Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +96 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: stable-baselines3
|
| 3 |
+
tags:
|
| 4 |
+
- LunarLander-v2
|
| 5 |
+
- deep-reinforcement-learning
|
| 6 |
+
- reinforcement-learning
|
| 7 |
+
- stable-baselines3
|
| 8 |
+
model-index:
|
| 9 |
+
- name: PPO
|
| 10 |
+
results:
|
| 11 |
+
- task:
|
| 12 |
+
type: reinforcement-learning
|
| 13 |
+
name: reinforcement-learning
|
| 14 |
+
dataset:
|
| 15 |
+
name: LunarLander-v2
|
| 16 |
+
type: LunarLander-v2
|
| 17 |
+
metrics:
|
| 18 |
+
- type: mean_reward
|
| 19 |
+
value: 286.71 +/- 19.36
|
| 20 |
+
name: mean_reward
|
| 21 |
+
verified: false
|
| 22 |
+
---
|
| 23 |
+
|
| 24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
| 25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
| 26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
| 27 |
+
|
| 28 |
+
## Usage (with Stable-baselines3)
|
| 29 |
+
TODO: Add your code
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
```python
|
| 33 |
+
from stable_baselines3 import ...
|
| 34 |
+
from huggingface_sb3 import load_from_hub
|
| 35 |
+
|
| 36 |
+
...
|
| 37 |
+
```
|
config.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6d46cedd30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6d46ceddc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6d46cede50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6d46cedee0>", "_build": "<function ActorCriticPolicy._build at 0x7f6d46cedf70>", "forward": "<function ActorCriticPolicy.forward at 0x7f6d46cf0040>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6d46cf00d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6d46cf0160>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6d46cf01f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6d46cf0280>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6d46cf0310>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6d46cf03a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f6d46cef580>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681558730658604525, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM3bjrx0yG8/c0nBvHEk+L7trMC8gEvQvQAAAAAAAAAAMx+mvGq+rD8rMGu9RrsIv2yJ6r3T84Q9AAAAAAAAAADNyvS8rnWkuk4sHboctva4xAtzOiBEQjkAAIA/AACAP7Nb5z3N3gI+5bKCvuu6sb4Hw8e9kRyBvAAAAAAAAAAAIG1iPrghsz9aqik/iYjWvl3mlj5PhLU+AAAAAAAAAABg7kE+/2AlP+Z7ur3X9Oq+5XomPqhpy7wAAAAAAAAAAM2Rob15Hew+IqVjPn5Hqr5mcuM8ODmVPAAAAAAAAAAAmi8KPEG/2z2Rxzq6nrOFvgn1Tj1ZWg69AAAAAAAAAACaF3m9cRNvu7VLUDhPhrs8EgKePIXonr0AAIA/AACAP83hyry+AMI982uhPTN0rr7bfA49MHVdvAAAAAAAAAAAzduFPMqTlT8GVaA90rgTv0G3DjwPAaQ8AAAAAAAAAACzdQK+TEyQPstrwT4ONYm+jobbPb5JujwAAAAAAAAAAM2CRjwhSLM/3LKWPlDPHb6vRbK71hFVPAAAAAAAAAAAmlNjvMPZarrYc2szDt33Ltb4Gbp6ILqzAACAPwAAgD+a67Q98HEDP5OetDzdUtS+lUvZPervCD0AAAAAAAAAAIBhK705srI+nF2GPs4utb6z2KQ+3GYcvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVJBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIP+QtV79jb0CUhpRSlIwBbJRL5IwBdJRHQJ+W90jkdWB1fZQoaAZoCWgPQwiBzM6itwdxQJSGlFKUaBVL3WgWR0CflwfKp1ifdX2UKGgGaAloD0MIGavN/6stb0CUhpRSlGgVS9xoFkdAn5eMW9DhL3V9lChoBmgJaA9DCBGQL6GClnBAlIaUUpRoFUvVaBZHQJ+YtNKyv9t1fZQoaAZoCWgPQwjdYKjDChdyQJSGlFKUaBVL4mgWR0CfmSEBKcurdX2UKGgGaAloD0MIYd14d2QWcECUhpRSlGgVS+ZoFkdAn5ki7GvOhXV9lChoBmgJaA9DCNnO91NjqXFAlIaUUpRoFUvKaBZHQJ+ZReRgZ0l1fZQoaAZoCWgPQwiHFAMkGk5xQJSGlFKUaBVL+2gWR0CfmlgZCOWCdX2UKGgGaAloD0MIoE55dONrckCUhpRSlGgVTQkBaBZHQJ+bbvCuU2V1fZQoaAZoCWgPQwgxe9l2WjJyQJSGlFKUaBVNBAFoFkdAn5vfpD/lyXV9lChoBmgJaA9DCO0NvjCZF21AlIaUUpRoFUvaaBZHQJ+cQfwI+nt1fZQoaAZoCWgPQwjFdYwrbmhzQJSGlFKUaBVL0GgWR0CfnZqhUR4AdX2UKGgGaAloD0MIrKqX3yk3cUCUhpRSlGgVS/FoFkdAn54KC6H0snV9lChoBmgJaA9DCHIVi9+U7XJAlIaUUpRoFUvXaBZHQJ+fULtu1nd1fZQoaAZoCWgPQwiyhSAHZaNwQJSGlFKUaBVL22gWR0Cfn2iN83MqdX2UKGgGaAloD0MIZOsZwvF1ckCUhpRSlGgVS/JoFkdAn59nwgDA8HV9lChoBmgJaA9DCNUgzO1e2XJAlIaUUpRoFUv0aBZHQJ+f0x20Re11fZQoaAZoCWgPQwi7fsFuWNRxQJSGlFKUaBVL7mgWR0CfoMX2/SH/dX2UKGgGaAloD0MIH2RZMPEMc0CUhpRSlGgVTQwBaBZHQJ+g9/d69kB1fZQoaAZoCWgPQwiBBTBlIMVyQJSGlFKUaBVL12gWR0CfoTwgTyrgdX2UKGgGaAloD0MIVwqBXKLcckCUhpRSlGgVS9loFkdAn6GnRb8m8nV9lChoBmgJaA9DCLiU88WeynFAlIaUUpRoFUvraBZHQJ+iS0WuX/p1fZQoaAZoCWgPQwgzxRwE3aJzQJSGlFKUaBVL+mgWR0CfowUOd5IIdX2UKGgGaAloD0MIRIZVvJG9cECUhpRSlGgVS+1oFkdAn6PbXxvvSnV9lChoBmgJaA9DCD3TS4xlsG9AlIaUUpRoFUvYaBZHQJ+kIHLRrrR1fZQoaAZoCWgPQwinJVZGY2RxQJSGlFKUaBVL4mgWR0CfpP/qPfbcdX2UKGgGaAloD0MIyOvBpPgOcUCUhpRSlGgVS+JoFkdAn6Vha1TisHV9lChoBmgJaA9DCKcGms95YnFAlIaUUpRoFUvxaBZHQJ+nSMvRJEp1fZQoaAZoCWgPQwgydOyg0t1wQJSGlFKUaBVLzWgWR0Cfp