Commit
·
cdd0688
1
Parent(s):
6a2c5ec
laviavigdor/PPO-LunarLander-v2
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 244.83 +/- 17.19
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb860207ca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb860207d30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb860207dc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb860207e50>", "_build": "<function ActorCriticPolicy._build at 0x7fb860207ee0>", "forward": "<function ActorCriticPolicy.forward at 0x7fb860207f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb86020b040>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb86020b0d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb86020b160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb86020b1f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb86020b280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fb860205480>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVJgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaDCMBXN0YXRllH2UKIwDa2V5lGgSKJbACQAAAAAAAK79ExzOGm52UpvXvHMTljr4D7ZP+Sa4FP1UGxGr/tVTjEneJNkpHzvSHHCDWgfioKW5DVcwe5KHf04vKugFGchL/hdZmakjgUXaNWe6475qSjPST7VAJPLF9cfAuNqd3R1ZhmXodGAjN3oYUULLxjHl5pJnBVPSAUN+xEydqMFIssyX/oqayoswbVH//FcbABtRwGWSYeJKjOrUsxR78+day5fiMXvMjJECscnYByk6CAR5FTXKO99YHhLfNH51zF4FZZ3uL6pcey1a+t3d7Gly69pGLxc0N7WaDuN8sbo8EfWYT5HD9GZUUPVVjlwwycVz0AmQ5nKdjDRyYaMa42+UjzNjocU0CTjLprMO7QdHwWP2UdAWXVZTem782oWVzhQ3iephFV4AXOkGd2Nb1tSDDka40hyueUd51XgZ1kI/1a4SStArkylHkCr4NnWFPJCCvi9UTxiTjqhHU/elpn66PCdsKCDb6h8ZedH5oSkyb+vD1/vsys8cydCBJ77aUvAUr43LYbSJP+70ey93x5XV7cpfZAmr8fLrTUD463yHoQxDIz6E2rzHlx1IvHNhY29lv454hstNUn6/zCtJ2RHX/unNXBw1jVKaRfowecFPPtw+kj3yUOYJm07FIv7Hw3o0JTdqhYmv5AuU14JZhYmOPeTvPOjprFae7as60FYFA5i2obslmIJ5ueM3mP99NV6sOaGPohQVxq7UdnEnnjjjS2dI4FQoyk9Tfku3wLBLb2RSM7nY0LkD6plbWte2x09AChmmtx9Mn6ZX0bUrBTkIbQLvxbhbFHUbBSn0wiy1wfsBYCipZuRfrY+EoITE+jkzB0hB6E18ww6oQLo5D6b28ianBCR2es2a0gFUfT2weKMzR0YCtE3aAG2M6ufUlYywYvfUtO2hFzQrXgMKG7MrzjtcBBtClcTzZsJu4gxGkezj1Oj67zcC9HUgicBxf4Q+piBdPbHKHa4J2PfsJ9Jlo9j59mW92BLs4+tiPhqkqrGWhg0+Ev0/cZWW9uz3o6r5LjOHF5uTuPD0Kt6+XQdaxzd8k14qKq6UyRoA/3D416JzE3WP/hx62ZmJX12+VE/lXo3IR3AydEHg4mX2kwQw9I14fwAxk2tjhAEJu/yW9QOK01qFlhzYo5bso9wPkMqxU7f5VcxZXkEaalfCnog/QjpI7MgCRvwdP7T8lMIFfn3m4poHHv541djtdFigTQX6Sd5EISKpWbPkdI7i8JpFgOdIl048D9TMjYUb5H19/4z7UtEtvtsSN9whM31TTiSYPSIu//wjaETh7iAiNhNX9VkSrYvl+b22hYrLe56PutwCVKwYdfHX6oScLYhZqUIpHwzWaLHbRCHNYhNNrRJ0lpjy+OOSxaAC4cHsgjg8fv3VZh+wwU6GB7HFvbAM9bwyV8FOg/Y2oGdne931MV2qm+y08s/RRXuGOAw7sBO8GGK3yaTobC1YM27mCWI7Oajd3L7qpEDWj+Kh5jF0x9v3dlo8eZFEpzKERZHpWKD/jg/hYlvJGRp+KzZgTEehAyEOQNWIPXz55Wn4Q/xtHU4UTrLDSdj7tnUSn/niTA+s4hZXFF8u34PEXjs1ZNdqAy0HfNWRNyWK4ZdFmr2qWmKuayiW+hHXc4uk8WYuFzJdvF9D31LwnT1AgLYzpM/JK/F52PVR8DQa2C3n+BDUbhm5uuGalDc1vDCgh3uwv6O8tLyBz7WeHUE/kDVT+WL5QvTdwqAOVDbqj1fqlV7qxdDjGL/oDrnW7Y8T11qA8cCSLeBiIl7uLajw24K3VYz4SZpz6KToEvnl/GF5FHo84IoPlQnOAlOAg3sKkQOsBZJpgDgwZw0zsVS07e+0RXGGlQi4iBaHd89ziVJw4tDLNaKwBaTF5YaNuB7pryv8H6o1kUBnHPa9eu1fYTDngxeLHVXzbTvLlnYfpu8xg7PP8fN7+dpSKFHyEdEME5y/2NYJ2rpJkvCzNVsIlAtXiC7dKMHCR6tWpwJL7Re/Xz0IdbRgxFGnhmkIrDMJq7cZ8LVMcFyC75owCi8ZA00sPX1IUYfU8KZ+nkXSVK51JJll1aBG3oflWDyvE07SNIQ//CDRAY/I5wj89M939OX/ZamA4kQ6HNgFYhabAXoawy430Px2VhuIdEvkDe9kauh0fiyAml72dtK/mvcH8eoqQINl7HYGzLQ3en9KF7ZcYAduRYYsb3QuSHx+9i6HvMXFmnAHHmXLmbI7gErSdud3ENRnVg13kyFA7Q/7wJ1azxId/OJ66h96Q4RvWfK4jK78e9sU86mhRZWu+M7ykWWPlSoWnErhJCzt/8gY+NPxSUNF7/D+H9+Q0z5o4zUBTBw2J8loNkcOJYAuWA9MvkOWtB1JGMiJhNUK5yn8Xa0S9B/wGGdnmMW7ZRqzjhuyDGiZeH6DLNSQnyGTvTSrJWihbzoS53kAMytyjBAPn2X8jNB6MQbNLeodvb+PTzVOz2TkZZR9t1uskufq6ZO9gqAEtp/ekmZLK416W