larrikin-coder commited on
Commit
7845d6e
·
verified ·
1 Parent(s): 144de39

Model Card created

Browse files
Files changed (1) hide show
  1. README.md +80 -0
README.md ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ datasets:
4
+ - brain-mri-dataset
5
+ metrics:
6
+ - accuracy
7
+ - auc
8
+ model-index:
9
+ - name: CNN Brain Tumor Classifier
10
+ results:
11
+ - task:
12
+ type: image-classification
13
+ dataset:
14
+ name: Brain MRI Dataset
15
+ type: brain-mri-dataset
16
+ metrics:
17
+ - name: Accuracy
18
+ type: accuracy
19
+ value: 0.90
20
+ - name: AUC
21
+ type: auc
22
+ value: 0.90
23
+ ---
24
+
25
+ # 🧠 CNN Brain Tumor Classifier
26
+
27
+ ## Model Description
28
+ This repository contains a Convolutional Neural Network (CNN) built with **TensorFlow/Keras** for classifying brain MRI scans.
29
+ The model can distinguish between three types of brain tumors and healthy scans.
30
+
31
+ ⚠️ **Disclaimer**: This model is provided for **educational and research purposes only**.
32
+ It is **not a medical diagnostic tool** and should not be used in clinical practice.
33
+
34
+ ---
35
+
36
+ ## Classes
37
+ The model predicts one of the following four categories:
38
+ - **Glioma**
39
+ - **Meningioma**
40
+ - **Pituitary tumor**
41
+ - **No tumor** (healthy)
42
+
43
+ ---
44
+
45
+ ## Training Details
46
+ - **Framework**: TensorFlow / Keras
47
+ - **Architecture**: Custom CNN
48
+ - **Input size**: 224 × 224 RGB MRI images
49
+ - **Loss function**: `categorical_crossentropy`
50
+ - **Optimizer**: `Adam`
51
+ - **Epochs**: 10
52
+ - **Metrics**: Accuracy, AUC
53
+
54
+ ---
55
+
56
+ ## Dataset
57
+ - **Source**: Public brain MRI dataset (glioma, meningioma, pituitary, no tumor)
58
+ - **Preprocessing**:
59
+ - Images resized to 224 × 224
60
+ - Normalized to [0, 1] range
61
+ - Augmentation (rotation, flipping, zoom) applied during training
62
+
63
+ ---
64
+
65
+ ## Evaluation Results
66
+ | Metric | Value |
67
+ |---------------------|-----------|
68
+ | Training Accuracy | ~96% |
69
+ | Validation Accuracy | ~85–90% |
70
+ | AUC (training) | ~0.90 |
71
+
72
+ *(values may vary depending on train/validation split)*
73
+
74
+ ---
75
+
76
+ ## Usage
77
+
78
+ ### Installation
79
+ ```bash
80
+ pip install tensorflow huggingface_hub