ldaquan1996 commited on
Commit
f695fb3
1 Parent(s): 2980abb

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -2.45 +/- 0.59
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9d5679d82f09390e6fa1f935b6ce322dbf99890557f6e72d8b4699230d3eab09
3
+ size 108112
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fe7529f7e50>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7fe7529fd500>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1679534007280765026,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA0iTYPuQMlbt5FQk/0iTYPuQMlbt5FQk/0iTYPuQMlbt5FQk/0iTYPuQMlbt5FQk/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAU47BP1660j/EV5A/Zd2cv6efGj9cFbQ/8dNPP5RtxT/cviq/u5Kgv6UPsL62Ap8+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADSJNg+5AyVu3kVCT/Z5Jo8obY2uWjxcDzSJNg+5AyVu3kVCT/Z5Jo8obY2uWjxcDzSJNg+5AyVu3kVCT/Z5Jo8obY2uWjxcDzSJNg+5AyVu3kVCT/Z5Jo8obY2uWjxcDyUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.42215592 -0.00454866 0.5354839 ]\n [ 0.42215592 -0.00454866 0.5354839 ]\n [ 0.42215592 -0.00454866 0.5354839 ]\n [ 0.42215592 -0.00454866 0.5354839 ]]",
60
+ "desired_goal": "[[ 1.5121559 1.6463125 1.1276784 ]\n [-1.2255064 0.6039986 1.4069018 ]\n [ 0.8118277 1.5424066 -0.6669748 ]\n [-1.2544779 -0.34386936 0.31056756]]",
61
+ "observation": "[[ 4.2215592e-01 -4.5486558e-03 5.3548390e-01 1.8907951e-02\n -1.7424907e-04 1.4705993e-02]\n [ 4.2215592e-01 -4.5486558e-03 5.3548390e-01 1.8907951e-02\n -1.7424907e-04 1.4705993e-02]\n [ 4.2215592e-01 -4.5486558e-03 5.3548390e-01 1.8907951e-02\n -1.7424907e-04 1.4705993e-02]\n [ 4.2215592e-01 -4.5486558e-03 5.3548390e-01 1.8907951e-02\n -1.7424907e-04 1.4705993e-02]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAY0KsvcfOEL7Cvmg7ajEnPB0jvD1s7hU+xeZ2Pf3R/j0AccE9rYHVvdmGPT3YIbw9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[-0.084111 -0.1414138 0.00355141]\n [ 0.01020465 