
| 3334 |
+
"loss": 0.5537914037704468,
|
| 3335 |
+
"step": 475
|
| 3336 |
+
},
|
| 3337 |
+
{
|
| 3338 |
+
"epoch": 0.12136664966853646,
|
| 3339 |
+
"grad_norm": 2.1302649974823,
|
| 3340 |
+
"learning_rate": 9.862218514989452e-06,
|
| 3341 |
+
"loss": 0.5470219850540161,
|
| 3342 |
+
"step": 476
|
| 3343 |
+
},
|
| 3344 |
+
{
|
| 3345 |
+
"epoch": 0.12162162162162163,
|
| 3346 |
+
"grad_norm": 2.58955717086792,
|
| 3347 |
+
"learning_rate": 9.861233666320828e-06,
|
| 3348 |
+
"loss": 0.5556906461715698,
|
| 3349 |
+
"step": 477
|
| 3350 |
+
},
|
| 3351 |
+
{
|
| 3352 |
+
"epoch": 0.12187659357470679,
|
| 3353 |
+
"grad_norm": 2.096116304397583,
|
| 3354 |
+
"learning_rate": 9.86024535990163e-06,
|
| 3355 |
+
"loss": 0.5494530200958252,
|
| 3356 |
+
"step": 478
|
| 3357 |
+
},
|
| 3358 |
+
{
|
| 3359 |
+
"epoch": 0.12213156552779195,
|
| 3360 |
+
"grad_norm": 2.0807015895843506,
|
| 3361 |
+
"learning_rate": 9.859253596434828e-06,
|
| 3362 |
+
"loss": 0.5564595460891724,
|
| 3363 |
+
"step": 479
|
| 3364 |
+
},
|
| 3365 |
+
{
|
| 3366 |
+
"epoch": 0.1223865374808771,
|
| 3367 |
+
"grad_norm": 3.05375599861145,
|
| 3368 |
+
"learning_rate": 9.858258376625855e-06,
|
| 3369 |
+
"loss": 0.5492424964904785,
|
| 3370 |
+
"step": 480
|
| 3371 |
+
},
|
| 3372 |
+
{
|
| 3373 |
+
"epoch": 0.12264150943396226,
|
| 3374 |
+
"grad_norm": 2.2253363132476807,
|
| 3375 |
+
"learning_rate": 9.8572597011826e-06,
|
| 3376 |
+
"loss": 0.5405623912811279,
|
| 3377 |
+
"step": 481
|
| 3378 |
+
},
|
| 3379 |
+
{
|
| 3380 |
+
"epoch": 0.12289648138704742,
|
| 3381 |
+
"grad_norm": 5.153561115264893,
|
| 3382 |
+
"learning_rate": 9.856257570815415e-06,
|
| 3383 |
+
"loss": 0.5545088052749634,
|
| 3384 |
+
"step": 482
|
| 3385 |
+
},
|
| 3386 |
+
{
|
| 3387 |
+
"epoch": 0.12315145334013258,
|
| 3388 |
+
"grad_norm": 1.9642194509506226,
|
| 3389 |
+
"learning_rate": 9.855251986237103e-06,
|
| 3390 |
+
"loss": 0.5469231009483337,
|
| 3391 |
+
"step": 483
|
| 3392 |
+
},
|
| 3393 |
+
{
|
| 3394 |
+
"epoch": 0.12340642529321774,
|
| 3395 |
+
"grad_norm": 4.149758815765381,
|
| 3396 |
+
"learning_rate": 9.85424294816293e-06,
|
| 3397 |
+
"loss": 0.5515980124473572,
|
| 3398 |
+
"step": 484
|
| 3399 |
+
},
|
| 3400 |
+
{
|
| 3401 |
+
"epoch": 0.1236613972463029,
|
| 3402 |
+
"grad_norm": 3.9454345703125,
|
| 3403 |
+
"learning_rate": 9.853230457310613e-06,
|
| 3404 |
+
"loss": 0.5524808168411255,
|
| 3405 |
+
"step": 485
|
| 3406 |
+
},
|
| 3407 |
+
{
|
| 3408 |
+
"epoch": 0.12391636919938807,
|
| 3409 |
+
"grad_norm": 1.893150806427002,
|
| 3410 |
+
"learning_rate": 9.852214514400326e-06,
|
| 3411 |
+
"loss": 0.5513901710510254,
|
| 3412 |
+
"step": 486
|
| 3413 |
+
},
|
| 3414 |
+
{
|
| 3415 |
+
"epoch": 0.12417134115247323,
|
| 3416 |
+
"grad_norm": 2.6218254566192627,
|
| 3417 |
+
"learning_rate": 9.851195120154701e-06,