2tPYWcjdX2UKGgGaAloD0MI9WVpp+alcUCUhpRSlGgVS/toFkdAn7hunEVFhHV9lChoBmgJaA9DCNatnpNeBXBAlIaUUpRoFUviaBZHQJ+4kC6pYLd1fZQoaAZoCWgPQwhybhPulXBxQJSGlFKUaBVL5WgWR0CfuLCNjslcdX2UKGgGaAloD0MIvJAOD+GMcUCUhpRSlGgVS+loFkdAn7kLkjopx3V9lChoBmgJaA9DCHzysFDrrW5AlIaUUpRoFUvlaBZHQJ+5pxDLKV91fZQoaAZoCWgPQwiBP/z8t1RxQJSGlFKUaBVL22gWR0CfueQ176YWdX2UKGgGaAloD0MIhIHn3kMeb0CUhpRSlGgVS9loFkdAn7pM1jy4F3V9lChoBmgJaA9DCNhJfVmac3JAlIaUUpRoFUv+aBZHQJ+6fhuO0b91fZQoaAZoCWgPQwheK6G75H5xQJSGlFKUaBVLyWgWR0CfutqPOpsHdX2UKGgGaAloD0MIoMVSJB8IcECUhpRSlGgVS+FoFkdAn7r0c0cfeXV9lChoBmgJaA9DCAq6vaSxNnFAlIaUUpRoFUvbaBZHQJ+7eVX3g1p1fZQoaAZoCWgPQwjLSL2n8lhxQJSGlFKUaBVLzGgWR0Cfu9H5JsfrdX2UKGgGaAloD0MIlzldFhN1cUCUhpRSlGgVS/1oFkdAn7zC/oJRfnV9lChoBmgJaA9DCAwCK4cWaHFAlIaUUpRoFUvkaBZHQJ+9vHo5ggJ1fZQoaAZoCWgPQwhbCkj7H05vQJSGlFKUaBVL1mgWR0CfvcEr5IpZdX2UKGgGaAloD0MISIrIsMqackCUhpRSlGgVS99oFkdAn75BuO0b+HV9lChoBmgJaA9DCA4V4/wN03FAlIaUUpRoFUv9aBZHQJ++SZ9d/rl1fZQoaAZoCWgPQwiXVdgM8C9xQJSGlFKUaBVL72gWR0CfvoUIcBEKdX2UKGgGaAloD0MI6Sec3VrIcECUhpRSlGgVS+5oFkdAn78FtTDO1XV9lChoBmgJaA9DCKt14nL8KnJAlIaUUpRoFUvdaBZHQJ+/OsGPgel1fZQoaAZoCWgPQwjt1Fxu8DpxQJSGlFKUaBVLymgWR0Cfv5DWK/EgdX2UKGgGaAloD0MIPSgoRSuFb0CUhpRSlGgVS9NoFkdAn7+XsLORknV9lChoBmgJaA9DCMxAZfz77XJAlIaUUpRoFUv4aBZHQJ/AE+yJKrd1fZQoaAZoCWgPQwhYxRuZB2pyQJSGlFKUaBVLz2gWR0CfwJsXBP9DdX2UKGgGaAloD0MI/b5/8yJbckCUhpRSlGgVS/RoFkdAn8DsKG+K0nV9lChoBmgJaA9DCLGmsigsNXFAlIaUUpRoFUvyaBZHQJ/A+ff4yoJ1fZQoaAZoCWgPQwiiXYWUX59xQJSGlFKUaBVL02gWR0CfwRdEb5uZdX2UKGgGaAloD0MIQSlaudeRcUCUhpRSlGgVS9doFkdAn8IL5ZbILnV9lChoBmgJaA9DCF7Ymq08cXNAlIaUUpRoFUvQaBZHQJ/Cxo+Ofd11fZQoaAZoCWgPQwj4GKw4FQNwQJSGlFKUaBVLyGgWR0Cfww/GVAzIdX2UKGgGaAloD0MIexaE8r5WbkCUhpRSlGgVS+VoFkdAn8NR91EE1XV9lChoBmgJaA9DCM8tdCXCBnNAlIaUUpRoFUvKaBZHQJ/DYzvZyuJ1fZQoaAZoCWgPQwgvM2yUNatyQJSGlFKUaBVL2GgWR0Cfw3xwyZa3dX2UKGgGaAloD0MI/ijqzP2wcUCUhpRSlGgVS8poFkdAn8RwezUqhHV9lChoBmgJaA9DCJIgXAEFVnFAlIaUUpRoFUvuaBZHQJ/FElE7W/d1fZQoaAZoCWgPQwgpmDEFawlyQJSGlFKUaBVNCgFoFkdAn8Wkbo8p1HV9lChoBmgJaA9DCN4E3zQ9a3BAlIaUUpRoFUv3aBZHQJ/FtjMFEAp1fZQoaAZoCWgPQwgDeuHOBXJwQJSGlFKUaBVL4GgWR0CfxbCBPKuCdX2UKGgGaAloD0MIp5at9cVbbkCUhpRSlGgVS91oFkdAn8Y4Zl4C63V9lChoBmgJaA9DCKm+84sS4G5AlIaUUpRoFUvgaBZHQJ/GlfD1oQF1fZQoaAZoCWgPQwjX3xKAv7dzQJSGlFKUaBVL9WgWR0Cfx0jnFHawdX2UKGgGaAloD0MIArhZvNhmcUCUhpRSlGgVS/9oFkdAn8dsAzYVZnV9lChoBmgJaA9DCLgE4J+SCnFAlIaUUpRoFUvXaBZHQJ/Ie64Ds+p1fZQoaAZoCWgPQwhPsP86N5NxQJSGlFKUaBVLzmgWR0CfyIzYVZcLdX2UKGgGaAloD0MIM9/BT9xscUCUhpRSlGgVTQUBaBZHQJ/I7oA4n4R1fZQoaAZoCWgPQwhCXDl7p/dxQJSGlFKUaBVLzWgWR0CfyPyTINmUdX2UKGgGaAloD0MI6gd1kUJ9cECUhpRSlGgVS+BoFkdAn8lKVlf7anV9lChoBmgJaA9DCIRGsHG91nBAlIaUUpRoFUvuaBZHQJ/Jtg0CRwJ1fZQoaAZoCWgPQwg8bCIzlwtvQJSGlFKUaBVL1WgWR0CfyjA3kxREdX2UKGgGaAloD0MIq5MzFLeAckCUhpRSlGgVS8xoFkdAn8sUDhcZ+HV9lChoBmgJaA9DCJqUgm4vjXJAlIaUUpRoFUvUaBZHQJ/LYBfa6Bl1fZQoaAZoCWgPQwiEZAETOJBxQJSGlFKUaBVL6mgWR0Cfy/m4RVZLdX2UKGgGaAloD0MIveDTnLwRc0CUhpRSlGgVTQEBaBZHQJ/MB7XxvvV1fZQoaAZoCWgPQwgQBTOm4NFwQJSGlFKUaBVL4GgWR0CfzDlPacqfdX2UKGgGaAloD0MImgewyK/OcUCUhpRSlGgVS+ZoFkdAn8y9bX6InHV9lChoBmgJaA9DCMa/z7jwXGdAlIaUUpRoFU3oA2gWR0CfzUp3X7LudX2UKGgGaAloD0MIoWRyaieqcECUhpRSlGgVS+NoFkdAn82D+m3vyHV9lChoBmgJaA9DCNgQHJcxU3JAlIaUUpRoFUvyaBZHQJ/NxSOzY291fZQoaAZoCWgPQwj3ViQmaPxyQJSGlFKUaBVL0mgWR0CfzoPi1iOOdX2UKGgGaAloD0MI/p3t0Zvhb0CUhpRSlGgVS+xoFkdAn86zyFwkxHV9lChoBmgJaA9DCIMxIlHowXJAlIaUUpRoFUviaBZHQJ/O3GdZq211fZQoaAZoCWgPQwgno8ow7j1xQJSGlFKUaBVL3mgWR0CfzxcjZ+QVdX2UKGgGaAloD0MIaY6s/LIsckCUhpRSlGgVS/5oFkdAn887g4wRG3V9lChoBmgJaA9DCOBJC5eVgXNAlIaUUpRoFUvgaBZHQJ/Pw4aP0Zp1fZQoaAZoCWgPQwizsRLzLMlyQJSGlFKUaBVL4GgWR0Cf0FowEhaDdX2UKGgGaAloD0MISP5g4HlecUCUhpRSlGgVS9NoFkdAn9D9TxXnyXV9lChoBmgJaA9DCE2jycXYdnJAlIaUUpRoFUvfaBZHQJ/RrMfRu0l1fZQoaAZoCWgPQwicacL2kyZwQJSGlFKUaBVL12gWR0Cf0iq4H5aedX2UKGgGaAloD0MIQQ5KmGmKckCUhpRSlGgVS9doFkdAn9JtMoMKC3V9lChoBmgJaA9DCD1jX7Jx8HJAlIaUUpRoFUvoaBZHQJ/SrVUdaMd1fZQoaAZoCWgPQwjgFFYq6BdwQJSGlFKUaBVLx2gWR0Cf00xIre67dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 496, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2c1c8f0c61b4f1aacfddc88b431729ccd6477894508ea507079ee79445a19069
|
| 3 |
+
size 147271
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
1.8.0
|
ppo-LunarLander-v2/data
ADDED
|
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"policy_class": {
|
| 3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
| 4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
| 5 |
+
"__module__": "stable_baselines3.common.policies",
|
| 6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
| 7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f6d46cedd30>",
