lealdaniel commited on
Commit
cb59614
·
verified ·
1 Parent(s): caaadd4

Upload 11 files

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,561 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:5005
8
+ - loss:MultipleNegativesRankingLoss
9
+ base_model: sentence-transformers/all-mpnet-base-v2
10
+ widget:
11
+ - source_sentence: especialista de risco e prevenção a fraudes​
12
+ sentences:
13
+ - risk & compliance
14
+ - internal communication
15
+ - accounting
16
+ - source_sentence: coord integracao do cliente ii
17
+ sentences:
18
+ - strategic planning
19
+ - customer experience
20
+ - não encontrado (adicione nas observações)
21
+ - source_sentence: gerente sr. marketing e performance
22
+ sentences:
23
+ - business operations
24
+ - d&i
25
+ - performance marketing
26
+ - source_sentence: gerente executivo de operacoes
27
+ sentences:
28
+ - business operations
29
+ - sdr
30
+ - product management
31
+ - source_sentence: sr designer
32
+ sentences:
33
+ - product design
34
+ - talent acquisition
35
+ - lawyer
36
+ pipeline_tag: sentence-similarity
37
+ library_name: sentence-transformers
38
+ metrics:
39
+ - cosine_accuracy@1
40
+ - cosine_accuracy@3
41
+ - cosine_accuracy@5
42
+ - cosine_accuracy@10
43
+ - cosine_precision@1
44
+ - cosine_precision@3
45
+ - cosine_precision@5
46
+ - cosine_precision@10
47
+ - cosine_recall@1
48
+ - cosine_recall@3
49
+ - cosine_recall@5
50
+ - cosine_recall@10
51
+ - cosine_ndcg@10
52
+ - cosine_mrr@10
53
+ - cosine_map@100
54
+ - dot_accuracy@1
55
+ - dot_accuracy@3
56
+ - dot_accuracy@5
57
+ - dot_accuracy@10
58
+ - dot_precision@1
59
+ - dot_precision@3
60
+ - dot_precision@5
61
+ - dot_precision@10
62
+ - dot_recall@1
63
+ - dot_recall@3
64
+ - dot_recall@5
65
+ - dot_recall@10
66
+ - dot_ndcg@10
67
+ - dot_mrr@10
68
+ - dot_map@100
69
+ model-index:
70
+ - name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
71
+ results:
72
+ - task:
73
+ type: information-retrieval
74
+ name: Information Retrieval
75
+ dataset:
76
+ name: Unknown
77
+ type: unknown
78
+ metrics:
79
+ - type: cosine_accuracy@1
80
+ value: 0.6245583038869258
81
+ name: Cosine Accuracy@1
82
+ - type: cosine_accuracy@3
83
+ value: 0.8206713780918727
84
+ name: Cosine Accuracy@3
85
+ - type: cosine_accuracy@5
86
+ value: 0.8754416961130742
87
+ name: Cosine Accuracy@5
88
+ - type: cosine_accuracy@10
89
+ value: 0.926678445229682
90
+ name: Cosine Accuracy@10
91
+ - type: cosine_precision@1
92
+ value: 0.6245583038869258
93
+ name: Cosine Precision@1
94
+ - type: cosine_precision@3
95
+ value: 0.2735571260306242
96
+ name: Cosine Precision@3
97
+ - type: cosine_precision@5
98
+ value: 0.17508833922261482
99
+ name: Cosine Precision@5
100
+ - type: cosine_precision@10
101
+ value: 0.0926678445229682
102
+ name: Cosine Precision@10
103
+ - type: cosine_recall@1
104
+ value: 0.6245583038869258
105
+ name: Cosine Recall@1
106
+ - type: cosine_recall@3
107
+ value: 0.8206713780918727
108
+ name: Cosine Recall@3
109
+ - type: cosine_recall@5
110
+ value: 0.8754416961130742
111
+ name: Cosine Recall@5
112
+ - type: cosine_recall@10
113
+ value: 0.926678445229682
114
+ name: Cosine Recall@10
115
+ - type: cosine_ndcg@10
116
+ value: 0.7790196193570564
117
+ name: Cosine Ndcg@10
118
+ - type: cosine_mrr@10
119
+ value: 0.7312496494475299
120
+ name: Cosine Mrr@10
121
+ - type: cosine_map@100
122
+ value: 0.7347864977321262
123
+ name: Cosine Map@100
124
+ - type: dot_accuracy@1
125
+ value: 0.6245583038869258
