ledmands commited on
Commit
94c3490
·
1 Parent(s): acd0718

Began work on plotting improvements between training runs

Browse files
agents/plot_evaluations.py → plot_evaluations.py RENAMED
File without changes
plot_improvement.py ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ from numpy import load, ndarray
3
+
4
+ parser = argparse.ArgumentParser()
5
+ parser.add_argument("-f", "--filepath", required=True, help="Specify the file path to the agent.", type=str)
6
+ args = parser.parse_args()
7
+
8
+ filepath = args.filepath
9
+ npdata = load(filepath)
10
+
11
+ print(type(npdata['results']))
12
+ evaluations = ndarray.tolist(npdata['results'])
13
+ print(type(evaluations))
14
+ print(len(evaluations))
15
+ # print(evaluations)
16
+ sorted_evals = []
17
+ for eval in evaluations:
18
+ sorted_evals.append(sorted(eval))
19
+
20
+ # Now I have a sorted list.
21
+ # Now just pop the first and last elements of each eval
22
+ for eval in sorted_evals:
23
+ eval.pop(0)
24
+ eval.pop()
25
+
26
+ print()
27
+ # print(sorted_evals)
28
+
29
+ # Now that I have my sorted evaluations, I can calculate the mean episode reward for each eval
30
+ mean_eval_rewards = []
31
+ for eval in sorted_evals:
32
+ mean_eval_rewards.append(sum(eval) / len(eval))
33
+
34
+ # Now I should have a list with the mean evaluation reward with the highest and lowest score tossed out
35
+ print(mean_eval_rewards)
36
+ print("num evals: " + str(len(mean_eval_rewards)))
37
+
38
+ # I'm dealing with a 2D array. Each element contains an array of ten data points
39
+ # The number of elements is going to vary for each training run
40
+ # The number of evaluation episodes will be constant, 10.
41
+ # I need to convert to a regular list first
42
+ # I could iterate over each element