1NA7yl73IF5VXuuzFYC46Ej8H39Iw7kxkS1ZUJ7Ii02ZWU3gsLF/HdQ5IQD4INvkmaVCN/qZj00d8t3mQ23xUKjd7ZX72pnR5y03RZm8N0mABN7FzVNkzEIkmzPIjz7rVy4FER4k9TlXpp+tczJyl/2Vrhu7QcjANTnsXflmPDiluoS/fhrLOQDgke9SRv7RMzOXN1FFvBsahnjwS1ibbOuq3pSA9Ngdd/3ibTdR08T5XU2ZBT9jrFTkuGy0kbb2Dwg5d+uKwQwC6tB/zYuh6iOwdDnzgejvrEHxX++9XfWJFi1c+OATx1ygWovcpu7G7Do1h8552/b/O+iRf3RwOZeaK+OQ9NAJwun9dK9YXRuxSze+1w6lUa4EPi1bMfWWVWjEwy+UKxQDyM+xSimltKXDa5iSR6ATewRkOX1+Xgszz2ug+0o59sxB8qnQFSi8jS+wFT5fqMcw2GwiWKflSwGAL93cAMBoBtUtNkAOih9LAAZ39nioDW68ILUnCxswRulT2qckvlUtCNvnYwp/sY97OT2OHKnfwT26n/a8vb/FAE0oZzGwDFkISngWRHau8RCPbfJNc1uHWZ+ewYEnNubAsPSTHz4LetNKaXYmbrtSYHOi4T1KMvyaqjnGwagDO1x0r8jI3lx+XNVPZ+WO7p1o2OmaIAMTbP8cI8icKpaytCxkOuazw60JEmu9Wte3Bgwne8p4bIBNFF/XqKmljeGl5L2v0QyJtOZxg0oOyUaUygsLj2ErSiPFkvIHq6fK9AiuQuTQtQA6iJcN2A+PE7GpV/p4F0KFYGSaIM25p2w1sHnSYegk8QVlpRoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGJNcAKFlGgVdJRSlIwDcG9zlEsUdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": "RandomState(MT19937)"}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVLgsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAUHnLk+8AceV4pXIQk9IWWYfWk+Ezlle19AuALrnaa5tDXbvmw2CezSHRGdNxfz+hpOlXEwYf1tLehYRkRYaRVn+aChkX70TLo2XlZIFmgZ7FvHjOlgpuX5OY5g362xeKRec/dwDuUDT7wvWc4Agh6ScDrTK6zN8BovZ0CCa4Bxp8qvxN/IBQJ1iX+D1cP4tdeznOFIYyyj1z8JVKOgogCrxLrn0zBtrjh1AgXmnJ40Nc/I6IwCLcM2P3ST+t98XdMwgdOhW+Je0LEpg5sWEpj5wuw434OVPhdDsAY/lr8BAU7RCwBm9LVVk32GTHfacDq6ev37AUfzxaWEgFC5T4Ll9WoTNzW90Ns+cOQDhz+maN0Vx34NKtFVvHFmJNdl4n1VALrwfr2rh/og4jc+PdwYGFxVlqem1IdQKLEkolXwkZxA0TNq1KrwpoepgGS1fNq7Y/XqqkNqVQ6FOVVBmn505oXWhXwiSTJO/afdML9XIkYdke/VNgQFILYbw/e8YTwvgEE8lgETnastcNjCY7WyWQ2Ns1XVjzp4mAY4vX64o8QQLyAde9m5KXlFVwSjtB9qbPhAhYxXRohhTsncCZpKjGeL/ZDGqs8G152fZ57+oj3H2f6o0tkNd1mrlNE4f83j/4dGZ7eiKT2vI2mwNDN0RMCflLSnJjR1J2XJOAh2Pnpmi3HgwiJXD5z+CIqcOLfdqRVNq9GUNSJISAHPF7FwCR82+ubYjC+d4rCf3BEYyRqXiYWdkAqBTTgFn1pt0O1G0VALvzr6DZ6HS+RX+gatzOX5PrRVo7G3+GGgQ0jj/+KOC+6ysPFkvqVhddQkXaqu59zcdD66YjIG1FMMCEC/rPGmBWckJMQSlma/vlN+SguVYuJwddumoHigzLNFAmQ45aP5M/OXXcFPdOkijA6ADlE2MzV05NtQr+eLcHWI49Ykaqc8VOt6TnS8RMbwYRC6iKYBWl79PA6Zwh3BGp7NaVH7Y4LeXP91Wihxw0I92LFq6KrCy5wrdD10t47FiCTpOFgl2sXabEDcsNolvjtNHf1UiSa9MQyym1WPhplC5uX2tDrXqFOHXoIYLIM2l1TJuu3PG89wUYuyVYYcoPTlCJlWmhu0ecPX03ZvpuW/Z/o9QfQEhvzoopEbgALdqmXFT86WP12CJx/f+IDsdVdj8QmL9hh+qbCcMWZXdepmcQ+u8PmgKn6PIEE8di23y5Yr75vjM9+ttvvO60jsSdZWLxYJXKv0JxKzd7lqfpCqSUDwUKdtQKE3C1619MSvOkh3YWvtgi0YENfIQHUEyUGlym/5o5/2EodCwoKizARxGwK1Mv+qWvUy1oOsZlDTiqLHJl4DMU7LG4LRUxzUWvqPjZWAdW95O9ybTkEGJx4OT9L43yHflqxoaMwiCYaYp4z5meadOy37sl+ryTMxAS+P2EwsQRBhGSZ4nOTzx3pbGxVvm8SoEhtZuJo5QHxN3fFIAFVsG32dSfGsu/qSrBRz+20GQFJDUsFT+oQTrSBPkYrNRa55ZH2Q+LIOV4P7UzI+6rb08byW4RN0q/f7Pa8hjEUJHHYQD3/OU2nnL7oPWfCjUPKcseNEqFrvqDqLT93UzTPKue575JnLGH9JKgj2519tJ7fc5yxXuTe1jMPekPTNDI8t3U5kO9Dj62hFvfO4slvMLARmz0z4Mh9HMHuFT9a8vosG/Llp89oPXTgYbl2oGrguuo5bzRYhiic13B3MIB3z01L0dzUVusc6PhWHI0uclJiP3f3sHBP9cuB3liIqaRQJp9ht4RdcJn3ZS91nJQArw03pA1QeShq9cdFw6BJTLOIQLd8HJwbAqbFCQSRGPC/ou3GeO/S3BoosCrnOPlXOX+NWwvMH2nKEwLqUx0xLCkKerq7vCoCngzFteEsSLiCzluN1Doh1AkhkngPEp6oRRbRfsrM/zmCSnJpKhTi7ktVju0yLQKkrXkS+TVu0GnLRFlGKGFE3l13bKzjipPtttHCTk1M4+P3/zRrgbWAJW2BzHsNyCNZpBAS2zzqGd9s5qw7jMPzOPR8ZDeewix1fPrk/B+hjn+006W5U7yovp52zBBkWLqbjCIHY2kwqosBjJEwRivUaPVxKard/3FU6uXYbqAHVpkzb/gMba/Al1NcQhESMQqhJVJrv1UBRDNvDGAtvETDOY3uuy8jl/o2pu6B4hV9UhZq/tEJkYO8N15jxAf/7czIrbhjU8Bd2Yz/CnJMIC8cBsF2y7x/10yRsQsVujwmdePOI3Ogl3pp1nIiUvwlz2bZG1KPPeJeFHSeDrKtZk3HZw9/O+l3PZVLICVdK5JQoeRdKgoUxxPPSyZkqe/HBYEBMvh2UW+S9RNrmxOBS1xGCF28QDyYd6KeLuNFkSQzGCHjg25XgrGn17gcaycqMWcqt+EsqQfZQjy5/8Tbr/aj06Yvemye1O6z54PNEKpTAKxY0TI6PwxyUdVfeXpfJdY1A6F8fn/5L9wYy4sgJXNMDWcAyNZVbbvdJPNxfgf5zCR3TFhtSMEGHBiFlf2hl7BOdV5RlVWtIuc/PZBRUwsehqGuM3aTYOJAcq6rxV5g8WHnE8ozKsUTE/Ib99SizmP6SR0RN7W44o5e3SmldoCFGE8U9mzqaNL03Uu/HmnAhjFq8OhMswegy4a9KeMnsGSGxl1JgQEWYFo0Qkvtzad9YVfdK69iisNmKYhBy1lL/LvLWMSw08pKgx0jfTRQM1uIc+e2fPOqA3BCe8dRw7ec2BLPBhNyFxjZOINRAWlnZq8a7fmmADDAWN3r0+6kzV5xDPna8jfuODVnAb+a8BPyLcP/R343yC4XzMJpvmfyLnyGZOcIlUDBxjR7iKfLqDzEqXbUvQY8d2O0i95ye/qos/KnHRHxoWSvmH4v8BSe4GfrUSLAx4SGzOJxtUhH6zOAdkFwvPMckPglEF90PmdehWeim4msUhiP3mOzariAbYyNvFNkT83hAjDqIDIDSOED1XAXxLYGo9ibK9WTGc6Bxwpm52c6grReYMeeEJeYzYO7SoBwE8mPw8gHg1rHtWhIYn6r6XYHOugWW1Bt+lkODydpwdZTuYxyrYj8+UuHG8UIKkUlvMSNXQSJT0o7EXudTHyrqVjwsJrrN/o/sjGcTXJix2BrJZesxDCjeiaoeKMRLqE/1ZYHmC3/wr7CmGf+jJen2qnXEgOQFKCMRpoldk1b7exvu1+mXiT5j+8VfsPveUYOg7uiYvsArkG+o/MHNTyI000bDyYBuJn+LO7N0RPrpaRou79iY/EObxZoi/BRaV/YX4l8+Bbu5G1vkV8QoZTFdUBgKZPtz3cb3UtWz7fQSAalGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RLBHWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=", "n": 4, "_shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 1, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1672306026477000597, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAM1OAz2CkbU/ht9aPnevCL5L2dY7VhcPPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIlG3gDtTFPkCUhpRSlIwBbJRL/owBdJRHQKGlEzRhMJx1fZQoaAZoCWgPQwigwabOo2dwQJSGlFKUaBVNewFoFkdAoaY5ztCzC3V9lChoBmgJaA9DCBi0kIDR40JAlIaUUpRoFU0YAWgWR0Chp7iojv/jdX2UKGgGaAloD0MIdQRws3juakCUhpRSlGgVTX0BaBZHQKGpBlqagEl1fZQoaAZoCWgPQwjc2OxINV5wQJSGlFKUaBVNfgFoFkdAoapCb2Dg63V9lChoBmgJaA9DCMzQeCLIi3BAlIaUUpRoFU1EAWgWR0Chq/Q8OkLydX2UKGgGaAloD0MI1jibjkBYcECUhpRSlGgVTYkBaBZHQKGtQRZlnRN1fZQoaAZoCWgPQwgVOxqH+rBvQJSGlFKUaBVNfAFoFkdAoa9LfpD/l3V9lChoBmgJaA9DCLjqOlRTT2tAlIaUUpRoFU2GAWgWR0ChsKLYf4h2dX2UKGgGaAloD0MIRBg/jTtRcUCUhpRSlGgVTT0BaBZHQKGxmM6zVtp1fZQoaAZoCWgPQwh6/x8nTJFsQJSGlFKUaBVNfgFoFkdAobOV/J/5L3V9lChoBmgJaA9DCBwMdVihbHBAlIaUUpRoFU0/AWgWR0ChtJnsLORldX2UKGgGaAloD0MIG2g+5253B8CUhpRSlGgVS/BoFkdAobVTNB4UvnV9lChoBmgJaA9DCLsqUItBjW9AlIaUUpRoFU2yAWgWR0Cht4Hr6ciGdX2UKGgGaAloD0MID7QCQ1bnQECUhpRSlGgVTUUBaBZHQKG4kqOLiuN1fZQoaAZoCWgPQwioVfSH5lZvQJSGlFKUaBVNMgFoFkdAobmCzRhMJ3V9lChoBmgJaA9DCAbZsnzd+GxAlIaUUpRoFU1YAWgWR0ChuzHX/YJ3dX2UKGgGaAloD0MI+3d95ixTcECUhpRSlGgVTTIBaBZHQKG8OahpQDV1fZQoaAZoCWgPQwgQ5nYv9xFxQJSGlFKUaBVNSAFoFkdAob0/UtqYZ3V9lChoBmgJaA9DCFN3ZReMZ25AlIaUUpRoFU0xAWgWR0Chvj5RCQcQdX2UKGgGaAloD0MIndhD+1hvbUCUhpRSlGgVTXEBaBZHQKHAGbADaGp1fZQoaAZoCWgPQwiTNeohmkVtQJSGlFKUaBVNUwFoFkdAocE584Pwu3V9lChoBmgJaA9DCCeIug9AYm5AlIaUUpRoFU05AWgWR0ChwkncL0BfdX2UKGgGaAloD0MIyk+qfTpfbkCUhpRSlGgVTUcBaBZHQKHEBQSi/PB1fZQoaAZoCWgPQwjjiSDOQ/ptQJSGlFKUaBVNQgFoFkdAocUFb9qDb3V9lChoBmgJaA9DCGtGBrlLA3BAlIaUUpRoFU2TAWgWR0Chxpd/8VHndX2UKGgGaAloD0MI5GiOrHxEb0CUhpRSlGgVTWoBaBZHQKHIfDneSB91fZQoaAZoCWgPQwhKCcGqeg1tQJSGlFKUaBVNYgFoFkdAocmyLCN0eXV9lChoBmgJaA9DCG2MnfASo3BAlIaUUpRoFU1UAWgWR0Chyr0DuBtldX2UKGgGaAloD0MI8fRKWQYFb0CUhpRSlGgVTWkBaBZHQKHMicc2itd1fZQoaAZoCWgPQwhbJO1GH9ssQJSGlFKUaBVNSQFoFkdAoc2S8SPEKnV9lChoBmgJaA9DCKw8gbDTNW9AlIaUUpRoFU1hAWgWR0ChzsEwvg3tdX2UKGgGaAloD0MI3XwjuufNaECUhpRSlGgVTfYBaBZHQKHRT4SHuZ11fZQoaAZoCWgPQwhfCg+aXbBrQJSGlFKUaBVNiAFoFkdAodKxlvqC6HV9lChoBmgJaA9DCOrPfqSIRnFAlIaUUpRoFU1XAWgWR0Ch1Hh8IAwPdX2UKGgGaAloD0MILXx9rYuxcECUhpRSlGgVTSwBaBZHQKHVcTj/+851fZQoaAZoCWgPQwhP6zaofTZtQJSGlFKUaBVNOQFoFkdAodaARVZLZnV9lChoBmgJaA9DCCNnYU+7smtAlIaUUpRoFU2aAWgWR0Ch2IrpRoAXdX2UKGgGaAloD0MIjBNf7SjeMsCUhpRSlGgVTSYBaBZHQKHZeWykbgl1fZQoaAZoCWgPQwjt9IO6yFBuQJSGlFKUaBVNTwFoFkdAodqOTA31jHV9lChoBmgJaA9DCOgtHt5zaCTAlIaUUpRoFUv2aBZHQKHb72HLzPN1fZQoaAZoCWgPQwjVlc/yPANvQJSGlFKUaBVNMAFoFkdAodzwl2NedHV9lChoBmgJaA9DCInOMovQ+XBAlIaUUpRoFU2MAWgWR0Ch3jk4WDYidX2UKGgGaAloD0MIh+EjYsr1bECUhpRSlGgVTT4BaBZHQKHfzlGwzLx1fZQoaAZoCWgPQwiu8gTCTkEzQJSGlFKUaBVNJAFoFkdAoeCztzCDVnV9lChoBmgJaA9DCH6pnzcVOHBAlIaUUpRoFU11AWgWR0Ch4fXmNipedX2UKGgGaAloD0MIVd0jmyuFbUCUhpRSlGgVTUYBaBZHQKHjmZpi7TV1fZQoaAZoCWgPQwgu46YGml5uQJSGlFKUaBVNYwFoFkdAoeTEFnqVyHV9lChoBmgJaA9DCNzWFp4XrXBAlIaUUpRoFU0uAWgWR0Ch5aokqto0dX2UKGgGaAloD0MIsDic+dVENUCUhpRSlGgVTSgBaBZHQKHmjKjBVMp1fZQoaAZoCWgPQwjoTxvV6f5sQJSGlFKUaBVNMQFoFkdAoegfHaN+9nV9lChoBmgJaA9DCMHEH0WdxThAlIaUUpRoFUvXaBZHQKHow2LHdXV1fZQoaAZoCWgPQwjICRNGs5VwQJSGlFKUaBVNewFoFkdAoencNFz+33V9lChoBmgJaA9DCHJNgcxOpHBAlIaUUpRoFU3HAWgWR0Ch6+oK2KEWdX2UKGgGaAloD0MII7pnXeOmcECUhpRSlGgVTVQBaBZHQKHtC14Pf9B1fZQoaAZoCWgPQwjyecVTj9xsQJSGlFKUaBVNPQFoFkdAoe4KSaEzwnV9lChoBmgJaA9DCM0hqYWS9TlAlIaUUpRoFU0NAWgWR0Ch725GKAJ+dX2UKGgGaAloD0MIPiDQmTR7bkCUhpRSlGgVTUABaBZHQKHwcT1TR6Z1fZQoaAZoCWgPQwgKTRJLSrJuQJSGlFKUaBVNRAFoFkdAofF7DIikf3V9lChoBmgJaA9DCLmKxW+KbXBAlIaUUpRoFU1xAWgWR0Ch80MY2sJZdX2UKGgGaAloD0MICOV9HM2R3L+UhpRSlGgVS91oFkdAofPnBrN4aHV9lChoBmgJaA9DCH8vhQfNuHBAlIaUUpRoFU2DAWgWR0Ch9THKfWc0dX2UKGgGaAloD0MIBkoKLIDHbkCUhpRSlGgVTVwBaBZHQKH25w71Zkl1fZQoaAZoCWgPQwh3LSEf9MwlQJSGlFKUaBVLwWgWR0Ch93DbJwKjdX2UKGgGaAloD0MIl+MViJ4UEUCUhpRSlGgVS5hoFkdAoffaTjebeHV9lChoBmgJaA9DCGJM+nspdnBAlIaUUpRoFU1vAWgWR0Ch+Q/1g6U8dX2UKGgGaAloD0MIYocx6W9bb0CUhpRSlGgVTUkBaBZHQKH6rxMFlkJ1fZQoaAZoCWgPQwgZy/RLxENCQJSGlFKUaBVL+WgWR0Ch+2gtOEdvdX2UKGgGaAloD0MIRgpl4euibUCUhpRSlGgVTW8BaBZHQKH8g5nUUfx1fZQoaAZoCWgPQwhQc/IiE2gwQJSGlFKUaBVL1GgWR0Ch/SRKQJXydX2UKGgGaAloD0MIaXIxBpbucECUhpRSlGgVTTMBaBZHQKH+z5Lytmt1fZQoaAZoCWgPQwip+Sr52C1uQJSGlFKUaBVNKgFoFkdAof++QU5+6XV9lChoBmgJaA9DCPcEie3uaHBAlIaUUpRoFU0FAWgWR0CiAJotL+PzdX2UKGgGaAloD0MIQBh47n0jcECUhpRSlGgVTUMBaBZHQKICUBuGbkR1fZQoaAZoCWgPQwjbpKKxdtVuQJSGlFKUaBVNMQFoFkdAogNcNDtw73V9lChoBmgJaA9DCLQ7pBjgpnBAlIaUUpRoFU0SAWgWR0CiBC8Md92HdX2UKGgGaAloD0MI6Pf9mxfTRUCUhpRSlGgVS9hoFkdAogTI1+AmRnV9lChoBmgJaA9DCLvs151uwm1AlIaUUpRoFU33AWgWR0CiB0WSMcZMdX2UKGgGaAloD0MIaHizBm86cECUhpRSlGgVTUQBaBZHQKIIPUSZjQR1fZQoaAZoCWgPQwjiV6zhIu5wQJSGlFKUaBVNNAFoFkdAogk2xY7q6nV9lChoBmgJaA9DCOfj2lAxq25AlIaUUpRoFU1DAWgWR0CiCs+G47RwdX2UKGgGaAloD0MIYroQqz/qSECUhpRSlGgVS+toFkdAoguE1EVnEnV9lChoBmgJaA9DCPDce7jk729AlIaUUpRoFU1DAWgWR0CiDIyCvovBdX2UKGgGaAloD0MIW8064/sRb0CUhpRSlGgVTTYBaBZHQKIONbblA/t1fZQoaAZoCWgPQwjdQIF38uRsQJSGlFKUaBVNPQFoFkdAog9BZ8rqdHV9lChoBmgJaA9DCKVmD7QC4m5AlIaUUpRoFU1dAWgWR0CiEFruQZGbdX2UKGgGaAloD0MIu9Vz0nt5bUCUhpRSlGgVTWMBaBZHQKISIZpBX0Z1fZQoaAZoCWgPQwg6QDBHT25yQJSGlFKUaBVNBAFoFkdAohLho7FKkHV9lChoBmgJaA9DCOHtQQjI0XBAlIaUUpRoFU1PAWgWR0CiFBU0elsQdX2UKGgGaAloD0MI/BnerMGibUCUhpRSlGgVTSUBaBZHQKIU+KTB68h1fZQoaAZoCWgPQwgWa7jIPdZsQJSGlFKUaBVNTAFoFkdAohabhWHUMHV9lChoBmgJaA9DCC20c5oFq2xAlIaUUpRoFU1qAWgWR0CiF8dvsJIEdX2UKGgGaAloD0MIiLg5lUwfcUCUhpRSlGgVTS0BaBZHQKIYqQEIPbx1fZQoaAZoCWgPQwi38LxU7GZsQJSGlFKUaBVNVgFoFkdAohpiVnmJWXV9lChoBmgJaA9DCOV/8nfvF25AlIaUUpRoFU02AWgWR0CiG1r0Bfa6dX2UKGgGaAloD0MIQ1ciUH2kckCUhpRSlGgVTUwBaBZHQKIcVcQiA2B1fZQoaAZoCWgPQwicTx2rlCREQJSGlFKUaBVNEQFoFkdAoh3G/UONHnV9lChoBmgJaA9DCA6Fz9ZBlHBAlIaUUpRoFU0TAWgWR0CiHp6Uqx1QdX2UKGgGaAloD0MIp1zhXS4GOkCUhpRSlGgVS9toFkdAoh85RqGlAXV9lChoBmgJaA9DCP95GjDI6mtAlIaUUpRoFU06AWgWR0CiIDORcNYsdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:55bd75df513b51d123f9c99d16dc76c13f007c0aeccfaf6ed552398bf043a3da
|
3 |
+
size 153820
