ledmands
commited on
Commit
·
df1cef8
1
Parent(s):
6723373
Modified get_config.py. Updated README. Added config file for most recent agent.
Browse files- README.md +4 -0
- agents/dqn_v2-8/config.json +105 -0
- get_config.py +4 -3
README.md
CHANGED
@@ -25,6 +25,10 @@ Does not save any evaluation information.
|
|
25 |
This will evaluate a specified agent and append the results to a specified log file.
|
26 |
### get_config.py
|
27 |
This will pull configuration information from the specified agent and save it in JSON format.
|
|
|
|
|
|
|
|
|
28 |
### record_video.py
|
29 |
This will record a video of a specified agent being evaluated.
|
30 |
Does not save any evaluation information.
|
|
|
25 |
This will evaluate a specified agent and append the results to a specified log file.
|
26 |
### get_config.py
|
27 |
This will pull configuration information from the specified agent and save it in JSON format.
|
28 |
+
The data is pulled from the data file in the agent's zip file and strips out the serialized data
|
29 |
+
to make the data more human-readable.
|
30 |
+
The default save file will save to the directory from which the command is run. Best practice is
|
31 |
+
to save the file to the agent's directory.
|
32 |
### record_video.py
|
33 |
This will record a video of a specified agent being evaluated.
|
34 |
Does not save any evaluation information.
|
agents/dqn_v2-8/config.json
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
"__module__": "stable_baselines3.dqn.policies",
|
5 |
+
"__doc__": "\n Policy class for DQN when using images as input.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
6 |
+
"__init__": "<function CnnPolicy.__init__ at 0x7d6123a05cf0>",
|
7 |
+
"__abstractmethods__": "frozenset()",
|
8 |
+
"_abc_impl": "<_abc._abc_data object at 0x7d6123a18580>"
|
9 |
+
},
|
10 |
+
"verbose": 1,
|
11 |
+
"policy_kwargs": {},
|
12 |
+
"num_timesteps": 10000000,
|
13 |
+
"_total_timesteps": 10000000,
|
14 |
+
"_num_timesteps_at_start": 9000000,
|
15 |
+
"seed": null,
|
16 |
+
"action_noise": null,
|
17 |
+
"start_time": 1715963247524276127,
|
18 |
+
"learning_rate": 5e-05,
|
19 |
+
"tensorboard_log": "./",
|
20 |
+
"_last_obs": {
|
21 |
+
":type:": "<class 'numpy.ndarray'>"
|
22 |
+
},
|
23 |
+
"_last_episode_starts": {
|
24 |
+
":type:": "<class 'numpy.ndarray'>"
|
25 |
+
},
|
26 |
+
"_last_original_obs": {
|
27 |
+
":type:": "<class 'numpy.ndarray'>"
|
28 |
+
},
|
29 |
+
"_episode_num": 8626,
|
30 |
+
"use_sde": false,
|
31 |
+
"sde_sample_freq": -1,
|
32 |
+
"_current_progress_remaining": 0.0,
|
33 |
+
"_stats_window_size": 100,
|
34 |
+
"ep_info_buffer": {
|
35 |
+
":type:": "<class 'collections.deque'>"
|
36 |
+
},
|
37 |
+
"ep_success_buffer": {
|
38 |
+
":type:": "<class 'collections.deque'>"
|
39 |
+
},
|
40 |
+
"_n_updates": 2487500,
|
41 |
+
"observation_space": {
|
42 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
43 |
+
"dtype": "uint8",
|
44 |
+
"bounded_below": "[[[ True True True ... True True True]\n [ True True True ... True True True]\n [ True True True ... True True True]\n ...\n [ True True True ... True True True]\n [ True True True ... True True True]\n [ True True True ... True True True]]\n\n [[ True True True ... True True True]\n [ True True True ... True True True]\n [ True True True ... True True True]\n ...\n [ True True True ... True True True]\n [ True True True ... True True True]\n [ True True True ... True True True]]\n\n [[ True True True ... True True True]\n [ True True True ... True True True]\n [ True True True ... True True True]\n ...\n [ True True True ... True True True]\n [ True True True ... True True True]\n [ True True True ... True True True]]]",
|
45 |
+
