Qwen1.5-0.5B-OpenIT / axolotl_config.yml
lazarohurtado's picture
Upload axolotl_config.yml
659759f verified
raw
history blame
1.94 kB
base_model: Qwen/Qwen1.5-0.5B
model_type: Qwen2ForCausalLM
tokenizer_type: AutoTokenizer
trust_remote_code: true
save_safetensors: true
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: garage-bAInd/Open-Platypus
type: alpaca
prompt_style: chatml
- path: teknium/OpenHermes-2.5
type: sharegpt
conversation: qwen-7b-chat
- path: databricks/databricks-dolly-15k
type:
field_system: ""
field_instruction: instruction
field_input: context
field_output: response
format: |-
<|im_start|>system
You are a helpful assistant. Please give a concise and accurate answer<|im_end|>
<|im_start|>user
{instruction} {input}<|im_end|>
<|im_start|>assistant
no_input_format: |-
<|im_start|>system
You are a helpful assistant. Please give a concise and accurate answer<|im_end|>
<|im_start|>user
{instruction}<|im_end|>
<|im_start|>assistant
shuffle_merged_datasets: true
val_set_size: 0.04
chat_template: chatml
default_system_message: "You are a helpful assistant. Please give a concise and accurate answer"
output_dir: ./qwen_out
sequence_len: 2048
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
adapter: lora
lora_r: 8
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
- q_proj
- v_proj
lora_target_linear: true
lora_modules_to_save:
- embed_tokens
- lm_head
wandb_project: qwen-0.5b-lora
wandb_name: qwen-lora
wandb_log_model: checkpoint
gradient_accumulation_steps: 16
micro_batch_size: 1
num_epochs: 4
optimizer: adamw_torch_fused
lr_scheduler: cosine
learning_rate: 0.0002
max_grad_norm: 1.0
train_on_inputs: false
group_by_length: false
bf16: true
gradient_checkpointing: false
logging_steps: 1
flash_attention: false
deepspeed: deepspeed_configs/zero1.json
warmup_steps: 4
evals_per_epoch: 0
saves_per_epoch: 1
weight_decay: 0.01