126
+ name: Dot Accuracy@1
127
+ - type: dot_accuracy@3
128
+ value: 0.8206713780918727
129
+ name: Dot Accuracy@3
130
+ - type: dot_accuracy@5
131
+ value: 0.8754416961130742
132
+ name: Dot Accuracy@5
133
+ - type: dot_accuracy@10
134
+ value: 0.926678445229682
135
+ name: Dot Accuracy@10
136
+ - type: dot_precision@1
137
+ value: 0.6245583038869258
138
+ name: Dot Precision@1
139
+ - type: dot_precision@3
140
+ value: 0.2735571260306242
141
+ name: Dot Precision@3
142
+ - type: dot_precision@5
143
+ value: 0.17508833922261482
144
+ name: Dot Precision@5
145
+ - type: dot_precision@10
146
+ value: 0.0926678445229682
147
+ name: Dot Precision@10
148
+ - type: dot_recall@1
149
+ value: 0.6245583038869258
150
+ name: Dot Recall@1
151
+ - type: dot_recall@3
152
+ value: 0.8206713780918727
153
+ name: Dot Recall@3
154
+ - type: dot_recall@5
155
+ value: 0.8754416961130742
156
+ name: Dot Recall@5
157
+ - type: dot_recall@10
158
+ value: 0.926678445229682
159
+ name: Dot Recall@10
160
+ - type: dot_ndcg@10
161
+ value: 0.7790196193570564
162
+ name: Dot Ndcg@10
163
+ - type: dot_mrr@10
164
+ value: 0.7312496494475299
165
+ name: Dot Mrr@10
166
+ - type: dot_map@100
167
+ value: 0.7347864977321262
168
+ name: Dot Map@100
169
+ ---
170
+
171
+ # SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
172
+
173
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
174
+
175
+ ## Model Details
176
+
177
+ ### Model Description
178
+ - **Model Type:** Sentence Transformer
179
+ - **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) <!-- at revision 9a3225965996d404b775526de6dbfe85d3368642 -->
180
+ - **Maximum Sequence Length:** 384 tokens
181
+ - **Output Dimensionality:** 768 tokens
182
+ - **Similarity Function:** Cosine Similarity
183
+ <!-- - **Training Dataset:** Unknown -->
184
+ <!-- - **Language:** Unknown -->
185
+ <!-- - **License:** Unknown -->
186
+
187
+ ### Model Sources
188
+
189
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
190
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
191
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
192
+
193
+ ### Full Model Architecture
194
+
195
+ ```
196
+ SentenceTransformer(
197
+ (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
198
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
199
+ (2): Normalize()
200
+ )
201
+ ```
202
+
203
+ ## Usage
204
+
205
+ ### Direct Usage (Sentence Transformers)
206
+
207
+ First install the Sentence Transformers library:
208
+
209
+ ```bash
210
+ pip install -U sentence-transformers
211
+ ```
212
+
213
+ Then you can load this model and run inference.
214
+ ```python
215
+ from sentence_transformers import SentenceTransformer
216
+
217
+ # Download from the 🤗 Hub
218
+ model = SentenceTransformer("sentence_transformers_model_id")
219
+ # Run inference
220
+ sentences = [
221
+ 'sr designer',
222
+ 'product design',
223
+ 'talent acquisition',
224
+ ]
225
+ embeddings = model.encode(sentences)
226
+ print(embeddings.shape)
227
+ # [3, 768]
228
+
229
+ # Get the similarity scores for the embeddings
230
+ similarities = model.similarity(embeddings, embeddings)
231
+ print(similarities.shape)
232
+ # [3, 3]
233
+ ```
234
+
235
+ <!--
236
+ ### Direct Usage (Transformers)
237
+
238
+ <details><summary>Click to see the direct usage in Transformers</summary>
239
+
240
+ </details>
241
+ -->
242
+
243
+ <!--
244
+ ### Downstream Usage (Sentence Transformers)
245
+
246
+ You can finetune this model on your own dataset.