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fb860207ca0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb860207d30>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb860207dc0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb860207e50>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fb860207ee0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fb860207f70>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb86020b040>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fb86020b0d0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb86020b160>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb86020b1f0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb86020b280>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fb860205480>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVJgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaDCMBXN0YXRllH2UKIwDa2V5lGgSKJbACQAAAAAAAK79ExzOGm52UpvXvHMTljr4D7ZP+Sa4FP1UGxGr/tVTjEneJNkpHzvSHHCDWgfioKW5DVcwe5KHf04vKugFGchL/hdZmakjgUXaNWe6475qSjPST7VAJPLF9cfAuNqd3R1ZhmXodGAjN3oYUULLxjHl5pJnBVPSAUN+xEydqMFIssyX/oqayoswbVH//FcbABtRwGWSYeJKjOrUsxR78+day5fiMXvMjJECscnYByk6CAR5FTXKO99YHhLfNH51zF4FZZ3uL6pcey1a+t3d7Gly69pGLxc0N7WaDuN8sbo8EfWYT5HD9GZUUPVVjlwwycVz0AmQ5nKdjDRyYaMa42+UjzNjocU0CTjLprMO7QdHwWP2UdAWXVZTem782oWVzhQ3iephFV4AXOkGd2Nb1tSDDka40hyueUd51XgZ1kI/1a4SStArkylHkCr4NnWFPJCCvi9UTxiTjqhHU/elpn66PCdsKCDb6h8ZedH5oSkyb+vD1/vsys8cydCBJ77aUvAUr43LYbSJP+70ey93x5XV7cpfZAmr8fLrTUD463yHoQxDIz6E2rzHlx1IvHNhY29lv454hstNUn6/zCtJ2RHX/unNXBw1jVKaRfowecFPPtw+kj3yUOYJm07FIv7Hw3o0JTdqhYmv5AuU14JZhYmOPeTvPOjprFae7as60FYFA5i2obslmIJ5ueM3mP99NV6sOaGPohQVxq7UdnEnnjjjS2dI4FQoyk9Tfku3wLBLb2RSM7nY0LkD6plbWte2x09AChmmtx9Mn6ZX0bUrBTkIbQLvxbhbFHUbBSn0wiy1wfsBYCipZuRfrY+EoITE+jkzB0hB6E18ww6oQLo5D6b28ianBCR2es2a0gFUfT2weKMzR0YCtE3aAG2M6ufUlYywYvfUtO2hFzQrXgMKG7MrzjtcBBtClcTzZsJu4gxGkezj1Oj67zcC9HUgicBxf4Q+piBdPbHKHa4J2PfsJ9Jlo9j59mW92BLs4+tiPhqkqrGWhg0+Ev0/cZWW9uz3o6r5LjOHF5uTuPD0Kt6+XQdaxzd8k14qKq6UyRoA/3D416JzE3WP/hx62ZmJX12+VE/lXo3IR3AydEHg4mX2kwQw9I14fwAxk2tjhAEJu/yW9QOK01qFlhzYo5bso9wPkMqxU7f5VcxZXkEaalfCnog/QjpI7MgCRvwdP7T8lMIFfn3m4poHHv541djtdFigTQX6Sd5EISKpWbPkdI7i8JpFgOdIl048D9TMjYUb5H19/4z7UtEtvtsSN9whM31TTiSYPSIu//wjaETh7iAiNhNX9VkSrYvl+b22hYrLe56PutwCVKwYdfHX6oScLYhZqUIpHwzWaLHbRCHNYhNNrRJ0lpjy+OOSxaAC4cHsgjg8fv3VZh+wwU6GB7HFvbAM9bwyV8FOg/Y2oGdne931MV2qm+y08s/RRXuGOAw7sBO8GGK3yaTobC1YM27mCWI7Oajd3L7qpEDWj+Kh5jF0x9v3dlo8eZFEpzKERZHpWKD/jg/hYlvJGRp+KzZgTEehAyEOQNWIPXz55Wn4Q/xtHU4UTrLDSdj7tnUSn/niTA+s4hZXFF8u34PEXjs1ZNdqAy0HfNWRNyWK4ZdFmr2qWmKuayiW+hHXc4uk8WYuFzJdvF9D31LwnT1AgLYzpM/JK/F52PVR8DQa2C3n+BDUbhm5uuGalDc1vDCgh3uwv6O8tLyBz7WeHUE/kDVT+WL5QvTdwqAOVDbqj1fqlV7qxdDjGL/oDrnW7Y8T11qA8cCSLeBiIl7uLajw24K3VYz4SZpz6KToEvnl/GF5FHo84IoPlQnOAlOAg3sKkQOsBZJpgDgwZw0zsVS07e+0RXGGlQi4iBaHd89ziVJw4tDLNaKwBaTF5YaNuB7pryv8H6o1kUBnHPa9eu1fYTDngxeLHVXzbTvLlnYfpu8xg7PP8fN7+dpSKFHyEdEME5y/2NYJ2rpJkvCzNVsIlAtXiC7dKMHCR6tWpwJL7Re/Xz0IdbRgxFGnhmkIrDMJq7cZ8LVMcFyC75owCi8ZA00sPX1IUYfU8KZ+nkXSVK51JJll1aBG3oflWDyvE07SNIQ//CDRAY/I5wj89M939OX/ZamA4kQ6HNgFYhabAXoawy430Px2VhuIdEvkDe9kauh0fiyAml72dtK/mvcH8eoqQINl7HYGzLQ3en9KF7ZcYAduRYYsb3QuSHx+9i6HvMXFmnAHHmXLmbI7gErSdud3ENRnVg13kyFA7Q/7wJ1azxId/OJ66h96Q4RvWfK4jK78e9sU86mhRZWu+M7ykWWPlSoWnErhJCzt/8gY+NPxSUNF7/D+H9+Q0z5o4zUBTBw2J8loNkcOJYAuWA9MvkOWtB1JGMiJhNUK5yn8Xa0S9B/wGGdnmMW7ZRqzjhuyDGiZeH6DLNSQnyGTvTSrJWihbzoS53kAMytyjBAPn2X8jNB6MQbNLeodvb+PTzVOz2TkZZR9t1uskufq6ZO9gqAEtp/ekmZLK416W1NA7yl73IF5VXuuzFYC46Ej8H39Iw7kxkS1ZUJ7Ii02ZWU3gsLF/HdQ5IQD4INvkmaVCN/qZj00d8t3mQ23xUKjd7ZX72pnR5y03RZm8N0mABN7FzVNkzEIkmzPIjz7rVy4FER4k9TlXpp+tczJyl/2Vrhu7QcjANTnsXflmPDiluoS/fhrLOQDgke9SRv7RMzOXN1FFvBsahnjwS1ibbOuq3pSA9Ngdd/3ibTdR08T5XU2ZBT9jrFTkuGy0kbb2Dwg5d+uKwQwC6tB/zYuh6iOwdDnzgejvrEHxX++9XfWJFi1c+OATx1ygWovcpu7G7Do1h8552/b/O+iRf3RwOZeaK+OQ9NAJwun9dK9YXRuxSze+1w6lUa4EPi1bMfWWVWjEwy+UKxQDyM+xSimltKXDa5iSR6ATewRkOX1+Xgszz2ug+0o59sxB8qnQFSi8jS+wFT5fqMcw2GwiWKflSwGAL93cAMBoBtUtNkAOih9LAAZ39nioDW68ILUnCxswRulT2qckvlUtCNvnYwp/sY97OT2OHKnfwT26n/a8vb/FAE0oZzGwDFkISngWRHau8RCPbfJNc1uHWZ+ewYEnNubAsPSTHz4LetNKaXYmbrtSYHOi4T1KMvyaqjnGwagDO1x0r8jI3lx+XNVPZ+WO7p1o2OmaIAMTbP8cI8icKpaytCxkOuazw60JEmu9Wte3Bgwne8p4bIBNFF/XqKmljeGl5L2v0QyJtOZxg0oOyUaUygsLj2ErSiPFkvIHq6fK9AiuQuTQtQA6iJcN2A+PE7GpV/p4F0KFYGSaIM25p2w1sHnSYegk8QVlpRoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGJNcAKFlGgVdJRSlIwDcG9zlEsUdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": "RandomState(MT19937)"
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVLgsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAUHnLk+8AceV4pXIQk9IWWYfWk+Ezlle19AuALrnaa5tDXbvmw2CezSHRGdNxfz+hpOlXEwYf1tLehYRkRYaRVn+aChkX70TLo2XlZIFmgZ7FvHjOlgpuX5OY5g362xeKRec/dwDuUDT7wvWc4Agh6ScDrTK6zN8BovZ0CCa4Bxp8qvxN/IBQJ1iX+D1cP4tdeznOFIYyyj1z8JVKOgogCrxLrn0zBtrjh1AgXmnJ40Nc/I6IwCLcM2P3ST+t98XdMwgdOhW+Je0LEpg5sWEpj5wuw434OVPhdDsAY/lr8BAU7RCwBm9LVVk32GTHfacDq6ev37AUfzxaWEgFC5T4Ll9WoTNzW90Ns+cOQDhz+maN0Vx34NKtFVvHFmJNdl4n1VALrwfr2rh/og4jc+PdwYGFxVlqem1IdQKLEkolXwkZxA0TNq1KrwpoepgGS1fNq7Y/XqqkNqVQ6FOVVBmn505oXWhXwiSTJO/afdML9XIkYdke/VNgQFILYbw/e8YTwvgEE8lgETnastcNjCY7WyWQ2Ns1XVjzp4mAY4vX64o8QQLyAde9m5KXlFVwSjtB9qbPhAhYxXRohhTsncCZpKjGeL/ZDGqs8G152fZ57+oj3H2f6o0tkNd1mrlNE4f83j/4dGZ7eiKT2vI2mwNDN0RMCflLSnJjR1J2XJOAh2Pnpmi3HgwiJXD5z+CIqcOLfdqRVNq9GUNSJISAHPF7FwCR82+ubYjC+d4rCf3BEYyRqXiYWdkAqBTTgFn1pt0O1G0VALvzr6DZ6HS+RX+gatzOX5PrRVo7G3+GGgQ0jj/+KOC+6ysPFkvqVhddQkXaqu59zcdD66YjIG1FMMCEC/rPGmBWckJMQSlma/vlN+SguVYuJwddumoHigzLNFAmQ45aP5M/OXXcFPdOkijA6ADlE2MzV05NtQr+eLcHWI49Ykaqc8VOt6TnS8RMbwYRC6iKYBWl79PA6Zwh3BGp7NaVH7Y4LeXP91Wihxw0I92LFq6KrCy5wrdD10t47FiCTpOFgl2sXabEDcsNolvjtNHf1UiSa9MQyym1WPhplC5uX2tDrXqFOHXoIYLIM2l1TJuu3PG89wUYuyVYYcoPTlCJlWmhu0ecPX03ZvpuW/Z/o9QfQEhvzoopEbgALdqmXFT86WP12CJx/f+IDsdVdj8QmL9hh+qbCcMWZXdepmcQ+u8PmgKn6PIEE8di23y5Yr75vjM9+ttvvO60jsSdZWLxYJXKv0JxKzd7lqfpCqSUDwUKdtQKE3C1619MSvOkh3YWvtgi0YENfIQHUEyUGlym/5o5/2EodCwoKizARxGwK1Mv+qWvUy1oOsZlDTiqLHJl4DMU7LG4LRUxzUWvqPjZWAdW95O9ybTkEGJx4OT9L43yHflqxoaMwiCYaYp4z5meadOy37sl+ryTMxAS+P2EwsQRBhGSZ4nOTzx3pbGxVvm8SoEhtZuJo5QHxN3fFIAFVsG32dSfGsu/qSrBRz+20GQFJDUsFT+oQTrSBPkYrNRa55ZH2Q+LIOV4P7UzI+6rb08byW4RN0q/f7Pa8hjEUJHHYQD3/OU2nnL7oPWfCjUPKcseNEqFrvqDqLT93UzTPKue575JnLGH9JKgj2519tJ7fc5yxXuTe1jMPekPTNDI8t3U5kO9Dj62hFvfO4slvMLARmz0z4Mh9HMHuFT9a8vosG/Llp89oPXTgYbl2oGrguuo5bzRYhiic13B3MIB3z01L0dzUVusc6PhWHI0uclJiP3f3sHBP9cuB3liIqaRQJp9ht4RdcJn3ZS91nJQArw03pA1QeShq9cdFw6BJTLOIQLd8HJwbAqbFCQSRGPC/ou3GeO/S3BoosCrnOPlXOX+NWwvMH2nKEwLqUx0xLCkKerq7vCoCngzFteEsSLiCzluN1Doh1AkhkngPEp6oRRbRfsrM/zmCSnJpKhTi7ktVju0yLQKkrXkS+TVu0GnLRFlGKGFE3l13bKzjipPtttHCTk1M4+P3/zRrgbWAJW2BzHsNyCNZpBAS2zzqGd9s5qw7jMPzOPR8ZDeewix1fPrk/B+hjn+006W5U7yovp52zBBkWLqbjCIHY2kwqosBjJEwRivUaPVxKard/3FU6uXYbqAHVpkzb/gMba/Al1NcQhESMQqhJVJrv1UBRDNvDGAtvETDOY3uuy8jl/o2pu6B4hV9UhZq/tEJkYO8N15jxAf/7czIrbhjU8Bd2Yz/CnJMIC8cBsF2y7x/10yRsQsVujwmdePOI3Ogl3pp1nIiUvwlz2bZG1KPPeJeFHSeDrKtZk3HZw9/O+l3PZVLICVdK5JQoeRdKgoUxxPPSyZkqe/HBYEBMvh2UW+S9RNrmxOBS1xGCF28QDyYd6KeLuNFkSQzGCHjg25XgrGn17gcaycqMWcqt+EsqQfZQjy5/8Tbr/aj06Yvemye1O6z54PNEKpTAKxY0TI6PwxyUdVfeXpfJdY1A6F8fn/5L9wYy4sgJXNMDWcAyNZVbbvdJPNxfgf5zCR3TFhtSMEGHBiFlf2hl7BOdV5RlVWtIuc/PZBRUwsehqGuM3aTYOJAcq6rxV5g8WHnE8ozKsUTE/Ib99SizmP6SR0RN7W44o5e3SmldoCFGE8U9mzqaNL03Uu/HmnAhjFq8OhMswegy4a9KeMnsGSGxl1JgQEWYFo0Qkvtzad9YVfdK69iisNmKYhBy1lL/LvLWMSw08pKgx0jfTRQM1uIc+e2fPOqA3BCe8dRw7ec2BLPBhNyFxjZOINRAWlnZq8a7fmmADDAWN3r0+6kzV5xDPna8jfuODVnAb+a8BPyLcP/R343yC4XzMJpvmfyLnyGZOcIlUDBxjR7iKfLqDzEqXbUvQY