|
| 3418 |
+
"loss": 0.5557699799537659,
|
| 3419 |
+
"step": 487
|
| 3420 |
+
},
|
| 3421 |
+
{
|
| 3422 |
+
"epoch": 0.12442631310555839,
|
| 3423 |
+
"grad_norm": 4.718894958496094,
|
| 3424 |
+
"learning_rate": 9.850172275298828e-06,
|
| 3425 |
+
"loss": 0.5626286268234253,
|
| 3426 |
+
"step": 488
|
| 3427 |
+
},
|
| 3428 |
+
{
|
| 3429 |
+
"epoch": 0.12468128505864355,
|
| 3430 |
+
"grad_norm": 2.0461502075195312,
|
| 3431 |
+
"learning_rate": 9.849145980560243e-06,
|
| 3432 |
+
"loss": 0.5560814738273621,
|
| 3433 |
+
"step": 489
|
| 3434 |
+
},
|
| 3435 |
+
{
|
| 3436 |
+
"epoch": 0.12493625701172871,
|
| 3437 |
+
"grad_norm": 4.197045803070068,
|
| 3438 |
+
"learning_rate": 9.848116236668939e-06,
|
| 3439 |
+
"loss": 0.5595450401306152,
|
| 3440 |
+
"step": 490
|
| 3441 |
+
},
|
| 3442 |
+
{
|
| 3443 |
+
"epoch": 0.12519122896481388,
|
| 3444 |
+
"grad_norm": 2.1661648750305176,
|
| 3445 |
+
"learning_rate": 9.847083044357367e-06,
|
| 3446 |
+
"loss": 0.5466753840446472,
|
| 3447 |
+
"step": 491
|
| 3448 |
+
},
|
| 3449 |
+
{
|
| 3450 |
+
"epoch": 0.12544620091789904,
|
| 3451 |
+
"grad_norm": 2.64660382270813,
|
| 3452 |
+
"learning_rate": 9.846046404360423e-06,
|
| 3453 |
+
"loss": 0.5495432615280151,
|
| 3454 |
+
"step": 492
|
| 3455 |
+
},
|
| 3456 |
+
{
|
| 3457 |
+
"epoch": 0.1257011728709842,
|
| 3458 |
+
"grad_norm": 2.2083492279052734,
|
| 3459 |
+
"learning_rate": 9.845006317415463e-06,
|
| 3460 |
+
"loss": 0.5645055770874023,
|
| 3461 |
+
"step": 493
|
| 3462 |
+
},
|
| 3463 |
+
{
|
| 3464 |
+
"epoch": 0.12595614482406936,
|
| 3465 |
+
"grad_norm": 2.4461467266082764,
|
| 3466 |
+
"learning_rate": 9.843962784262289e-06,
|
| 3467 |
+
"loss": 0.5569705963134766,
|
| 3468 |
+
"step": 494
|
| 3469 |
+
},
|
| 3470 |
+
{
|
| 3471 |
+
"epoch": 0.12621111677715452,
|
| 3472 |
+
"grad_norm": 2.076951026916504,
|
| 3473 |
+
"learning_rate": 9.842915805643156e-06,
|
| 3474 |
+
"loss": 0.5476626753807068,
|
| 3475 |
+
"step": 495
|
| 3476 |
+
},
|
| 3477 |
+
{
|
| 3478 |
+
"epoch": 0.12646608873023968,
|
| 3479 |
+
"grad_norm": 2.278542995452881,
|
| 3480 |
+
"learning_rate": 9.841865382302773e-06,
|
| 3481 |
+
"loss": 0.5460015535354614,
|
| 3482 |
+
"step": 496
|
| 3483 |
+
},
|
| 3484 |
+
{
|
| 3485 |
+
"epoch": 0.12672106068332484,
|
| 3486 |
+
"grad_norm": 2.187434673309326,
|
| 3487 |
+
"learning_rate": 9.840811514988294e-06,
|
| 3488 |
+
"loss": 0.5466282367706299,
|
| 3489 |
+
"step": 497
|
| 3490 |
+
},
|
| 3491 |
+
{
|
| 3492 |
+
"epoch": 0.12697603263641,
|
| 3493 |
+
"grad_norm": 2.5430383682250977,
|
| 3494 |
+
"learning_rate": 9.839754204449328e-06,
|
| 3495 |
+
"loss": 0.5423339605331421,
|
| 3496 |
+
"step": 498
|
| 3497 |
+
},
|
| 3498 |
+
{
|
| 3499 |
+
"epoch": 0.12723100458949516,
|
| 3500 |
+
"grad_norm": 3.8312206268310547,
|
| 3501 |
+
