ALE-Pacman-v5 / agents /version_2 /watch_agent.py
ledmands
Modified watch_agent.py to include ability to give an argument to adjust repeat action probability.
c37ff18
raw
history blame
1.07 kB
from stable_baselines3 import DQN
from stable_baselines3.common.evaluation import evaluate_policy
from stable_baselines3.common.monitor import Monitor
import gymnasium as gym
import argparse
# This script should have some options
# 1. Turn off the stochasticity as determined by the ALEv5
# Even if deterministic is set to true in evaluate policy, the environment will ignore this 25% of the time
# To compensate for this, we can set the repeat action probability to 0
parser = argparse.ArgumentParser()
parser.add_argument("-r", "--repeat_action_probability", help="repeat action probability", type=float, default=0.25)
args = parser.parse_args()
MODEL_NAME = "ALE-Pacman-v5"
rpt_act_prob = args.repeat_action_probability
loaded_model = DQN.load(MODEL_NAME)
# Retrieve the environment
eval_env = Monitor(gym.make("ALE/Pacman-v5", render_mode="rgb_array", repeat_action_probability=rpt_act_prob))
# Evaluate the policy
mean_rwd, std_rwd = evaluate_policy(loaded_model.policy, eval_env, n_eval_episodes=1)
print("mean rwd: ", mean_rwd)
print("std rwd: ", std_rwd)