"bounded_above": "[[[ True True True ... True True True]\n [ True True True ... True True True]\n [ True True True ... True True True]\n ...\n [ True True True ... True True True]\n [ True True True ... True True True]\n [ True True True ... True True True]]\n\n [[ True True True ... True True True]\n [ True True True ... True True True]\n [ True True True ... True True True]\n ...\n [ True True True ... True True True]\n [ True True True ... True True True]\n [ True True True ... True True True]]\n\n [[ True True True ... True True True]\n [ True True True ... True True True]\n [ True True True ... True True True]\n ...\n [ True True True ... True True True]\n [ True True True ... True True True]\n [ True True True ... True True True]]]",
|
46 |
+
"_shape": [
|
47 |
+
3,
|
48 |
+
250,
|
49 |
+
160
|
50 |
+
],
|
51 |
+
"low": "[[[0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n ...\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]]\n\n [[0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n ...\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]]\n\n [[0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n ...\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]]]",
|
52 |
+
"high": "[[[255 255 255 ... 255 255 255]\n [255 255 255 ... 255 255 255]\n [255 255 255 ... 255 255 255]\n ...\n [255 255 255 ... 255 255 255]\n [255 255 255 ... 255 255 255]\n [255 255 255 ... 255 255 255]]\n\n [[255 255 255 ... 255 255 255]\n [255 255 255 ... 255 255 255]\n [255 255 255 ... 255 255 255]\n ...\n [255 255 255 ... 255 255 255]\n [255 255 255 ... 255 255 255]\n [255 255 255 ... 255 255 255]]\n\n [[255 255 255 ... 255 255 255]\n [255 255 255 ... 255 255 255]\n [255 255 255 ... 255 255 255]\n ...\n [255 255 255 ... 255 255 255]\n [255 255 255 ... 255 255 255]\n [255 255 255 ... 255 255 255]]]",
|
53 |
+
"low_repr": "0",
|
54 |
+
"high_repr": "255",
|
55 |
+
"_np_random": "Generator(PCG64)"
|
56 |
+
},
|
57 |
+
"action_space": {
|
58 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
59 |
+
"n": "5",
|
60 |
+
"start": "0",
|
61 |
+
"_shape": [],
|
62 |
+
"dtype": "int64",
|
63 |
+
"_np_random": "Generator(PCG64)"
|
64 |
+
},
|
65 |
+
"n_envs": 1,
|
66 |
+
"buffer_size": 70000,
|
67 |
+
"batch_size": 64,
|
68 |
+
"learning_starts": 100000,
|
69 |
+
"tau": 1.0,
|
70 |
+
"gamma": 0.999,
|
71 |
+
"gradient_steps": 1,
|
72 |
+
"optimize_memory_usage": false,
|
73 |
+
"replay_buffer_class": {
|
74 |
+
":type:": "<class 'abc.ABCMeta'>",
|
75 |
+
"__module__": "stable_baselines3.common.buffers",
|
76 |
+
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
77 |
+
"__init__": "<function ReplayBuffer.__init__ at 0x7d61239e1cf0>",
|
78 |
+
"add": "<function ReplayBuffer.add at 0x7d61239e1d80>",
|
79 |
+
"sample": "<function ReplayBuffer.sample at 0x7d61239e1e10>",
|
80 |
+
"_get_samples": "<function ReplayBuffer._get_samples at 0x7d61239e1ea0>",
|
81 |
+
"_maybe_cast_dtype": "<staticmethod(<function ReplayBuffer._maybe_cast_dtype at 0x7d61239e1f30>)>",
|
82 |
+
"__abstractmethods__": "frozenset()",
|
83 |
+
"_abc_impl": "<_abc._abc_data object at 0x7d61239e61c0>"
|
84 |
+
},
|
85 |
+
"replay_buffer_kwargs": {},
|
86 |
+
"train_freq": {
|
87 |
+
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>"
|
88 |
+
},
|
89 |
+
"use_sde_at_warmup": false,
|
90 |
+
"exploration_initial_eps": 1.0,
|
91 |
+
"exploration_final_eps": 0.005,
|
92 |
+
"exploration_fraction": 0.3,
|
93 |
+
"target_update_interval": 1000,
|
94 |
+
"_n_calls": 10000000,
|
95 |
+
"max_grad_norm": 10,
|
96 |
+
"exploration_rate": 0.005,
|
97 |
+
"lr_schedule": {
|
98 |
+
":type:": "<class 'function'>"
|
99 |
+
},
|
100 |
+
"batch_norm_stats": [],
|
101 |
+
"batch_norm_stats_target": [],
|
102 |
+
"exploration_schedule": {
|
103 |
+
":type:": "<class 'function'>"
|
104 |
+
}
|
105 |
+
}
|
get_config.py
CHANGED
@@ -22,8 +22,9 @@ for key in json_file.keys():
|
|
22 |
if val_to_remove in json_file[key].keys():
|
23 |
json_file[key].pop(val_to_remove)
|
24 |
|
25 |
-
outfile = open(f"{savefile}.json", "w")
|
26 |
-
|
|
|
27 |
|
28 |
file.close()
|
29 |
-
outfile.close()
|
|
|
22 |
if val_to_remove in json_file[key].keys():
|
23 |
json_file[key].pop(val_to_remove)
|
24 |
|
25 |
+
# outfile = open(f"{savefile}.json", "w")
|
26 |
+
with open(f"{savefile}.json", "w") as outfile:
|
27 |
+
outfile.write(json.dumps(json_file, indent=2))
|
28 |
|
29 |
file.close()
|
30 |
+
# outfile.close()
|