"learning_rate": 9.838693451437926e-06,
|
| 3502 |
+
"loss": 0.5447465777397156,
|
| 3503 |
+
"step": 499
|
| 3504 |
+
},
|
| 3505 |
+
{
|
| 3506 |
+
"epoch": 0.12748597654258031,
|
| 3507 |
+
"grad_norm": 2.2003931999206543,
|
| 3508 |
+
"learning_rate": 9.837629256708595e-06,
|
| 3509 |
+
"loss": 0.5435498952865601,
|
| 3510 |
+
"step": 500
|
| 3511 |
+
}
|
| 3512 |
+
],
|
| 3513 |
+
"logging_steps": 1,
|
| 3514 |
+
"max_steps": 3922,
|
| 3515 |
+
"num_input_tokens_seen": 0,
|
| 3516 |
+
"num_train_epochs": 1,
|
| 3517 |
+
"save_steps": 500,
|
| 3518 |
+
"stateful_callbacks": {
|
| 3519 |
+
"TrainerControl": {
|
| 3520 |
+
"args": {
|
| 3521 |
+
"should_epoch_stop": false,
|
| 3522 |
+
"should_evaluate": false,
|
| 3523 |
+
"should_log": false,
|
| 3524 |
+
"should_save": true,
|
| 3525 |
+
"should_training_stop": false
|
| 3526 |
+
},
|
| 3527 |
+
"attributes": {}
|
| 3528 |
+
}
|
| 3529 |
+
},
|
| 3530 |
+
"total_flos": 3.709996150610408e+19,
|
| 3531 |
+
"train_batch_size": 4,
|
| 3532 |
+
"trial_name": null,
|
| 3533 |
+
"trial_params": null
|
| 3534 |
+
}
|
qwen3-vl4b-agentnet_filter_failure_ws4_lr2e-5_vit1e-5_aligner1e-5_bs384-step500/training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cb2b71716b815c69acae19745e5f5d002f10f9854295fcea3ac09170daa4d99b
|
| 3 |
+
size 9297
|
qwen3-vl4b-agentnet_filter_failure_ws4_lr2e-5_vit1e-5_aligner1e-5_bs384-step500/video_preprocessor_config.json
ADDED
|
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"crop_size": null,
|
| 3 |
+
"data_format": "channels_first",
|
| 4 |
+
"default_to_square": true,
|
| 5 |
+
"device": null,
|
| 6 |
+
"do_center_crop": null,
|
| 7 |
+
"do_convert_rgb": true,
|
| 8 |
+
"do_normalize": true,
|
| 9 |
+
"do_rescale": true,
|
| 10 |
+
"do_resize": true,
|
| 11 |
+
"do_sample_frames": true,
|
| 12 |
+
"fps": 2,
|
| 13 |
+
"image_mean": [
|
| 14 |
+
0.5,
|
| 15 |
+
0.5,
|
| 16 |
+
0.5
|
| 17 |
+
],
|
| 18 |
+
"image_std": [
|
| 19 |
+
0.5,
|
| 20 |
+
0.5,
|
| 21 |
+
0.5
|
| 22 |
+
],
|
| 23 |
+
"input_data_format": null,
|
| 24 |
+
"max_frames": 768,
|
| 25 |
+
"merge_size": 2,
|
| 26 |
+
"min_frames": 4,
|
| 27 |
+
"num_frames": null,
|
| 28 |
+
"pad_size": null,
|
| 29 |
+
"patch_size": 16,
|
| 30 |
+
"processor_class": "Qwen3VLProcessor",
|
| 31 |
+
"resample": 3,
|
| 32 |
+
"rescale_factor": 0.00392156862745098,
|
| 33 |
+
"return_metadata": false,
|
| 34 |
+
"size": {
|
| 35 |
+
"longest_edge": 25165824,
|
| 36 |
+
"shortest_edge": 4096
|
| 37 |
+
},
|
| 38 |
+
"temporal_patch_size": 2,
|
| 39 |
+
"video_metadata": null,
|
| 40 |
+
"video_processor_type": "Qwen3VLVideoProcessor"
|
| 41 |
+
}
|
qwen3-vl4b-agentnet_filter_failure_ws4_lr2e-5_vit1e-5_aligner1e-5_bs384-step500/vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
qwen3-vl4b-agentnet_filter_failure_ws4_lr2e-5_vit1e-5_aligner1e-5_bs384-step500/zero_to_fp32.py