247
+
248
+ <details><summary>Click to expand</summary>
249
+
250
+ </details>
251
+ -->
252
+
253
+ <!--
254
+ ### Out-of-Scope Use
255
+
256
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
257
+ -->
258
+
259
+ ## Evaluation
260
+
261
+ ### Metrics
262
+
263
+ #### Information Retrieval
264
+
265
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
266
+
267
+ | Metric | Value |
268
+ |:--------------------|:-----------|
269
+ | cosine_accuracy@1 | 0.6246 |
270
+ | cosine_accuracy@3 | 0.8207 |
271
+ | cosine_accuracy@5 | 0.8754 |
272
+ | cosine_accuracy@10 | 0.9267 |
273
+ | cosine_precision@1 | 0.6246 |
274
+ | cosine_precision@3 | 0.2736 |
275
+ | cosine_precision@5 | 0.1751 |
276
+ | cosine_precision@10 | 0.0927 |
277
+ | cosine_recall@1 | 0.6246 |
278
+ | cosine_recall@3 | 0.8207 |
279
+ | cosine_recall@5 | 0.8754 |
280
+ | cosine_recall@10 | 0.9267 |
281
+ | cosine_ndcg@10 | 0.779 |
282
+ | cosine_mrr@10 | 0.7312 |
283
+ | **cosine_map@100** | **0.7348** |
284
+ | dot_accuracy@1 | 0.6246 |
285
+ | dot_accuracy@3 | 0.8207 |
286
+ | dot_accuracy@5 | 0.8754 |
287
+ | dot_accuracy@10 | 0.9267 |
288
+ | dot_precision@1 | 0.6246 |
289
+ | dot_precision@3 | 0.2736 |
290
+ | dot_precision@5 | 0.1751 |
291
+ | dot_precision@10 | 0.0927 |
292
+ | dot_recall@1 | 0.6246 |
293
+ | dot_recall@3 | 0.8207 |
294
+ | dot_recall@5 | 0.8754 |
295
+ | dot_recall@10 | 0.9267 |
296
+ | dot_ndcg@10 | 0.779 |
297
+ | dot_mrr@10 | 0.7312 |
298
+ | dot_map@100 | 0.7348 |
299
+
300
+ <!--
301
+ ## Bias, Risks and Limitations
302
+
303
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
304
+ -->
305
+
306
+ <!--
307
+ ### Recommendations
308
+
309
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
310
+ -->
311
+
312
+ ## Training Details
313
+
314
+ ### Training Dataset
315
+
316
+ #### Unnamed Dataset
317
+
318
+
319
+ * Size: 5,005 training samples
320
+ * Columns: <code>input</code> and <code>output</code>
321
+ * Approximate statistics based on the first 1000 samples:
322
+ | | input | output |
323
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
324
+ | type | string | string |
325
+ | details | <ul><li>min: 3 tokens</li><li>mean: 8.83 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 7.21 tokens</li><li>max: 18 tokens</li></ul> |
326
+ * Samples:
327
+ | input | output |
328
+ |:--------------------------------------------|:-------------------------------------------------------|
329
+ | <code>fresador mecanico ii</code> | <code>não encontrado (adicione nas observações)</code> |
330
+ | <code>analista de sistemas ui ux iii</code> | <code>product design</code> |
331
+ | <code>devops</code> | <code>devops engineering</code> |
332
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
333
+ ```json
334
+ {
335
+ "scale": 20.0,
336
+ "similarity_fct": "cos_sim"
337
+ }
338
+ ```
339
+
340
+ ### Evaluation Dataset
341
+
342
+ #### Unnamed Dataset
343
+
344
+
345
+ * Size: 1,132 evaluation samples
346
+ * Columns: <code>input</code> and <code>output</code>
347
+ * Approximate statistics based on the first 1000 samples:
348
+ | | input | output |
349
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
350
+ | type | string | string |
351
+ | details | <ul><li>min: 3 tokens</li><li>mean: 8.76 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 7.08 tokens</li><li>max: 18 tokens</li></ul> |
352
+ * Samples:
353
+ | input | output |
354
+ |:-----------------------------------------|:-------------------------------------------------------|
355
+ | <code>produtor (a) de video pleno</code> | <code>não encontrado (adicione nas observações)</code> |
356
+ | <code>ai staff software engineer</code> | <code>software engineering</code> |
357
+ | <code>montador digital i</code> | <code>não encontrado (adicione nas observações)</code> |
358