0.09186385 0.14641732]\n [ 0.06027867 0.12442396 0.09445381]\n [-0.10425124 0.04627118 0.09186143]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIw9UBEHeVAsCUhpRSlIwBbJRLMowBdJRHQKgO1/QSi/R1fZQoaAZoCWgPQwhmo3N+ikMBwJSGlFKUaBVLMmgWR0CoDploUSIydX2UKGgGaAloD0MIyNPyA1f5FcCUhpRSlGgVSzJoFkdAqA5c+eOGTXV9lChoBmgJaA9DCCkF3V7S+A/AlIaUUpRoFUsyaBZHQKgOHjwQUYd1fZQoaAZoCWgPQwg2O1J95/cCwJSGlFKUaBVLMmgWR0CoEN3LvCuVdX2UKGgGaAloD0MIAaH18GUiAMCUhpRSlGgVSzJoFkdAqBCfTqjaf3V9lChoBmgJaA9DCPVJ7rCJjATAlIaUUpRoFUsyaBZHQKgQYt0V8Cx1fZQoaAZoCWgPQwjEmV/NAQL7v5SGlFKUaBVLMmgWR0CoECWEbo8qdX2UKGgGaAloD0MIatswCoJHGMCUhpRSlGgVSzJoFkdAqBIq9kBjnXV9lChoBmgJaA9DCL1RK0zfMyLAlIaUUpRoFUsyaBZHQKgR623KB/Z1fZQoaAZoCWgPQwgHliNkIA/0v5SGlFKUaBVLMmgWR0CoEa39rGipdX2UKGgGaAloD0MImGiQgqcwBcCUhpRSlGgVSzJoFkdAqBFuMuOCG3V9lChoBmgJaA9DCJRt4A7UCQXAlIaUUpRoFUsyaBZHQKgTQ0Q9RrJ1fZQoaAZoCWgPQwhO1T2yuSr+v5SGlFKUaBVLMmgWR0CoEwPpY9xIdX2UKGgGaAloD0MIhLhy9s7o+r+UhpRSlGgVSzJoFkdAqBLGk1uR93V9lChoBmgJaA9DCPiov15hAQ7AlIaUUpRoFUsyaBZHQKgShuYx+KF1fZQoaAZoCWgPQwiVmj3QCswDwJSGlFKUaBVLMmgWR0CoFIkvboKVdX2UKGgGaAloD0MIxTcUPluXEcCUhpRSlGgVSzJoFkdAqBRKdpZfUnV9lChoBmgJaA9DCPA1BMdlPAXAlIaUUpRoFUsyaBZHQKgUDRuTA311fZQoaAZoCWgPQwh2/1iIDoHhv5SGlFKUaBVLMmgWR0CoE81TR6WxdX2UKGgGaAloD0MIpu81BMdl/7+UhpRSlGgVSzJoFkdAqBWsOPNmlXV9lChoBmgJaA9DCJWAmIQL2QPAlIaUUpRoFUsyaBZHQKgVbM0P6Kt1fZQoaAZoCWgPQwiT4uMTshMQwJSGlFKUaBVLMmgWR0CoFS9znzQNdX2UKGgGaAloD0MIwha7fVZ5DsCUhpRSlGgVSzJoFkdAqBTv47A+IXV9lChoBmgJaA9DCC3NrRBW4wzAlIaUUpRoFUsyaBZHQKgWv2Bas6t1fZQoaAZoCWgPQwiAn3HhQNgTwJSGlFKUaBVLMmgWR0CoFn/KZDzAdX2UKGgGaAloD0MIxRouck93AcCUhpRSlGgVSzJoFkdAqBZCR6nivXV9lChoBmgJaA9DCH8uGjIe5Q/AlIaUUpRoFUsyaBZHQKgWAmsvIwN1fZQoaAZoCWgPQwhLsDic+VX1v5SGlFKUaBVLMmgWR0CoF9nbRF7VdX2UKGgGaAloD0MI4NqJkpBIDsCUhpRSlGgVSzJoFkdAqBeaVMVUM3V9lChoBmgJaA9DCGyzsRLzLADAlIaUUpRoFUsyaBZHQKgXXQyAQQN1fZQoaAZoCWgPQwinIarwZ3gHwJSGlFKUaBVLMmgWR0CoFx3H7xd6dX2UKGgGaAloD0MIsOQqFr+JBcCUhpRSlGgVSzJoFkdAqBjuXokiU3V9lChoBmgJaA9DCGxdaoR+VhfAlIaUUpRoFUsyaBZHQKgYruBMBZJ1fZQoaAZoCWgPQwgyAFRx43YSwJSGlFKUaBVLMmgWR0CoGHF72L5zdX2UKGgGaAloD0MITYbj+Qwo9b+UhpRSlGgVSzJoFkdAqBgxxR2r4nV9lChoBmgJaA9DCA6EZAETOP2/lIaUUpRoFUsyaBZHQKgaCCkoF3Z1fZQoaAZoCWgPQwgI6L6c2S4GwJSGlFKUaBVLMmgWR0CoGciay8jBdX2UKGgGaAloD0MI+BqC4zKuB8CUhpRSlGgVSzJoFkdAqBmLJ+2E03V9lChoBmgJaA9DCOyIQzaQjgfAlIaUUpRoFUsyaBZHQKgZS2gnMMZ1fZQoaAZoCWgPQwgZcQFolO4NwJSGlFKUaBVLMmgWR0CoGx75dnkDdX2UKGgGaAloD0MIGED4UKIFAsCUhpRSlGgVSzJoFkdAqBrgUg0TDnV9lChoBmgJaA9DCCdok8MnLRDAlIaUUpRoFUsyaBZHQKgao6q814x1fZQoaAZoCWgPQwjI7gIlBbYIwJSGlFKUaBVLMmgWR0CoGmP5gw49dX2UKGgGaAloD0MI/b/qyJEO/L+UhpRSlGgVSzJoFkdAqBw8j9n9N3V9lChoBmgJaA9DCNlAuti0sgjAlIaUUpRoFUsyaBZHQKgb/P6be/J1fZQoaAZoCWgPQwi1wvS9huAGwJSGlFKUaBVLMmgWR0CoG7+hf0EpdX2UKGgGaAloD0MIYfvJGB/GBcCUhpRSlGgVSzJoFkdAqBt/1SOzY3V9lChoBmgJaA9DCEvK3ef4qP+/lIaUUpRoFUsyaBZHQKgdVnbItDl1fZQoaAZoCWgPQwit/DIYI9IGwJSGlFKUaBVLMmgWR0CoHRclw97odX2UKGgGaAloD0MIoIzxYfZy/b+UhpRSlGgVSzJoFkdAqBzZ7w8W9HV9lChoBmgJaA9DCD85ChAF0wHAlIaUUpRoFUsyaBZHQKgcmmeDnNh1fZQoaAZoCWgPQwi5GAPrOD7yv5SGlFKUaBVLMmgWR0CoHmuSntOVdX2UKGgGaAloD0MI84++SdOABcCUhpRSlGgVSzJoFkdAqB4r7sOXmnV9lChoBmgJaA9DCLsoeuBj0AXAlIaUUpRoFUsyaBZHQKgd7ra/RE51fZQoaAZoCWgPQwhuT5DY7p72v5SGlFKUaBVLMmgWR0CoHa7vw3HadX2UKGgGaAloD0MIg7709udCB8CUhpRSlGgVSzJoFkdAqB+PICEHuHV9lChoBmgJaA9DCCHIQQkzzQnAlIaUUpRoFUsyaBZHQKgfT9iMHbB1fZQoaAZoCWgPQwgpJQSr6uXuv5SGlFKUaBVLMmgWR0CoHxJl8PWhdX2UKGgGaAloD0MIyAkTRrOy57+UhpRSlGgVSzJoFkdAqB7SxzJZGXV9lChoBmgJaA9DCMHG9e/6zOy/lIaUUpRoFUsyaBZHQKggxHQyAQR1fZQoaAZoCWgPQwgYlj/fFiz9v5SGlFKUaBVLMmgWR0CoIIT4+KTCdX2UKGgGaAloD0MIw9hCkIOSAcCUhpRSlGgVSzJoFkdAqCBHr0J4S3V9lChoBmgJaA9DCBnKiXYV0hDAlIaUUpRoFUsyaBZHQKggB/8VHnV1fZQoaAZoCWgPQwjHKqVneokMwJSGlFKUaBVLMmgWR0CoIeiC8OCodX2UKGgGaAloD0MI6bga2ZVW9r+UhpRSlGgVSzJoFkdAqCGo9mpVCHV9lChoBmgJaA9DCP3ZjxSRMRDAlIaUUpRoFUsyaBZHQKgha47zTWp1fZQoaAZoCWgPQwi+nxov3STqv5SGlFKUaBVLMmgWR0CoISvaL4vfdX2UKGgGaAloD0MIkIXoEDgSA8CUhpRSlGgVSzJoFkdAqCL8o6S1V3V9lChoBmgJaA9DCPerAN9t3v6/lIaUUpRoFUsyaBZHQKgivQrMC911fZQoaAZoCWgPQwgVHjS77o0AwJSGlFKUaBVLMmgWR0CoIn+Zof0VdX2UKGgGaAloD0MIglX18jvtB8CUhpRSlGgVSzJoFkdAqCI/2ugYg3V9lChoBmgJaA9DCB41JsRcEgnAlIaUUpRoFUsyaBZHQKgkGwGGEf11fZQoaAZoCWgPQwjZ7h6g+zL8v5SGlFKUaBVLMmgWR0CoI9uRs/IKdX2UKGgGaAloD0MIEOhM2lT9BMCUhpRSlGgVSzJoFkdAqCOeOp84P3V9lChoBmgJaA9DCKA2qtOBDAvAlIaUUpRoFUsyaBZHQKgjXnbqQil1fZQoaAZoCWgPQwh5PC0/cJUBwJSGlFKUaBVLMmgWR0CoJSt6PbPAdX2UKGgGaAloD0MIrkoi+yBL8L+UhpRSlGgVSzJoFkdAqCTr+ee4C3V9lChoBmgJaA9DCB6KAn0iT/u/lIaUUpRoFUsyaBZHQKgkro371qZ1fZQoaAZoCWgPQwinJOtwdLUNwJSGlFKUaBVLMmgWR0CoJG76guh9dX2UKGgGaAloD0MI31D4bB38AsCUhpRSlGgVSzJoFkdAqCbwO+ZgHHV9lChoBmgJaA9DCPhu88ZJkRPAlIaUUpRoFUsyaBZHQKgmsZCv5gx1fZQoaAZoCWgPQwg+Qs2QKkoRwJSGlFKUaBVLMmgWR0CoJnTZpSJkdX2UKGgGaAloD0MIFNGvrZ/+8b+UhpRSlGgVSzJoFkdAqCY2Bas6rHV9lChoBmgJaA9DCIQsCyb+KPm/lIaUUpRoFUsyaBZHQKgoxp0OmSB1fZQoaAZoCWgPQwhq+uyA64oAwJSGlFKUaBVLMmgWR0CoKIjPnjhldX2UKGgGaAloD0MIxqaVQiBXDcCUhpRSlGgVSzJoFkdAqChMOd5IH3V9lChoBmgJaA9DCCvfMxKhUfy/lIaUUpRoFUsyaBZHQKgoDa2WpqB1fZQoaAZoCWgPQwhC7iJMUW4EwJSGlFKUaBVLMmgWR0CoKrIH9m6HdX2UKGgGaAloD0MInnqkwW0NBMCUhpRSlGgVSzJoFkdAqCpzlFMIvHV9lChoBmgJaA9DCIhH4uXpHPe/lIaUUpRoFUsyaBZHQKgqNyn1nNB1fZQoaAZoCWgPQwjt9e6P92oFwJSGlFKUaBVLMmgWR0CoKfiGFi8WdX2UKGgGaAloD0MIJ77aUZwDCMCUhpRSlGgVSzJoFkdAqCyUFr2xp3V9lChoBmgJaA9DCMjrwaT4+Py/lIaUUpRoFUsyaBZHQKgsVaLXL/11fZQoaAZoCWgPQwhPdF34wRkJwJSGlFKUaBVLMmgWR0CoLBj0+TvBdX2UKGgGaAloD0MI2iCTjJylCsCUhpRSlGgVSzJoFkdAqCvZ7HAAQ3V9lChoBmgJaA9DCKcf1EUKZQPAlIaUUpRoFUsyaBZHQKgugGLUCq91fZQoaAZoCWgPQwiYMJqV7YMJwJSGlFKUaBVLMmgWR0CoLkIC2c8UdX2UKGgGaAloD0MI/N8RFarb+b+UhpRSlGgVSzJoFkdAqC4FhNM4+HV9lChoBmgJaA9DCOl8eJYgI/+/lIaUUpRoFUsyaBZHQKgtxruYx+N1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5e762b74b8993ee923ffd55f1f13b3e14772704292cdc1e72cf3a18bcd1471b6