ADDED
|
@@ -0,0 +1,760 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
# Copyright (c) Microsoft Corporation.
|
| 4 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 5 |
+
|
| 6 |
+
# DeepSpeed Team
|
| 7 |
+
|
| 8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
| 9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
| 10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
| 11 |
+
# application.
|
| 12 |
+
#
|
| 13 |
+
# example:
|
| 14 |
+
# python zero_to_fp32.py . output_dir/
|
| 15 |
+
# or
|
| 16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
| 17 |
+
|
| 18 |
+
import argparse
|
| 19 |
+
import torch
|
| 20 |
+
import glob
|
| 21 |
+
import math
|
| 22 |
+
import os
|
| 23 |
+
import re
|
| 24 |
+
import gc
|
| 25 |
+
import json
|
| 26 |
+
import numpy as np
|
| 27 |
+
from tqdm import tqdm
|
| 28 |
+
from collections import OrderedDict
|
| 29 |
+
from dataclasses import dataclass
|
| 30 |
+
|
| 31 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
| 32 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
| 33 |
+
from deepspeed.utils import logger
|
| 34 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
| 35 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
| 36 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
@dataclass
|
| 40 |
+
class zero_model_state:
|
| 41 |
+
buffers: dict()
|
| 42 |
+
param_shapes: dict()
|
| 43 |
+
shared_params: list
|
| 44 |
+
ds_version: int
|
| 45 |
+
frozen_param_shapes: dict()
|
| 46 |
+
frozen_param_fragments: dict()
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
debug = 0
|
| 50 |
+
|
| 51 |
+
# load to cpu
|
| 52 |
+
device = torch.device('cpu')
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def atoi(text):
|
| 56 |
+
return int(text) if text.isdigit() else text
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def natural_keys(text):
|
| 60 |
+
'''
|
| 61 |
+
alist.sort(key=natural_keys) sorts in human order
|
| 62 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
| 63 |
+
(See Toothy's implementation in the comments)
|
| 64 |
+
'''
|
| 65 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
| 69 |
+
if not os.path.isdir(checkpoint_dir):
|
| 70 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
| 71 |
+
|
| 72 |
+
# there should be only one file
|
| 73 |
+
if zero_stage <= 2:
|
| 74 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
| 75 |
+
elif zero_stage == 3:
|
| 76 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
| 77 |
+
|
| 78 |
+
if not os.path.exists(file):
|
| 79 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
| 80 |
+
|
| 81 |
+
return file
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
| 85 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
| 86 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
| 87 |
+
|
| 88 |
+
if len(ckpt_files) == 0:
|
| 89 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
| 90 |
+
|
| 91 |
+
return ckpt_files
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def get_optim_files(checkpoint_dir):
|
| 95 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def get_model_state_files(checkpoint_dir):
|
| 99 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def parse_model_states(files):
|
| 103 |
+
zero_model_states = []
|
| 104 |
+
for file in files:
|
| 105 |
+
state_dict = torch.load(file, map_location=device, weights_only=False)
|
| 106 |
+
|
| 107 |
+
if BUFFER_NAMES not in state_dict:
|
| 108 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
| 109 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
| 110 |
+
if debug:
|
| 111 |
+
print("Found buffers:", buffer_names)
|
| 112 |
+
|
| 113 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
| 114 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
| 115 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
| 116 |
+
|
| 117 |
+
# collect parameters that are included in param_shapes
|
| 118 |
+
param_names = []
|
| 119 |
+
for s in param_shapes:
|
| 120 |
+
for name in s.keys():
|
| 121 |
+
param_names.append(name)
|
| 122 |
+
|
| 123 |
+
# update with frozen parameters
|
| 124 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
| 125 |
+
if frozen_param_shapes is not None:
|
| 126 |
+
if debug:
|
| 127 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
| 128 |
+
param_names += list(frozen_param_shapes.keys())
|
| 129 |
+
|
| 130 |
+
# handle shared params
|
| 131 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
| 132 |
+
|
| 133 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
| 134 |
+
|
| 135 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
| 136 |
+
|
| 137 |
+
z_model_state = zero_model_state(buffers=buffers,
|
| 138 |
+
param_shapes=param_shapes,
|
| 139 |
+
shared_params=shared_params,
|
| 140 |
+
ds_version=ds_version,
|
| 141 |
+
frozen_param_shapes=frozen_param_shapes,
|
| 142 |
+
frozen_param_fragments=frozen_param_fragments)
|
| 143 |
+
zero_model_states.append(z_model_state)
|
| 144 |
+
|
| 145 |
+
return zero_model_states
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
| 149 |
+
total_files = len(files)
|
| 150 |
+
state_dicts = []
|
| 151 |
+
for f in tqdm(files, desc='Loading checkpoint shards'):
|
| 152 |
+
state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
|
| 153 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
| 154 |
+
# and also handle the case where it was already removed by another helper script
|
| 155 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
| 156 |
+
state_dicts.append(state_dict)