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
359
+ ```json
360
+ {
361
+ "scale": 20.0,
362
+ "similarity_fct": "cos_sim"
363
+ }
364
+ ```
365
+
366
+ ### Training Hyperparameters
367
+ #### Non-Default Hyperparameters
368
+
369
+ - `eval_strategy`: steps
370
+ - `warmup_ratio`: 0.1
371
+
372
+ #### All Hyperparameters
373
+ <details><summary>Click to expand</summary>
374
+
375
+ - `overwrite_output_dir`: False
376
+ - `do_predict`: False
377
+ - `eval_strategy`: steps
378
+ - `prediction_loss_only`: True
379
+ - `per_device_train_batch_size`: 8
380
+ - `per_device_eval_batch_size`: 8
381
+ - `per_gpu_train_batch_size`: None
382
+ - `per_gpu_eval_batch_size`: None
383
+ - `gradient_accumulation_steps`: 1
384
+ - `eval_accumulation_steps`: None
385
+ - `torch_empty_cache_steps`: None
386
+ - `learning_rate`: 5e-05
387
+ - `weight_decay`: 0.0
388
+ - `adam_beta1`: 0.9
389
+ - `adam_beta2`: 0.999
390
+ - `adam_epsilon`: 1e-08
391
+ - `max_grad_norm`: 1.0
392
+ - `num_train_epochs`: 3.0
393
+ - `max_steps`: -1
394
+ - `lr_scheduler_type`: linear
395
+ - `lr_scheduler_kwargs`: {}
396
+ - `warmup_ratio`: 0.1
397
+ - `warmup_steps`: 0
398
+ - `log_level`: passive
399
+ - `log_level_replica`: warning
400
+ - `log_on_each_node`: True
401
+ - `logging_nan_inf_filter`: True
402
+ - `save_safetensors`: True
403
+ - `save_on_each_node`: False
404
+ - `save_only_model`: False
405
+ - `restore_callback_states_from_checkpoint`: False
406
+ - `no_cuda`: False
407
+ - `use_cpu`: False
408
+ - `use_mps_device`: False
409
+ - `seed`: 42
410
+ - `data_seed`: None
411
+ - `jit_mode_eval`: False
412
+ - `use_ipex`: False
413
+ - `bf16`: False
414
+ - `fp16`: False
415
+ - `fp16_opt_level`: O1
416
+ - `half_precision_backend`: auto
417
+ - `bf16_full_eval`: False
418
+ - `fp16_full_eval`: False
419
+ - `tf32`: None
420
+ - `local_rank`: 0
421
+ - `ddp_backend`: None
422
+ - `tpu_num_cores`: None
423
+ - `tpu_metrics_debug`: False
424
+ - `debug`: []
425
+ - `dataloader_drop_last`: False
426
+ - `dataloader_num_workers`: 0
427
+ - `dataloader_prefetch_factor`: None
428
+ - `past_index`: -1
429
+ - `disable_tqdm`: False
430
+ - `remove_unused_columns`: True
431
+ - `label_names`: None
432
+ - `load_best_model_at_end`: False
433
+ - `ignore_data_skip`: False
434
+ - `fsdp`: []
435
+ - `fsdp_min_num_params`: 0
436
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
437
+ - `fsdp_transformer_layer_cls_to_wrap`: None
438
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
439
+ - `deepspeed`: None
440
+ - `label_smoothing_factor`: 0.0
441
+ - `optim`: adamw_torch
442
+ - `optim_args`: None
443
+ - `adafactor`: False
444
+ - `group_by_length`: False
445
+ - `length_column_name`: length
446
+ - `ddp_find_unused_parameters`: None
447
+ - `ddp_bucket_cap_mb`: None
448
+ - `ddp_broadcast_buffers`: False
449
+ - `dataloader_pin_memory`: True
450
+ - `dataloader_persistent_workers`: False
451
+ - `skip_memory_metrics`: True
452
+ - `use_legacy_prediction_loop`: False
453
+ - `push_to_hub`: False
454
+ - `resume_from_checkpoint`: None
455
+ - `hub_model_id`: None
456
+ - `hub_strategy`: every_save
457
+ - `hub_private_repo`: False
458
+ - `hub_always_push`: False
459
+ - `gradient_checkpointing`: False
460
+ - `gradient_checkpointing_kwargs`: None
461
+ - `include_inputs_for_metrics`: False
462
+ - `eval_do_concat_batches`: True
463
+ - `fp16_backend`: auto
464
+ - `push_to_hub_model_id`: None
465
+ - `push_to_hub_organization`: None
466
+ - `mp_parameters`:
467
+ - `auto_find_batch_size`: False
468
+ - `full_determinism`: False
469
+ - `torchdynamo`: None
470
+ - `ray_scope`: last
471
+ - `ddp_timeout`: 1800
472
+ - `torch_compile`: False
473
+ - `torch_compile_backend`: None
474
+ - `torch_compile_mode`: None
475
+ - `dispatch_batches`: None
476
+ - `split_batches`: None