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da9a378c624e8ab5f54fcfbf4fdf4ea68161d42e74acd0bdd99c830e1c418907
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fe7529f7e50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fe7529fd500>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679534007280765026, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA0iTYPuQMlbt5FQk/0iTYPuQMlbt5FQk/0iTYPuQMlbt5FQk/0iTYPuQMlbt5FQk/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAU47BP1660j/EV5A/Zd2cv6efGj9cFbQ/8dNPP5RtxT/cviq/u5Kgv6UPsL62Ap8+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADSJNg+5AyVu3kVCT/Z5Jo8obY2uWjxcDzSJNg+5AyVu3kVCT/Z5Jo8obY2uWjxcDzSJNg+5AyVu3kVCT/Z5Jo8obY2uWjxcDzSJNg+5AyVu3kVCT/Z5Jo8obY2uWjxcDyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.42215592 -0.00454866 0.5354839 ]\n [ 0.42215592 -0.00454866 0.5354839 ]\n [ 0.42215592 -0.00454866 0.5354839 ]\n [ 0.42215592 -0.00454866 0.5354839 ]]", "desired_goal": "[[ 1.5121559 1.6463125 1.1276784 ]\n [-1.2255064 0.6039986 1.4069018 ]\n [ 0.8118277 1.5424066 -0.6669748 ]\n [-1.2544779 -0.34386936 0.31056756]]", "observation": "[[ 4.2215592e-01 -4.5486558e-03 5.3548390e-01 1.8907951e-02\n -1.7424907e-04 1.4705993e-02]\n [ 4.2215592e-01 -4.5486558e-03 5.3548390e-01 1.8907951e-02\n -1.7424907e-04 1.4705993e-02]\n [ 4.2215592e-01 -4.5486558e-03 5.3548390e-01 1.8907951e-02\n -1.7424907e-04 1.4705993e-02]\n [ 4.2215592e-01 -4.5486558e-03 5.3548390e-01 1.8907951e-02\n -1.7424907e-04 1.4705993e-02]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAY0KsvcfOEL7Cvmg7ajEnPB0jvD1s7hU+xeZ2Pf3R/j0AccE9rYHVvdmGPT3YIbw9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.084111 -0.1414138 0.00355141]\n [ 0.01020465 0.09186385 0.14641732]\n [ 0.06027867 0.12442396 0.09445381]\n [-0.10425124 0.04627118 0.09186143]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIw9UBEHeVAsCUhpRSlIwBbJRLMowBdJRHQKgO1/QSi/R1fZQoaAZoCWgPQwhmo3N+ikMBwJSGlFKUaBVLMmgWR0CoDploUSIydX2UKGgGaAloD0MIyNPyA1f5FcCUhpRSlGgVSzJoFkdAqA5c+eOGTXV9lChoBmgJaA9DCCkF3V7S+A/AlIaUUpRoFUsyaBZHQKgOHjwQUYd1fZQoaAZoCWgPQwg2O1J95/cCwJSGlFKUaBVLMmgWR0CoEN3LvCuVdX2UKGgGaAloD0MIAaH18GUiAMCUhpRSlGgVSzJoFkdAqBCfTqjaf3V9lChoBmgJaA9DCPVJ7rCJjATAlIaUUpRoFUsyaBZHQKgQYt0V8Cx1fZQoaAZoCWgPQwjEmV/NAQL7v5SGlFKUaBVLMmgWR0CoECWEbo8qdX2UKGgGaAloD0MIatswCoJHGMCUhpRSlGgVSzJoFkdAqBIq9kBjnXV9lChoBmgJaA9DCL1RK0zfMyLAlIaUUpRoFUsyaBZHQKgR623KB/Z1fZQoaAZoCWgPQwgHliNkIA/0v5SGlFKUaBVLMmgWR0CoEa39rGipdX2UKGgGaAloD0MImGiQgqcwBcCUhpRSlGgVSzJoFkdAqBFuMuOCG3V9lChoBmgJaA9DCJRt4A7UCQXAlIaUUpRoFUsyaBZHQKgTQ0Q9RrJ1fZQoaAZoCWgPQwhO1T2yuSr+v5SGlFKUaBVLMmgWR0CoEwPpY9xIdX2UKGgGaAloD0MIhLhy9s7o+r+UhpRSlGgVSzJoFkdAqBLGk1uR93V9lChoBmgJaA9DCPiov15hAQ7AlIaUUpRoFUsyaBZHQKgShuYx+KF1fZQoaAZoCWgPQwiVmj3QCswDwJSGlFKUaBVLMmgWR0CoFIkvboKVdX2UKGgGaAloD0MIxTcUPluXEcCUhpRSlGgVSzJoFkdAqBRKdpZfUnV9lChoBmgJaA9DCPA1BMdlPAXAlIaUUpRoFUsyaBZHQKgUDRuTA311fZQoaAZoCWgPQwh2/1iIDoHhv5SGlFKUaBVLMmgWR0CoE81TR6WxdX2UKGgGaAloD0MIpu81BMdl/7+UhpRSlGgVSzJoFkdAqBWsOPNmlXV9lChoBmgJaA9DCJWAmIQL2QPAlIaUUpRoFUsyaBZHQKgVbM0P6Kt1fZQoaAZoCWgPQwiT4uMTshMQwJSGlFKUaBVLMmgWR0CoFS9znzQNdX2UKGgGaAloD0MIwha7fVZ5DsCUhpRSlGgVSzJoFkdAqBTv47A+IXV9lChoBmgJaA9DCC3NrRBW4wzAlIaUUpRoFUsyaBZHQKgWv2Bas6t1fZQoaAZoCWgPQwiAn3HhQNgTwJSGlFKUaBVLMmgWR0CoFn/KZDzAdX2UKGgGaAloD0MIxRouck93AcCUhpRSlGgVSzJoFkdAqBZCR6nivXV9lChoBmgJaA9DCH8uGjIe5Q/AlIaUUpRoFUsyaBZHQKgWAmsvIwN1fZQoaAZoCWgPQwhLsDic+VX1v5SGlFKUaBVLMmgWR0CoF9nbRF7VdX2UKGgGaAloD0MI4NqJkpBIDsCUhpRSlGgVSzJoFkdAqBeaVMVUM3V9lChoBmgJaA9DCGyzsRLzLADAlIaUUpRoFUsyaBZHQKgXXQyAQQN1fZQoaAZoCWgPQwinIarwZ3gHwJSGlFKUaBVLMmgWR0CoFx3H7xd6dX2UKGgGaAloD0MIsOQqFr+JBcCUhpRSlGgVSzJoFkdAqBjuXokiU3V9lChoBmgJaA9DCGxdaoR+VhfAlIaUUpRoFUsyaBZHQKgYruBMBZJ1fZQoaAZoCWgPQwgyAFRx43YSwJSGlFKUaBVLMmgWR0CoGHF72L5zdX2UKGgGaAloD0MITYbj+Qwo9b+UhpRSlGgVSzJoFkdAqBgxxR2r4nV9lChoBmgJaA9DCA6EZAETOP2/