|
| 157 |
+
|
| 158 |
+
if ZERO_STAGE not in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
| 159 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
| 160 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
| 161 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
| 162 |
+
|
| 163 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
| 164 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
| 165 |
+
# use the max of the partition_count to get the dp world_size.
|
| 166 |
+
|
| 167 |
+
if type(world_size) is list:
|
| 168 |
+
world_size = max(world_size)
|
| 169 |
+
|
| 170 |
+
if world_size != total_files:
|
| 171 |
+
raise ValueError(
|
| 172 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
| 173 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
| 174 |
+
)
|
| 175 |
+
|
| 176 |
+
# the groups are named differently in each stage
|
| 177 |
+
if zero_stage <= 2:
|
| 178 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
| 179 |
+
elif zero_stage == 3:
|
| 180 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
| 181 |
+
else:
|
| 182 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
| 183 |
+
|
| 184 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
| 185 |
+
return zero_stage, world_size, fp32_flat_groups
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
| 189 |
+
"""
|
| 190 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
| 191 |
+
|
| 192 |
+
Args:
|
| 193 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
| 194 |
+
|
| 195 |
+
"""
|
| 196 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
| 197 |
+
|
| 198 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
| 199 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
| 200 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
| 201 |
+
|
| 202 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
| 203 |
+
|
| 204 |
+
zero_model_states = parse_model_states(model_files)
|
| 205 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
| 206 |
+
|
| 207 |
+
if zero_stage <= 2:
|
| 208 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 209 |
+
exclude_frozen_parameters)
|
| 210 |
+
elif zero_stage == 3:
|
| 211 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 212 |
+
exclude_frozen_parameters)
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
| 216 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 217 |
+
return
|
| 218 |
+
|
| 219 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 220 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
| 221 |
+
|
| 222 |
+
if debug:
|
| 223 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
| 224 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 225 |
+
|
| 226 |
+
wanted_params = len(frozen_param_shapes)
|
| 227 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 228 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
| 229 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 230 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 231 |
+
|
| 232 |
+
total_params = 0
|
| 233 |
+
total_numel = 0
|
| 234 |
+
for name, shape in frozen_param_shapes.items():
|
| 235 |
+
total_params += 1
|
| 236 |
+
unpartitioned_numel = shape.numel()
|
| 237 |
+
total_numel += unpartitioned_numel
|
| 238 |
+
|
| 239 |
+
state_dict[name] = frozen_param_fragments[name]
|
| 240 |
+
|
| 241 |
+
if debug:
|
| 242 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 243 |
+
|
| 244 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 245 |
+
|
| 246 |
+
|
| 247 |
+
def _has_callable(obj, fn):
|
| 248 |
+
attr = getattr(obj, fn, None)
|
| 249 |
+
return callable(attr)
|
| 250 |
+
|
| 251 |
+
|
| 252 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 253 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 254 |
+
|
| 255 |
+
# Reconstruction protocol:
|
| 256 |
+
#
|
| 257 |
+
# XXX: document this
|
| 258 |
+
|
| 259 |
+
if debug:
|
| 260 |
+
for i in range(world_size):
|
| 261 |
+
for j in range(len(fp32_flat_groups[0])):
|
| 262 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
| 263 |
+
|
| 264 |
+
# XXX: memory usage doubles here (zero2)
|
| 265 |
+
num_param_groups = len(fp32_flat_groups[0])
|
| 266 |
+
merged_single_partition_of_fp32_groups = []
|
| 267 |
+
for i in range(num_param_groups):
|
| 268 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
| 269 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
| 270 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
| 271 |
+
avail_numel = sum(
|
| 272 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
| 273 |
+
|
| 274 |
+
if debug:
|
| 275 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
| 276 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
| 277 |
+
# not asserting if there is a mismatch due to possible padding
|
| 278 |
+
print(f"Have {avail_numel} numels to process.")
|
| 279 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
| 280 |
+
|
| 281 |
+
# params
|
| 282 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 283 |
+
# out-of-core computing solution
|
| 284 |
+
total_numel = 0
|
| 285 |
+
total_params = 0
|
| 286 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
| 287 |
+
offset = 0
|
| 288 |
+
avail_numel = full_single_fp32_vector.numel()
|
| 289 |
+
for name, shape in shapes.items():
|
| 290 |
+
|
| 291 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
| 292 |
+
total_numel += unpartitioned_numel
|
| 293 |
+
total_params += 1
|
| 294 |
+
|
| 295 |
+
if debug:
|
| 296 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 297 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
| 298 |
+
offset += unpartitioned_numel
|
| 299 |
+
|
| 300 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
| 301 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
| 302 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
| 303 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
| 304 |
+
align_to = 2 * world_size
|
| 305 |
+
|
| 306 |
+
def zero2_align(x):
|
| 307 |
+
return align_to * math.ceil(x / align_to)
|
| 308 |
+
|
| 309 |
+
if debug:
|
| 310 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
| 311 |
+
|
| 312 |
+
offset = zero2_align(offset)
|
| 313 |
+
avail_numel = zero2_align(avail_numel)
|
| 314 |
+
|
| 315 |
+
if debug:
|
| 316 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
| 317 |
+
|
| 318 |
+
# Sanity check
|
| 319 |
+
if offset != avail_numel:
|
| 320 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 321 |
+
|
| 322 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
| 323 |
+
|
| 324 |
+
|
| 325 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 326 |
+
exclude_frozen_parameters):
|
| 327 |
+
state_dict = OrderedDict()
|
| 328 |
+
|
| 329 |
+
# buffers
|
| 330 |
+
buffers = zero_model_states[0].buffers
|
| 331 |
+
state_dict.update(buffers)
|
| 332 |
+
if debug:
|
| 333 |
+
print(f"added {len(buffers)} buffers")
|
| 334 |
+
|
| 335 |
+
if not exclude_frozen_parameters:
|
| 336 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
| 337 |
+
|
| 338 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 339 |
+
|
| 340 |
+
# recover shared parameters
|
| 341 |
+
for pair in zero_model_states[0].shared_params:
|
| 342 |
+
if pair[1] in state_dict:
|
| 343 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 344 |
+
|
| 345 |
+
return state_dict
|
| 346 |
+
|
| 347 |
+
|
| 348 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
| 349 |
+
remainder = unpartitioned_numel % world_size
|
| 350 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
| 351 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
| 352 |
+
return partitioned_numel, padding_numel
|
| 353 |
+
|
| 354 |
+
|
| 355 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
| 356 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 357 |
+
return
|
| 358 |
+
|
| 359 |
+
if debug:
|
| 360 |
+
for i in range(world_size):
|
| 361 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
| 362 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 363 |
+
|
| 364 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 365 |
+
wanted_params = len(frozen_param_shapes)
|
| 366 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 367 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
| 368 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 369 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 370 |
+
|
| 371 |
+
total_params = 0
|
| 372 |
+
total_numel = 0
|
| 373 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
| 374 |
+
total_params += 1
|
| 375 |
+
unpartitioned_numel = shape.numel()
|
| 376 |
+
total_numel += unpartitioned_numel
|
| 377 |
+
|
| 378 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
| 379 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 380 |
+
|
| 381 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 382 |
+
|
| 383 |
+
if debug:
|
| 384 |
+
print(
|
| 385 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 386 |
+
)
|
| 387 |
+
|
| 388 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 389 |
+
|
| 390 |
+
|
| 391 |
+
class GatheredTensor:
|
| 392 |
+
"""
|
| 393 |
+
A pseudo tensor that collects partitioned weights.