477
+ - `include_tokens_per_second`: False
478
+ - `include_num_input_tokens_seen`: False
479
+ - `neftune_noise_alpha`: None
480
+ - `optim_target_modules`: None
481
+ - `batch_eval_metrics`: False
482
+ - `eval_on_start`: False
483
+ - `use_liger_kernel`: False
484
+ - `eval_use_gather_object`: False
485
+ - `batch_sampler`: batch_sampler
486
+ - `multi_dataset_batch_sampler`: proportional
487
+
488
+ </details>
489
+
490
+ ### Training Logs
491
+ | Epoch | Step | Training Loss | loss | cosine_map@100 |
492
+ |:------:|:----:|:-------------:|:------:|:--------------:|
493
+ | 0 | 0 | - | - | 0.3578 |
494
+ | 0.3195 | 200 | - | 0.9975 | 0.5035 |
495
+ | 0.6390 | 400 | - | 0.8471 | 0.5845 |
496
+ | 0.7987 | 500 | 1.0355 | - | - |
497
+ | 0.9585 | 600 | - | 0.7569 | 0.6157 |
498
+ | 1.2780 | 800 | - | 0.7542 | 0.6565 |
499
+ | 1.5974 | 1000 | 0.648 | 0.6835 | 0.6786 |
500
+ | 1.9169 | 1200 | - | 0.6569 | 0.6851 |
501
+ | 2.2364 | 1400 | - | 0.6480 | 0.7167 |
502
+ | 2.3962 | 1500 | 0.5253 | - | - |
503
+ | 2.5559 | 1600 | - | 0.6506 | 0.7110 |
504
+ | 2.8754 | 1800 | - | 0.6391 | 0.7348 |
505
+
506
+
507
+ ### Framework Versions
508
+ - Python: 3.11.6
509
+ - Sentence Transformers: 3.1.1
510
+ - Transformers: 4.45.2
511
+ - PyTorch: 2.5.1+cu124
512
+ - Accelerate: 1.1.1
513
+ - Datasets: 2.14.4
514
+ - Tokenizers: 0.20.3
515
+
516
+ ## Citation
517
+
518
+ ### BibTeX
519
+
520
+ #### Sentence Transformers
521
+ ```bibtex
522
+ @inproceedings{reimers-2019-sentence-bert,
523
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
524
+ author = "Reimers, Nils and Gurevych, Iryna",
525
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
526
+ month = "11",
527
+ year = "2019",
528
+ publisher = "Association for Computational Linguistics",
529
+ url = "https://arxiv.org/abs/1908.10084",
530
+ }
531
+ ```
532
+
533
+ #### MultipleNegativesRankingLoss
534
+ ```bibtex
535
+ @misc{henderson2017efficient,
536
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
537
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
538
+ year={2017},
539
+ eprint={1705.00652},
540
+ archivePrefix={arXiv},
541
+ primaryClass={cs.CL}
542
+ }
543
+ ```
544
+
545
+ <!--
546
+ ## Glossary
547
+
548
+ *Clearly define terms in order to be accessible across audiences.*
549
+ -->
550
+
551
+ <!--
552
+ ## Model Card Authors
553
+
554
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
555
+ -->
556
+
557
+ <!--
558
+ ## Model Card Contact
559
+
560
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
561
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-mpnet-base-v2",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.45.2",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.45.2",
5
+ "pytorch": "2.5.1+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b5855a55cd3835eec991b1c6b1d902581ed783c5a6ac097472f3296a3e642cc6
3
+ size 437967672
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 384,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[UNK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "30526": {
44
+ "content": "<mask>",
45
+ "lstrip": true,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "bos_token": "<s>",
53
+ "clean_up_tokenization_spaces": false,
54
+ "cls_token": "<s>",
55
+ "do_lower_case": true,
56
+ "eos_token": "</s>",
57
+ "mask_token": "<mask>",
58
+ "max_length": 128,
59
+ "model_max_length": 384,
60
+ "pad_to_multiple_of": null,
61
+ "pad_token": "<pad>",
62
+ "pad_token_type_id": 0,
63
+ "padding_side": "right",
64
+ "sep_token": "</s>",
65
+ "stride": 0,
66
+ "strip_accents": null,
67
+ "tokenize_chinese_chars": true,
68
+ "tokenizer_class": "MPNetTokenizer",
69
+ "truncation_side": "right",
70
+ "truncation_strategy": "longest_first",
71
+ "unk_token": "[UNK]"
72
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff