leeyunjai commited on
Commit
520d4e5
1 Parent(s): 4b8169e

Create position_encoding.py

Browse files
Files changed (1) hide show
  1. position_encoding.py +86 -0
position_encoding.py ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
2
+ import math
3
+ import torch
4
+ from torch import nn
5
+
6
+ from caption_project.utils import NestedTensor
7
+
8
+
9
+ class PositionEmbeddingSine(nn.Module):
10
+ """
11
+ This is a more standard version of the position embedding, very similar to the one
12
+ used by the Attention is all you need paper, generalized to work on images.
13
+ """
14
+ def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None):
15
+ super().__init__()
16
+ self.num_pos_feats = num_pos_feats
17
+ self.temperature = temperature
18
+ self.normalize = normalize
19
+ if scale is not None and normalize is False:
20
+ raise ValueError("normalize should be True if scale is passed")
21
+ if scale is None:
22
+ scale = 2 * math.pi
23
+ self.scale = scale
24
+
25
+ def forward(self, tensor_list: NestedTensor):
26
+ x = tensor_list.tensors
27
+ mask = tensor_list.mask
28
+ assert mask is not None
29
+ not_mask = ~mask
30
+ y_embed = not_mask.cumsum(1, dtype=torch.float32)
31
+ x_embed = not_mask.cumsum(2, dtype=torch.float32)
32
+ if self.normalize:
33
+ eps = 1e-6
34
+ y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
35
+ x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
36
+
37
+ dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
38
+ dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
39
+
40
+ pos_x = x_embed[:, :, :, None] / dim_t
41
+ pos_y = y_embed[:, :, :, None] / dim_t
42
+ pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3)
43
+ pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3)
44
+ pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
45
+ return pos
46
+
47
+
48
+ class PositionEmbeddingLearned(nn.Module):
49
+ """
50
+ Absolute pos embedding, learned.
51
+ """
52
+ def __init__(self, num_pos_feats=256):
53
+ super().__init__()
54
+ self.row_embed = nn.Embedding(50, num_pos_feats)
55
+ self.col_embed = nn.Embedding(50, num_pos_feats)
56
+ self.reset_parameters()
57
+
58
+ def reset_parameters(self):
59
+ nn.init.uniform_(self.row_embed.weight)
60
+ nn.init.uniform_(self.col_embed.weight)
61
+
62
+ def forward(self, tensor_list: NestedTensor):
63
+ x = tensor_list.tensors
64
+ h, w = x.shape[-2:]
65
+ i = torch.arange(w, device=x.device)
66
+ j = torch.arange(h, device=x.device)
67
+ x_emb = self.col_embed(i)
68
+ y_emb = self.row_embed(j)
69
+ pos = torch.cat([
70
+ x_emb.unsqueeze(0).repeat(h, 1, 1),
71
+ y_emb.unsqueeze(1).repeat(1, w, 1),
72
+ ], dim=-1).permute(2, 0, 1).unsqueeze(0).repeat(x.shape[0], 1, 1, 1)
73
+ return pos
74
+
75
+
76
+ def build_position_encoding(config):
77
+ N_steps = config.hidden_dim // 2
78
+ if config.position_embedding in ('v2', 'sine'):
79
+ # TODO find a better way of exposing other arguments
80
+ position_embedding = PositionEmbeddingSine(N_steps, normalize=True)
81
+ elif config.position_embedding in ('v3', 'learned'):
82
+ position_embedding = PositionEmbeddingLearned(N_steps)
83
+ else:
84
+ raise ValueError(f"not supported {config.position_embedding}")
85
+
86
+ return position_embedding