|
| 394 |
+
It is more memory efficient when there are multiple groups.
|
| 395 |
+
"""
|
| 396 |
+
|
| 397 |
+
def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
|
| 398 |
+
self.flat_groups = flat_groups
|
| 399 |
+
self.flat_groups_offset = flat_groups_offset
|
| 400 |
+
self.offset = offset
|
| 401 |
+
self.partitioned_numel = partitioned_numel
|
| 402 |
+
self.shape = shape
|
| 403 |
+
self.dtype = self.flat_groups[0][0].dtype
|
| 404 |
+
|
| 405 |
+
def contiguous(self):
|
| 406 |
+
"""
|
| 407 |
+
Merge partitioned weights from flat_groups into a single tensor.
|
| 408 |
+
"""
|
| 409 |
+
end_idx = self.offset + self.partitioned_numel
|
| 410 |
+
world_size = len(self.flat_groups)
|
| 411 |
+
pad_flat_param_chunks = []
|
| 412 |
+
|
| 413 |
+
for rank_i in range(world_size):
|
| 414 |
+
# for each rank, we need to collect weights from related group/groups
|
| 415 |
+
flat_groups_at_rank_i = self.flat_groups[rank_i]
|
| 416 |
+
start_group_id = None
|
| 417 |
+
end_group_id = None
|
| 418 |
+
for group_id in range(len(self.flat_groups_offset)):
|
| 419 |
+
if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
|
| 420 |
+
start_group_id = group_id
|
| 421 |
+
if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
|
| 422 |
+
end_group_id = group_id
|
| 423 |
+
break
|
| 424 |
+
# collect weights from related group/groups
|
| 425 |
+
for group_id in range(start_group_id, end_group_id + 1):
|
| 426 |
+
flat_tensor = flat_groups_at_rank_i[group_id]
|
| 427 |
+
start_offset = self.offset - self.flat_groups_offset[group_id]
|
| 428 |
+
end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
|
| 429 |
+
pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
|
| 430 |
+
|
| 431 |
+
# collect weights from all ranks
|
| 432 |
+
pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
|
| 433 |
+
param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
|
| 434 |
+
return param
|
| 435 |
+
|
| 436 |
+
|
| 437 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 438 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 439 |
+
avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
|
| 440 |
+
|
| 441 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
| 442 |
+
# param, re-consolidating each param, while dealing with padding if any
|
| 443 |
+
|
| 444 |
+
# merge list of dicts, preserving order
|
| 445 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
| 446 |
+
|
| 447 |
+
if debug:
|
| 448 |
+
for i in range(world_size):
|
| 449 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
| 450 |
+
|
| 451 |
+
wanted_params = len(param_shapes)
|
| 452 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
| 453 |
+
# not asserting if there is a mismatch due to possible padding
|
| 454 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 455 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
| 456 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
| 457 |
+
|
| 458 |
+
# params
|
| 459 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 460 |
+
# out-of-core computing solution
|
| 461 |
+
offset = 0
|
| 462 |
+
total_numel = 0
|
| 463 |
+
total_params = 0
|
| 464 |
+
flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
|
| 465 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
|
| 466 |
+
unpartitioned_numel = shape.numel()
|
| 467 |
+
total_numel += unpartitioned_numel
|
| 468 |
+
total_params += 1
|
| 469 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 470 |
+
|
| 471 |
+
if debug:
|
| 472 |
+
print(
|
| 473 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 474 |
+
)
|
| 475 |
+
|
| 476 |
+
# memory efficient tensor
|
| 477 |
+
tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
|
| 478 |
+
state_dict[name] = tensor
|
| 479 |
+
offset += partitioned_numel
|
| 480 |
+
|
| 481 |
+
offset *= world_size
|
| 482 |
+
|
| 483 |
+
# Sanity check
|
| 484 |
+
if offset != avail_numel:
|
| 485 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 486 |
+
|
| 487 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
| 488 |
+
|
| 489 |
+
|
| 490 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 491 |
+
exclude_frozen_parameters):
|
| 492 |
+
state_dict = OrderedDict()
|
| 493 |
+
|
| 494 |
+
# buffers
|
| 495 |
+
buffers = zero_model_states[0].buffers
|
| 496 |
+
state_dict.update(buffers)
|
| 497 |
+
if debug:
|
| 498 |
+
print(f"added {len(buffers)} buffers")
|
| 499 |
+
|
| 500 |
+
if not exclude_frozen_parameters:
|
| 501 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
| 502 |
+
|
| 503 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 504 |
+
|
| 505 |
+
# recover shared parameters
|
| 506 |
+
for pair in zero_model_states[0].shared_params:
|
| 507 |
+
if pair[1] in state_dict:
|
| 508 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 509 |
+
|
| 510 |
+
return state_dict
|
| 511 |
+
|
| 512 |
+
|
| 513 |
+
def to_torch_tensor(state_dict, return_empty_tensor=False):