lIaUUpRoFUsyaBZHQKgaCCkoF3Z1fZQoaAZoCWgPQwgI6L6c2S4GwJSGlFKUaBVLMmgWR0CoGciay8jBdX2UKGgGaAloD0MI+BqC4zKuB8CUhpRSlGgVSzJoFkdAqBmLJ+2E03V9lChoBmgJaA9DCOyIQzaQjgfAlIaUUpRoFUsyaBZHQKgZS2gnMMZ1fZQoaAZoCWgPQwgZcQFolO4NwJSGlFKUaBVLMmgWR0CoGx75dnkDdX2UKGgGaAloD0MIGED4UKIFAsCUhpRSlGgVSzJoFkdAqBrgUg0TDnV9lChoBmgJaA9DCCdok8MnLRDAlIaUUpRoFUsyaBZHQKgao6q814x1fZQoaAZoCWgPQwjI7gIlBbYIwJSGlFKUaBVLMmgWR0CoGmP5gw49dX2UKGgGaAloD0MI/b/qyJEO/L+UhpRSlGgVSzJoFkdAqBw8j9n9N3V9lChoBmgJaA9DCNlAuti0sgjAlIaUUpRoFUsyaBZHQKgb/P6be/J1fZQoaAZoCWgPQwi1wvS9huAGwJSGlFKUaBVLMmgWR0CoG7+hf0EpdX2UKGgGaAloD0MIYfvJGB/GBcCUhpRSlGgVSzJoFkdAqBt/1SOzY3V9lChoBmgJaA9DCEvK3ef4qP+/lIaUUpRoFUsyaBZHQKgdVnbItDl1fZQoaAZoCWgPQwit/DIYI9IGwJSGlFKUaBVLMmgWR0CoHRclw97odX2UKGgGaAloD0MIoIzxYfZy/b+UhpRSlGgVSzJoFkdAqBzZ7w8W9HV9lChoBmgJaA9DCD85ChAF0wHAlIaUUpRoFUsyaBZHQKgcmmeDnNh1fZQoaAZoCWgPQwi5GAPrOD7yv5SGlFKUaBVLMmgWR0CoHmuSntOVdX2UKGgGaAloD0MI84++SdOABcCUhpRSlGgVSzJoFkdAqB4r7sOXmnV9lChoBmgJaA9DCLsoeuBj0AXAlIaUUpRoFUsyaBZHQKgd7ra/RE51fZQoaAZoCWgPQwhuT5DY7p72v5SGlFKUaBVLMmgWR0CoHa7vw3HadX2UKGgGaAloD0MIg7709udCB8CUhpRSlGgVSzJoFkdAqB+PICEHuHV9lChoBmgJaA9DCCHIQQkzzQnAlIaUUpRoFUsyaBZHQKgfT9iMHbB1fZQoaAZoCWgPQwgpJQSr6uXuv5SGlFKUaBVLMmgWR0CoHxJl8PWhdX2UKGgGaAloD0MIyAkTRrOy57+UhpRSlGgVSzJoFkdAqB7SxzJZGXV9lChoBmgJaA9DCMHG9e/6zOy/lIaUUpRoFUsyaBZHQKggxHQyAQR1fZQoaAZoCWgPQwgYlj/fFiz9v5SGlFKUaBVLMmgWR0CoIIT4+KTCdX2UKGgGaAloD0MIw9hCkIOSAcCUhpRSlGgVSzJoFkdAqCBHr0J4S3V9lChoBmgJaA9DCBnKiXYV0hDAlIaUUpRoFUsyaBZHQKggB/8VHnV1fZQoaAZoCWgPQwjHKqVneokMwJSGlFKUaBVLMmgWR0CoIeiC8OCodX2UKGgGaAloD0MI6bga2ZVW9r+UhpRSlGgVSzJoFkdAqCGo9mpVCHV9lChoBmgJaA9DCP3ZjxSRMRDAlIaUUpRoFUsyaBZHQKgha47zTWp1fZQoaAZoCWgPQwi+nxov3STqv5SGlFKUaBVLMmgWR0CoISvaL4vfdX2UKGgGaAloD0MIkIXoEDgSA8CUhpRSlGgVSzJoFkdAqCL8o6S1V3V9lChoBmgJaA9DCPerAN9t3v6/lIaUUpRoFUsyaBZHQKgivQrMC911fZQoaAZoCWgPQwgVHjS77o0AwJSGlFKUaBVLMmgWR0CoIn+Zof0VdX2UKGgGaAloD0MIglX18jvtB8CUhpRSlGgVSzJoFkdAqCI/2ugYg3V9lChoBmgJaA9DCB41JsRcEgnAlIaUUpRoFUsyaBZHQKgkGwGGEf11fZQoaAZoCWgPQwjZ7h6g+zL8v5SGlFKUaBVLMmgWR0CoI9uRs/IKdX2UKGgGaAloD0MIEOhM2lT9BMCUhpRSlGgVSzJoFkdAqCOeOp84P3V9lChoBmgJaA9DCKA2qtOBDAvAlIaUUpRoFUsyaBZHQKgjXnbqQil1fZQoaAZoCWgPQwh5PC0/cJUBwJSGlFKUaBVLMmgWR0CoJSt6PbPAdX2UKGgGaAloD0MIrkoi+yBL8L+UhpRSlGgVSzJoFkdAqCTr+ee4C3V9lChoBmgJaA9DCB6KAn0iT/u/lIaUUpRoFUsyaBZHQKgkro371qZ1fZQoaAZoCWgPQwinJOtwdLUNwJSGlFKUaBVLMmgWR0CoJG76guh9dX2UKGgGaAloD0MI31D4bB38AsCUhpRSlGgVSzJoFkdAqCbwO+ZgHHV9lChoBmgJaA9DCPhu88ZJkRPAlIaUUpRoFUsyaBZHQKgmsZCv5gx1fZQoaAZoCWgPQwg+Qs2QKkoRwJSGlFKUaBVLMmgWR0CoJnTZpSJkdX2UKGgGaAloD0MIFNGvrZ/+8b+UhpRSlGgVSzJoFkdAqCY2Bas6rHV9lChoBmgJaA9DCIQsCyb+KPm/lIaUUpRoFUsyaBZHQKgoxp0OmSB1fZQoaAZoCWgPQwhq+uyA64oAwJSGlFKUaBVLMmgWR0CoKIjPnjhldX2UKGgGaAloD0MIxqaVQiBXDcCUhpRSlGgVSzJoFkdAqChMOd5IH3V9lChoBmgJaA9DCCvfMxKhUfy/lIaUUpRoFUsyaBZHQKgoDa2WpqB1fZQoaAZoCWgPQwhC7iJMUW4EwJSGlFKUaBVLMmgWR0CoKrIH9m6HdX2UKGgGaAloD0MInnqkwW0NBMCUhpRSlGgVSzJoFkdAqCpzlFMIvHV9lChoBmgJaA9DCIhH4uXpHPe/lIaUUpRoFUsyaBZHQKgqNyn1nNB1fZQoaAZoCWgPQwjt9e6P92oFwJSGlFKUaBVLMmgWR0CoKfiGFi8WdX2UKGgGaAloD0MIJ77aUZwDCMCUhpRSlGgVSzJoFkdAqCyUFr2xp3V9lChoBmgJaA9DCMjrwaT4+Py/lIaUUpRoFUsyaBZHQKgsVaLXL/11fZQoaAZoCWgPQwhPdF34wRkJwJSGlFKUaBVLMmgWR0CoLBj0+TvBdX2UKGgGaAloD0MI2iCTjJylCsCUhpRSlGgVSzJoFkdAqCvZ7HAAQ3V9lChoBmgJaA9DCKcf1EUKZQPAlIaUUpRoFUsyaBZHQKgugGLUCq91fZQoaAZoCWgPQwiYMJqV7YMJwJSGlFKUaBVLMmgWR0CoLkIC2c8UdX2UKGgGaAloD0MI/N8RFarb+b+UhpRSlGgVSzJoFkdAqC4FhNM4+HV9lChoBmgJaA9DCOl8eJYgI/+/lIaUUpRoFUsyaBZHQKgtxruYx+N1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (297 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -2.4532884852960706, "std_reward": 0.5883278615834258, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-23T02:05:45.809133"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:31d7073554d618deb01c3513f849434175aa009d2466b16c7813d02abb58f7ec
3
+ size 3056