8d2O0i95ye/qos/KnHRHxoWSvmH4v8BSe4GfrUSLAx4SGzOJxtUhH6zOAdkFwvPMckPglEF90PmdehWeim4msUhiP3mOzariAbYyNvFNkT83hAjDqIDIDSOED1XAXxLYGo9ibK9WTGc6Bxwpm52c6grReYMeeEJeYzYO7SoBwE8mPw8gHg1rHtWhIYn6r6XYHOugWW1Bt+lkODydpwdZTuYxyrYj8+UuHG8UIKkUlvMSNXQSJT0o7EXudTHyrqVjwsJrrN/o/sjGcTXJix2BrJZesxDCjeiaoeKMRLqE/1ZYHmC3/wr7CmGf+jJen2qnXEgOQFKCMRpoldk1b7exvu1+mXiT5j+8VfsPveUYOg7uiYvsArkG+o/MHNTyI000bDyYBuJn+LO7N0RPrpaRou79iY/EObxZoi/BRaV/YX4l8+Bbu5G1vkV8QoZTFdUBgKZPtz3cb3UtWz7fQSAalGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RLBHWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": "RandomState(MT19937)"
|
43 |
+
},
|
44 |
+
"n_envs": 1,
|
45 |
+
"num_timesteps": 1000448,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1672306026477000597,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAM1OAz2CkbU/ht9aPnevCL5L2dY7VhcPPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.00044800000000000395,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVdRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIlG3gDtTFPkCUhpRSlIwBbJRL/owBdJRHQKGlEzRhMJx1fZQoaAZoCWgPQwigwabOo2dwQJSGlFKUaBVNewFoFkdAoaY5ztCzC3V9lChoBmgJaA9DCBi0kIDR40JAlIaUUpRoFU0YAWgWR0Chp7iojv/jdX2UKGgGaAloD0MIdQRws3juakCUhpRSlGgVTX0BaBZHQKGpBlqagEl1fZQoaAZoCWgPQwjc2OxINV5wQJSGlFKUaBVNfgFoFkdAoapCb2Dg63V9lChoBmgJaA9DCMzQeCLIi3BAlIaUUpRoFU1EAWgWR0Chq/Q8OkLydX2UKGgGaAloD0MI1jibjkBYcECUhpRSlGgVTYkBaBZHQKGtQRZlnRN1fZQoaAZoCWgPQwgVOxqH+rBvQJSGlFKUaBVNfAFoFkdAoa9LfpD/l3V9lChoBmgJaA9DCLjqOlRTT2tAlIaUUpRoFU2GAWgWR0ChsKLYf4h2dX2UKGgGaAloD0MIRBg/jTtRcUCUhpRSlGgVTT0BaBZHQKGxmM6zVtp1fZQoaAZoCWgPQwh6/x8nTJFsQJSGlFKUaBVNfgFoFkdAobOV/J/5L3V9lChoBmgJaA9DCBwMdVihbHBAlIaUUpRoFU0/AWgWR0ChtJnsLORldX2UKGgGaAloD0MIG2g+5253B8CUhpRSlGgVS/BoFkdAobVTNB4UvnV9lChoBmgJaA9DCLsqUItBjW9AlIaUUpRoFU2yAWgWR0Cht4Hr6ciGdX2UKGgGaAloD0MID7QCQ1bnQECUhpRSlGgVTUUBaBZHQKG4kqOLiuN1fZQoaAZoCWgPQwioVfSH5lZvQJSGlFKUaBVNMgFoFkdAobmCzRhMJ3V9lChoBmgJaA9DCAbZsnzd+GxAlIaUUpRoFU1YAWgWR0ChuzHX/YJ3dX2UKGgGaAloD0MI+3d95ixTcECUhpRSlGgVTTIBaBZHQKG8OahpQDV1fZQoaAZoCWgPQwgQ5nYv9xFxQJSGlFKUaBVNSAFoFkdAob0/UtqYZ3V9lChoBmgJaA9DCFN3ZReMZ25AlIaUUpRoFU0xAWgWR0Chvj5RCQcQdX2UKGgGaAloD0MIndhD+1hvbUCUhpRSlGgVTXEBaBZHQKHAGbADaGp1fZQoaAZoCWgPQwiTNeohmkVtQJSGlFKUaBVNUwFoFkdAocE584Pwu3V9lChoBmgJaA9DCCeIug9AYm5AlIaUUpRoFU05AWgWR0ChwkncL0BfdX2UKGgGaAloD0MIyk+qfTpfbkCUhpRSlGgVTUcBaBZHQKHEBQSi/PB1fZQoaAZoCWgPQwjjiSDOQ/ptQJSGlFKUaBVNQgFoFkdAocUFb9qDb3V9lChoBmgJaA9DCGtGBrlLA3BAlIaUUpRoFU2TAWgWR0Chxpd/8VHndX2UKGgGaAloD0MI5GiOrHxEb0CUhpRSlGgVTWoBaBZHQKHIfDneSB91fZQoaAZoCWgPQwhKCcGqeg1tQJSGlFKUaBVNYgFoFkdAocmyLCN0eXV9lChoBmgJaA9DCG2MnfASo3BAlIaUUpRoFU1UAWgWR0Chyr0DuBtldX2UKGgGaAloD0MI8fRKWQYFb0CUhpRSlGgVTWkBaBZHQKHMicc2itd1fZQoaAZoCWgPQwhbJO1GH9ssQJSGlFKUaBVNSQFoFkdAoc2S8SPEKnV9lChoBmgJaA9DCKw8gbDTNW9AlIaUUpRoFU1hAWgWR0ChzsEwvg3tdX2UKGgGaAloD0MI3XwjuufNaECUhpRSlGgVTfYBaBZHQKHRT4SHuZ11fZQoaAZoCWgPQwhfCg+aXbBrQJSGlFKUaBVNiAFoFkdAodKxlvqC6HV9lChoBmgJaA9DCOrPfqSIRnFAlIaUUpRoFU1XAWgWR0Ch1Hh8IAwPdX2UKGgGaAloD0MILXx9rYuxcECUhpRSlGgVTSwBaBZHQKHVcTj/+851fZQoaAZoCWgPQwhP6zaofTZtQJSGlFKUaBVNOQFoFkdAodaARVZLZnV9lChoBmgJaA9DCCNnYU+7smtAlIaUUpRoFU2aAWgWR0Ch2IrpRoAXdX2UKGgGaAloD0MIjBNf7SjeMsCUhpRSlGgVTSYBaBZHQKHZeWykbgl1fZQoaAZoCWgPQwjt9IO6yFBuQJSGlFKUaBVNTwFoFkdAodqOTA31jHV9lChoBmgJaA9DCOgtHt5zaCTAlIaUUpRoFUv2aBZHQKHb72HLzPN1fZQoaAZoCWgPQwjVlc/yPANvQJSGlFKUaBVNMAFoFkdAodzwl2NedHV9lChoBmgJaA9DCInOMovQ+XBAlIaUUpRoFU2MAWgWR0Ch3jk4WDYidX2UKGgGaAloD0MIh+EjYsr1bECUhpRSlGgVTT4BaBZHQKHfzlGwzLx1fZQoaAZoCWgPQwiu8gTCTkEzQJSGlFKUaBVNJAFoFkdAoeCztzCDVnV9lChoBmgJaA9DCH6pnzcVOHBAlIaUUpRoFU11AWgWR0Ch4fXmNipedX2UKGgGaAloD0MIVd0jmyuFbUCUhpRSlGgVTUYBaBZHQKHjmZpi7TV1fZQoaAZoCWgPQwgu46YGml5uQJSGlFKUaBVNYwFoFkdAoeTEFnqVyHV9lChoBmgJaA9DCNzWFp4XrXBAlIaUUpRoFU0uAWgWR0Ch5aokqto0dX2UKGgGaAloD0MIsDic+dVENUCUhpRSlGgVTSgBaBZHQKHmjKjBVMp1fZQoaAZoCWgPQwjoTxvV6f5sQJSGlFKUaBVNMQFoFkdAoegfHaN+9nV9lChoBmgJaA9DCMHEH0WdxThAlIaUUpRoFUvXaBZHQKHow2LHdXV1fZQoaAZoCWgPQwjICRNGs5VwQJSGlFKUaBVNewFoFkdAoencNFz+33V9lChoBmgJaA9DCHJNgcxOpHBAlIaUUpRoFU3HAWgWR0Ch6+oK2KEWdX2UKGgGaAloD0MII7pnXeOmcECUhpRSlGgVTVQBaBZHQKHtC14Pf9B1fZQoaAZoCWgPQwjyecVTj9xsQJSGlFKUaBVNPQFoFkdAoe4KSaEzwnV9lChoBmgJaA9DCM0hqYWS9TlAlIaUUpRoFU0NAWgWR0Ch725GKAJ+dX2UKGgGaAloD0MIPiDQmTR7bkCUhpRSlGgVTUABaBZHQKHwcT1TR6Z1fZQoaAZoCWgPQwgKTRJLSrJuQJSGlFKUaBVNRAFoFkdAofF7DIikf3V9lChoBmgJaA9DCLmKxW+KbXBAlIaUUpRoFU1xAWgWR0Ch80MY2sJZdX2UKGgGaAloD0MICOV9HM2R3L+UhpRSlGgVS91oFkdAofPnBrN4aHV9lChoBmgJaA9DCH8vhQfNuHBAlIaUUpRoFU2DAWgWR0Ch9THKfWc0dX2UKGgGaAloD0MIBkoKLIDHbkCUhpRSlGgVTVwBaBZHQKH25w71Zkl1fZQoaAZoCWgPQwh3LSEf9MwlQJSGlFKUaBVLwWgWR0Ch93DbJwKjdX2UKGgGaAloD0MIl+MViJ4UEUCUhpRSlGgVS5hoFkdAoffaTjebeHV9lChoBmgJaA9DCGJM+nspdnBAlIaUUpRoFU1vAWgWR0Ch+Q/1g6U8dX2UKGgGaAloD0MIYocx6W9bb0CUhpRSlGgVTUkBaBZHQKH6rxMFlkJ1fZQoaAZoCWgPQwgZy/RLxENCQJSGlFKUaBVL+WgWR0Ch+2gtOEdvdX2UKGgGaAloD0MIRgpl4euibUCUhpRSlGgVTW8BaBZHQKH8g5nUUfx1fZQoaAZoCWgPQwhQc/IiE2gwQJSGlFKUaBVL1GgWR0Ch/SRKQJXydX2UKGgGaAloD0MIaXIxBpbucECUhpRSlGgVTTMBaBZHQKH+z5Lytmt1fZQoaAZoCWgPQwip+Sr52C1uQJSGlFKUaBVNKgFoFkdAof++QU5+6XV9lChoBmgJaA9DCPcEie3uaHBAlIaUUpRoFU0FAWgWR0CiAJotL+PzdX2UKGgGaAloD0MIQBh47n0jcECUhpRSlGgVTUMBaBZHQKICUBuGbkR1fZQoaAZoCWgPQwjbpKKxdtVuQJSGlFKUaBVNMQFoFkdAogNcNDtw73V9lChoBmgJaA9DCLQ7pBjgpnBAlIaUUpRoFU0SAWgWR0CiBC8Md92HdX2UKGgGaAloD0MI6Pf9mxfTRUCUhpRSlGgVS9hoFkdAogTI1+AmRnV9lChoBmgJaA9DCLvs151uwm1AlIaUUpRoFU33AWgWR0CiB0WSMcZMdX2UKGgGaAloD0MIaHizBm86cECUhpRSlGgVTUQBaBZHQKIIPUSZjQR1fZQoaAZoCWgPQwjiV6zhIu5wQJSGlFKUaBVNNAFoFkdAogk2xY7q6nV9lChoBmgJaA9DCOfj2lAxq25AlIaUUpRoFU1DAWgWR0CiCs+G47RwdX2UKGgGaAloD0MIYroQqz/qSECUhpRSlGgVS+toFkdAoguE1EVnEnV9lChoBmgJaA9DCPDce7jk729AlIaUUpRoFU1DAWgWR0CiDIyCvovBdX2UKGgGaAloD0MIW8064/sRb0CUhpRSlGgVTTYBaBZHQKIONbblA/t1fZQoaAZoCWgPQwjdQIF38uRsQJSGlFKUaBVNPQFoFkdAog9BZ8rqdHV9lChoBmgJaA9DCKVmD7QC4m5AlIaUUpRoFU1dAWgWR0CiEFruQZGbdX2UKGgGaAloD0MIu9Vz0nt5bUCUhpRSlGgVTWMBaBZHQKISIZpBX0Z1fZQoaAZoCWgPQwg6QDBHT25yQJSGlFKUaBVNBAFoFkdAohLho7FKkHV9lChoBmgJaA9DCOHtQQjI0XBAlIaUUpRoFU1PAWgWR0CiFBU0elsQdX2UKGgGaAloD0MI/BnerMGibUCUhpRSlGgVTSUBaBZHQKIU+KTB68h1fZQoaAZoCWgPQwgWa7jIPdZsQJSGlFKUaBVNTAFoFkdAohabhWHUMHV9lChoBmgJaA9DCC20c5oFq2xAlIaUUpRoFU1qAWgWR0CiF8dvsJIEdX2UKGgGaAloD0MIiLg5lUwfcUCUhpRSlGgVTS0BaBZHQKIYqQEIPbx1fZQoaAZoCWgPQwi38LxU7GZsQJSGlFKUaBVNVgFoFkdAohpiVnmJWXV9lChoBmgJaA9DCOV/8nfvF25AlIaUUpRoFU02AWgWR0CiG1r0Bfa6dX2UKGgGaAloD0MIQ1ciUH2kckCUhpRSlGgVTUwBaBZHQKIcVcQiA2B1fZQoaAZoCWgPQwicTx2rlCREQJSGlFKUaBVNEQFoFkdAoh3G/UONHnV9lChoBmgJaA9DCA6Fz9ZBlHBAlIaUUpRoFU0TAWgWR0CiHp6Uqx1QdX2UKGgGaAloD0MIp1zhXS4GOkCUhpRSlGgVS9toFkdAoh85RqGlAXV9lChoBmgJaA9DCP95GjDI6mtAlIaUUpRoFU06AWgWR0CiIDORcNYsdWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 3908,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f8904ff0e4ab6e287f9ab820f46696812ca8aec27137500bc28171312d6dd1bf
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:591d365f0586dab08d9c0adea3ad91e0ccefea780dc22cee25c220cdaf8b8936
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.8.16
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu116
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (241 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 244.8282682382217, "std_reward": 17.188019537163463, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-29T10:08:33.624479"}
|