|
| 514 |
+
"""
|
| 515 |
+
Convert state_dict of GatheredTensor to torch tensor
|
| 516 |
+
"""
|
| 517 |
+
torch_state_dict = {}
|
| 518 |
+
converted_tensors = {}
|
| 519 |
+
for name, tensor in state_dict.items():
|
| 520 |
+
tensor_id = id(tensor)
|
| 521 |
+
if tensor_id in converted_tensors: # shared tensors
|
| 522 |
+
shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
|
| 523 |
+
torch_state_dict[name] = shared_tensor
|
| 524 |
+
else:
|
| 525 |
+
converted_tensors[tensor_id] = name
|
| 526 |
+
if return_empty_tensor:
|
| 527 |
+
torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
|
| 528 |
+
else:
|
| 529 |
+
torch_state_dict[name] = tensor.contiguous()
|
| 530 |
+
return torch_state_dict
|
| 531 |
+
|
| 532 |
+
|
| 533 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
| 534 |
+
tag=None,
|
| 535 |
+
exclude_frozen_parameters=False,
|
| 536 |
+
lazy_mode=False):
|
| 537 |
+
"""
|
| 538 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
| 539 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
| 540 |
+
via a model hub.
|
| 541 |
+
|
| 542 |
+
Args:
|
| 543 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
| 544 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
| 545 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 546 |
+
- ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
|
| 547 |
+
Convert the pesduo tensor to torch tensor by ``.contiguous()``
|
| 548 |
+
|
| 549 |
+
Returns:
|
| 550 |
+
- pytorch ``state_dict``
|
| 551 |
+
|
| 552 |
+
A typical usage might be ::
|
| 553 |
+
|
| 554 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 555 |
+
# do the training and checkpoint saving
|
| 556 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
| 557 |
+
model = model.cpu() # move to cpu
|
| 558 |
+
model.load_state_dict(state_dict)
|
| 559 |
+
# submit to model hub or save the model to share with others
|
| 560 |
+
|
| 561 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
| 562 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 563 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 564 |
+
|
| 565 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
| 566 |
+
|
| 567 |
+
Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
|
| 568 |
+
You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
| 569 |
+
the checkpoint. Or you can load state_dict in lazy mode ::
|
| 570 |
+
|
| 571 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 572 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
|
| 573 |
+
for name, lazy_tensor in state_dict.item():
|
| 574 |
+
tensor = lazy_tensor.contiguous() # to cpu
|
| 575 |
+
print(name, tensor)
|
| 576 |
+
# del tensor to release memory if it no longer in use
|
| 577 |
+
"""
|
| 578 |
+
if tag is None:
|
| 579 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
| 580 |
+
if os.path.isfile(latest_path):
|
| 581 |
+
with open(latest_path, 'r') as fd:
|
| 582 |
+
tag = fd.read().strip()
|
| 583 |
+
else:
|
| 584 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
| 585 |
+
|
| 586 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
| 587 |
+
|
| 588 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
| 589 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
| 590 |
+
|
| 591 |
+
state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
| 592 |
+
if lazy_mode:
|
| 593 |
+
return state_dict
|
| 594 |
+
else:
|
| 595 |
+
return to_torch_tensor(state_dict)
|
| 596 |
+
|
| 597 |
+
|
| 598 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
| 599 |
+
output_dir,
|
| 600 |
+
max_shard_size="5GB",
|
| 601 |
+
safe_serialization=False,
|
| 602 |
+
tag=None,
|
| 603 |
+
exclude_frozen_parameters=False):
|
| 604 |
+
"""
|
| 605 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
| 606 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
| 607 |
+
|
| 608 |
+
Args:
|
| 609 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 610 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
| 611 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
| 612 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
| 613 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 614 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 615 |
+
"""
|
| 616 |
+
|
| 617 |
+
# Dependency pre-check
|
| 618 |
+
if safe_serialization:
|
| 619 |
+
try:
|
| 620 |
+
from safetensors.torch import save_file
|
| 621 |
+
except ImportError:
|
| 622 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
| 623 |
+
raise
|
| 624 |
+
if max_shard_size is not None:
|
| 625 |
+
try:
|
| 626 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
| 627 |
+
except ImportError:
|
| 628 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
| 629 |
+
raise
|
| 630 |
+
|
| 631 |
+
# Convert zero checkpoint to state_dict
|
| 632 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
| 633 |
+
tag,
|
| 634 |
+
exclude_frozen_parameters,
|
| 635 |
+
lazy_mode=True)
|
| 636 |
+
|
| 637 |
+
# Shard the model if it is too big.
|
| 638 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
| 639 |
+
if max_shard_size is not None:
|
| 640 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
| 641 |
+
# an memory-efficient approach for sharding
|
| 642 |
+
empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
|
| 643 |
+
state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
|
| 644 |
+
filename_pattern=filename_pattern,
|
| 645 |
+
max_shard_size=max_shard_size)
|
| 646 |
+
else:
|
| 647 |
+
from collections import namedtuple
|
| 648 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
| 649 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
| 650 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
| 651 |
+
|
| 652 |
+
# Save the model by shard
|
| 653 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 654 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
| 655 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
| 656 |
+
shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
|
| 657 |
+
shard_state_dict = to_torch_tensor(shard_state_dict)
|
| 658 |
+
output_path = os.path.join(output_dir, shard_file)
|
| 659 |
+
if safe_serialization:
|
| 660 |
+
save_file(shard_state_dict, output_path, metadata={"format": "pt"})
|
| 661 |
+
else:
|
| 662 |
+
torch.save(shard_state_dict, output_path)
|
| 663 |
+
# release the memory of current shard
|
| 664 |
+
for tensor_name in list(shard_state_dict.keys()):
|
| 665 |
+
del state_dict[tensor_name]
|
| 666 |
+
del shard_state_dict[tensor_name]
|
| 667 |
+
del shard_state_dict
|
| 668 |
+
gc.collect()
|
| 669 |
+
|
| 670 |
+
# Save index if sharded
|
| 671 |
+
if state_dict_split.is_sharded:
|
| 672 |
+
index = {
|
| 673 |
+
"metadata": state_dict_split.metadata,
|
| 674 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
| 675 |
+
}
|
| 676 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
| 677 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
| 678 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
| 679 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
| 680 |
+
f.write(content)
|
| 681 |
+
|
| 682 |
+
|
| 683 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
| 684 |
+
"""
|
| 685 |
+
1. Put the provided model to cpu
|
| 686 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
| 687 |
+
3. Load it into the provided model
|
| 688 |
+
|
| 689 |
+
Args:
|
| 690 |
+
- ``model``: the model object to update
|
| 691 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 692 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 693 |
+
|
| 694 |
+
Returns:
|
| 695 |
+
- ``model`: modified model
|
| 696 |
+
|
| 697 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
| 698 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
| 699 |
+
conveniently placed for you in the checkpoint folder.
|
| 700 |
+
|
| 701 |
+
A typical usage might be ::
|
| 702 |
+
|
| 703 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
| 704 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
| 705 |
+
# submit to model hub or save the model to share with others
|
| 706 |
+
|
| 707 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
| 708 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 709 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 710 |
+
|
| 711 |
+
"""
|
| 712 |
+
logger.info("Extracting fp32 weights")
|
| 713 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 714 |
+
|
| 715 |
+
logger.info("Overwriting model with fp32 weights")
|
| 716 |
+
model = model.cpu()
|
| 717 |
+
model.load_state_dict(state_dict, strict=False)
|
| 718 |
+
|
| 719 |
+
return model
|
| 720 |
+
|
| 721 |
+
|
| 722 |
+
if __name__ == "__main__":
|
| 723 |
+
parser = argparse.ArgumentParser()
|
| 724 |
+
parser.add_argument("checkpoint_dir",
|
| 725 |
+
type=str,
|
| 726 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
| 727 |
+
parser.add_argument("output_dir",
|
| 728 |
+
type=str,
|
| 729 |
+
help="directory to the pytorch fp32 state_dict output files"
|
| 730 |
+
"(e.g. path/checkpoint-12-output/)")
|
| 731 |
+
parser.add_argument(
|
| 732 |
+
"--max_shard_size",
|
| 733 |
+
type=str,
|
| 734 |
+
default="5GB",
|
| 735 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
| 736 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
| 737 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
| 738 |
+
"without CPU OOM issues.")
|
| 739 |
+
parser.add_argument(
|
| 740 |
+
"--safe_serialization",
|
| 741 |
+
default=False,
|
| 742 |
+
action='store_true',
|
| 743 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
| 744 |
+
parser.add_argument("-t",
|
| 745 |
+
"--tag",
|
| 746 |
+
type=str,
|
| 747 |
+
default=None,
|
| 748 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
| 749 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
| 750 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
| 751 |
+
args = parser.parse_args()
|
| 752 |
+
|
| 753 |
+
debug = args.debug
|
| 754 |
+
|
| 755 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
| 756 |
+
args.output_dir,
|
| 757 |
+
max_shard_size=args.max_shard_size,
|
| 758 |
+
safe_serialization=args.safe_serialization,
|
| 759 |
+
tag=args.tag,
|
| 760 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|