|
| 8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6d46ceddc0>",
|
| 9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6d46cede50>",
|
| 10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6d46cedee0>",
|
| 11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f6d46cedf70>",
|
| 12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f6d46cf0040>",
|
| 13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6d46cf00d0>",
|
| 14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6d46cf0160>",
|
| 15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f6d46cf01f0>",
|
| 16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6d46cf0280>",
|
| 17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6d46cf0310>",
|
| 18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6d46cf03a0>",
|
| 19 |
+
"__abstractmethods__": "frozenset()",
|
| 20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f6d46cef580>"
|
| 21 |
+
},
|
| 22 |
+
"verbose": 1,
|
| 23 |
+
"policy_kwargs": {},
|
| 24 |
+
"num_timesteps": 1015808,
|
| 25 |
+
"_total_timesteps": 1000000,
|
| 26 |
+
"_num_timesteps_at_start": 0,
|
| 27 |
+
"seed": null,
|
| 28 |
+
"action_noise": null,
|
| 29 |
+
"start_time": 1681558730658604525,
|
| 30 |
+
"learning_rate": 0.0003,
|
| 31 |
+
"tensorboard_log": null,
|
| 32 |
+
"lr_schedule": {
|
| 33 |
+
":type:": "<class 'function'>",
|
| 34 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
| 35 |
+
},
|
| 36 |
+
"_last_obs": {
|
| 37 |
+
":type:": "<class 'numpy.ndarray'>",
|
| 38 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM3bjrx0yG8/c0nBvHEk+L7trMC8gEvQvQAAAAAAAAAAMx+mvGq+rD8rMGu9RrsIv2yJ6r3T84Q9AAAAAAAAAADNyvS8rnWkuk4sHboctva4xAtzOiBEQjkAAIA/AACAP7Nb5z3N3gI+5bKCvuu6sb4Hw8e9kRyBvAAAAAAAAAAAIG1iPrghsz9aqik/iYjWvl3mlj5PhLU+AAAAAAAAAABg7kE+/2AlP+Z7ur3X9Oq+5XomPqhpy7wAAAAAAAAAAM2Rob15Hew+IqVjPn5Hqr5mcuM8ODmVPAAAAAAAAAAAmi8KPEG/2z2Rxzq6nrOFvgn1Tj1ZWg69AAAAAAAAAACaF3m9cRNvu7VLUDhPhrs8EgKePIXonr0AAIA/AACAP83hyry+AMI982uhPTN0rr7bfA49MHVdvAAAAAAAAAAAzduFPMqTlT8GVaA90rgTv0G3DjwPAaQ8AAAAAAAAAACzdQK+TEyQPstrwT4ONYm+jobbPb5JujwAAAAAAAAAAM2CRjwhSLM/3LKWPlDPHb6vRbK71hFVPAAAAAAAAAAAmlNjvMPZarrYc2szDt33Ltb4Gbp6ILqzAACAPwAAgD+a67Q98HEDP5OetDzdUtS+lUvZPervCD0AAAAAAAAAAIBhK705srI+nF2GPs4utb6z2KQ+3GYcvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
| 39 |
+
},
|
| 40 |
+
"_last_episode_starts": {
|
| 41 |
+
":type:": "<class 'numpy.ndarray'>",
|
| 42 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
| 43 |
+
},
|
| 44 |
+
"_last_original_obs": null,
|
| 45 |
+
"_episode_num": 0,
|
| 46 |
+
"use_sde": false,
|
| 47 |
+
"sde_sample_freq": -1,
|
| 48 |
+
"_current_progress_remaining": -0.015808000000000044,
|
| 49 |
+
"_stats_window_size": 100,
|
| 50 |
+
"ep_info_buffer": {
|
| 51 |
+
":type:": "<class 'collections.deque'>",
|
| 52 |
+
":serialized:": "gAWVJBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIP+QtV79jb0CUhpRSlIwBbJRL5IwBdJRHQJ+W90jkdWB1fZQoaAZoCWgPQwiBzM6itwdxQJSGlFKUaBVL3WgWR0CflwfKp1ifdX2UKGgGaAloD0MIGavN/6stb0CUhpRSlGgVS9xoFkdAn5eMW9DhL3V9lChoBmgJaA9DCBGQL6GClnBAlIaUUpRoFUvVaBZHQJ+YtNKyv9t1fZQoaAZoCWgPQwjdYKjDChdyQJSGlFKUaBVL4mgWR0CfmSEBKcurdX2UKGgGaAloD0MIYd14d2QWcECUhpRSlGgVS+ZoFkdAn5ki7GvOhXV9lChoBmgJaA9DCNnO91NjqXFAlIaUUpRoFUvKaBZHQJ+ZReRgZ0l1fZQoaAZoCWgPQwiHFAMkGk5xQJSGlFKUaBVL+2gWR0CfmlgZCOWCdX2UKGgGaAloD0MIoE55dONrckCUhpRSlGgVTQkBaBZHQJ+bbvCuU2V1fZQoaAZoCWgPQwgxe9l2WjJyQJSGlFKUaBVNBAFoFkdAn5vfpD/lyXV9lChoBmgJaA9DCO0NvjCZF21AlIaUUpRoFUvaaBZHQJ+cQfwI+nt1fZQoaAZoCWgPQwjFdYwrbmhzQJSGlFKUaBVL0GgWR0CfnZqhUR4AdX2UKGgGaAloD0MIrKqX3yk3cUCUhpRSlGgVS/FoFkdAn54KC6H0snV9lChoBmgJaA9DCHIVi9+U7XJAlIaUUpRoFUvXaBZHQJ+fULtu1nd1fZQoaAZoCWgPQwiyhSAHZaNwQJSGlFKUaBVL22gWR0Cfn2iN83MqdX2UKGgGaAloD0MIZOsZwvF1ckCUhpRSlGgVS/JoFkdAn59nwgDA8HV9lChoBmgJaA9DCNUgzO1e2XJAlIaUUpRoFUv0aBZHQJ+f0x20Re11fZQoaAZoCWgPQwi7fsFuWNRxQJSGlFKUaBVL7mgWR0CfoMX2/SH/dX2UKGgGaAloD0MIH2RZMPEMc0CUhpRSlGgVTQwBaBZHQJ+g9/d69kB1fZQoaAZoCWgPQwiBBTBlIMVyQJSGlFKUaBVL12gWR0CfoTwgTyrgdX2UKGgGaAloD0MIVwqBXKLcckCUhpRSlGgVS9loFkdAn6GnRb8m8nV9lChoBmgJaA9DCLiU88WeynFAlIaUUpRoFUvraBZHQJ+iS0WuX/p1fZQoaAZoCWgPQwgzxRwE3aJzQJSGlFKUaBVL+mgWR0CfowUOd5IIdX2UKGgGaAloD0MIRIZVvJG9cECUhpRSlGgVS+1oFkdAn6PbXxvvSnV9lChoBmgJaA9DCD3TS4xlsG9AlIaUUpRoFUvYaBZHQJ+kIHLRrrR1fZQoaAZoCWgPQwinJVZGY2RxQJSGlFKUaBVL4mgWR0CfpP/qPfbcdX2UKGgGaAloD0MIyOvBpPgOcUCUhpRSlGgVS+JoFkdAn6Vha1TisHV9lChoBmgJaA9DCKcGms95YnFAlIaUUpRoFUvxaBZHQJ+nSMvRJEp1fZQoaAZoCWgPQwgydOyg0t1wQJSGlFKUaBVLzWgWR0Cfp2tPYWcjdX2UKGgGaAloD0MI9WVpp+alcUCUhpRSlGgVS/toFkdAn7hunEVFhHV9lChoBmgJaA9DCNatnpNeBXBAlIaUUpRoFUviaBZHQJ+4kC6pYLd1fZQoaAZoCWgPQwhybhPulXBxQJSGlFKUaBVL5WgWR0CfuLCNjslcdX2UKGgGaAloD0MIvJAOD+GMcUCUhpRSlGgVS+loFkdAn7kLkjopx3V9lChoBmgJaA9DCHzysFDrrW5AlIaUUpRoFUvlaBZHQJ+5pxDLKV91fZQoaAZoCWgPQwiBP/z8t1RxQJSGlFKUaBVL22gWR0CfueQ176YWdX2UKGgGaAloD0MIhIHn3kMeb0CUhpRSlGgVS9loFkdAn7pM1jy4F3V9lChoBmgJaA9DCNhJfVmac3JAlIaUUpRoFUv+aBZHQJ+6fhuO0b91fZQoaAZoCWgPQwheK6G75H5xQJSGlFKUaBVLyWgWR0CfutqPOpsHdX2UKGgGaAloD0MIoMVSJB8IcECUhpRSlGgVS+FoFkdAn7r0c0cfeXV9lChoBmgJaA9DCAq6vaSxNnFAlIaUUpRoFUvbaBZHQJ+7eVX3g1p1fZQoaAZoCWgPQwjLSL2n8lhxQJSGlFKUaBVLzGgWR0Cfu9H5JsfrdX2UKGgGaAloD0MIlzldFhN1cUCUhpRSlGgVS/1oFkdAn7zC/oJRfnV9lChoBmgJaA9DCAwCK4cWaHFAlIaUUpRoFUvkaBZHQJ+9vHo5ggJ1fZQoaAZoCWgPQwhbCkj7H05vQJSGlFKUaBVL1mgWR0CfvcEr5IpZdX2UKGgGaAloD0MISIrIsMqackCUhpRSlGgVS99oFkdAn75BuO0b+HV9lChoBmgJaA9DCA4V4/wN03FAlIaUUpRoFUv9aBZHQJ++SZ9d/rl1fZQoaAZoCWgPQwiXVdgM8C9xQJSGlFKUaBVL72gWR0CfvoUIcBEKdX2UKGgGaAloD0MI6Sec3VrIcECUhpRSlGgVS+5oFkdAn78FtTDO1XV9lChoBmgJaA9DCKt14nL8KnJAlIaUUpRoFUvdaBZHQJ+/OsGPgel1fZQoaAZoCWgPQwjt1Fxu8DpxQJSGlFKUaBVLymgWR0Cfv5DWK/EgdX2UKGgGaAloD0MIPSgoRSuFb0CUhpRSlGgVS9NoFkdAn7+XsLORknV9lChoBmgJaA9DCMxAZfz77XJAlIaUUpRoFUv4aBZHQJ/AE+yJKrd1fZQoaAZoCWgPQwhYxRuZB2pyQJSGlFKUaBVLz2gWR0CfwJsXBP9DdX2UKGgGaAloD0MI/b5/8yJbckCUhpRSlGgVS/RoFkdAn8DsKG+K0nV9lChoBmgJaA9DCLGmsigsNXFAlIaUUpRoFUvyaBZHQJ/A+ff4yoJ1fZQoaAZoCWgPQwiiXYWUX59xQJSGlFKUaBVL02gWR0CfwRdEb5uZdX2UKGgGaAloD0MIQSlaudeRcUCUhpRSlGgVS9doFkdAn8IL5ZbILnV9lChoBmgJaA9DCF7Ymq08cXNAlIaUUpRoFUvQaBZHQJ/Cxo+Ofd11fZQoaAZoCWgPQwj4GKw4FQNwQJSGlFKUaBVLyGgWR0Cfww/GVAzIdX2UKGgGaAloD0MIexaE8r5WbkCUhpRSlGgVS+VoFkdAn8NR91EE1XV9lChoBmgJaA9DCM8tdCXCBnNAlIaUUpRoFUvKaBZHQJ/DYzvZyuJ1fZQoaAZoCWgPQwgvM2yUNatyQJSGlFKUaBVL2GgWR0Cfw3xwyZa3dX2UKGgGaAloD0MI/ijqzP2wcUCUhpRSlGgVS8poFkdAn8RwezUqhHV9lChoBmgJaA9DCJIgXAEFVnFAlIaUUpRoFUvuaBZHQJ/FElE7W/d1fZQoaAZoCWgPQwgpmDEFawlyQJSGlFKUaBVNCgFoFkdAn8Wkbo8p1HV9lChoBmgJaA9DCN4E3zQ9a3BAlIaUUpRoFUv3aBZHQJ/FtjMFEAp1fZQoaAZoCWgPQwgDeuHOBXJwQJSGlFKUaBVL4GgWR0CfxbCBPKuCdX2UKGgGaAloD0MIp5at9cVbbkCUhpRSlGgVS91oFkdAn8Y4Zl4C63V9lChoBmgJaA9DCKm+84sS4G5AlIaUUpRoFUvgaBZHQJ/GlfD1oQF1fZQoaAZoCWgPQwjX3xKAv7dzQJSGlFKUaBVL9WgWR0Cfx0jnFHawdX2UKGgGaAloD0MIArhZvNhmcUCUhpRSlGgVS/9oFkdAn8dsAzYVZnV9lChoBmgJaA9DCLgE4J+SCnFAlIaUUpRoFUvXaBZHQJ/Ie64Ds+p1fZQoaAZoCWgPQwhPsP86N5NxQJSGlFKUaBVLzmgWR0CfyIzYVZcLdX2UKGgGaAloD0MIM9/BT9xscUCUhpRSlGgVTQUBaBZHQJ/I7oA4n4R1fZQoaAZoCWgPQwhCXDl7p/dxQJSGlFKUaBVLzWgWR0CfyPyTINmUdX2UKGgGaAloD0MI6gd1kUJ9cECUhpRSlGgVS+BoFkdAn8lKVlf7anV9lChoBmgJaA9DCIRGsHG91nBAlIaUUpRoFUvuaBZHQJ/Jtg0CRwJ1fZQoaAZoCWgPQwg8bCIzlwtvQJSGlFKUaBVL1WgWR0CfyjA3kxREdX2UKGgGaAloD0MIq5MzFLeAckCUhpRSlGgVS8xoFkdAn8sUDhcZ+HV9lChoBmgJaA9DCJqUgm4vjXJAlIaUUpRoFUvUaBZHQJ/LYBfa6Bl1fZQoaAZoCWgPQwiEZAETOJBxQJSGlFKUaBVL6mgWR0Cfy/m4RVZLdX2UKGgGaAloD0MIveDTnLwRc0CUhpRSlGgVTQEBaBZHQJ/MB7XxvvV1fZQoaAZoCWgPQwgQBTOm4NFwQJSGlFKUaBVL4GgWR0CfzDlPacqfdX2UKGgGaAloD0MImgewyK/OcUCUhpRSlGgVS+ZoFkdAn8y9bX6InHV9lChoBmgJaA9DCMa/z7jwXGdAlIaUUpRoFU3oA2gWR0CfzUp3X7LudX2UKGgGaAloD0MIoWRyaieqcECUhpRSlGgVS+NoFkdAn82D+m3vyHV9lChoBmgJaA9DCNgQHJcxU3JAlIaUUpRoFUvyaBZHQJ/NxSOzY291fZQoaAZoCWgPQwj3ViQmaPxyQJSGlFKUaBVL0mgWR0CfzoPi1iOOdX2UKGgGaAloD0MI/p3t0Zvhb0CUhpRSlGgVS+xoFkdAn86zyFwkxHV9lChoBmgJaA9DCIMxIlHowXJAlIaUUpRoFUviaBZHQJ/O3GdZq211fZQoaAZoCWgPQwgno8ow7j1xQJSGlFKUaBVL3mgWR0CfzxcjZ+QVdX2UKGgGaAloD0MIaY6s/LIsckCUhpRSlGgVS/5oFkdAn887g4wRG3V9lChoBmgJaA9DCOBJC5eVgXNAlIaUUpRoFUvgaBZHQJ/Pw4aP0Zp1fZQoaAZoCWgPQwizsRLzLMlyQJSGlFKUaBVL4GgWR0Cf0FowEhaDdX2UKGgGaAloD0MISP5g4HlecUCUhpRSlGgVS9NoFkdAn9D9TxXnyXV9lChoBmgJaA9DCE2jycXYdnJAlIaUUpRoFUvfaBZHQJ/RrMfRu0l1fZQoaAZoCWgPQwicacL2kyZwQJSGlFKUaBVL12gWR0Cf0iq4H5aedX2UKGgGaAloD0MIQQ5KmGmKckCUhpRSlGgVS9doFkdAn9JtMoMKC3V9lChoBmgJaA9DCD1jX7Jx8HJAlIaUUpRoFUvoaBZHQJ/SrVUdaMd1fZQoaAZoCWgPQwjgFFYq6BdwQJSGlFKUaBVLx2gWR0Cf00xIre67dWUu"
|
| 53 |
+
},
|
| 54 |
+
"ep_success_buffer": {
|
| 55 |
+
":type:": "<class 'collections.deque'>",
|
| 56 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
| 57 |
+
},
|
| 58 |
+
"_n_updates": 496,
|
| 59 |
+
"observation_space": {
|
| 60 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
| 61 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
| 62 |
+
"dtype": "float32",
|
| 63 |
+
"_shape": [
|
| 64 |
+
8
|
| 65 |
+
],
|
| 66 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
| 67 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
| 68 |
+
"bounded_below": "[False False False False False False False False]",
|
| 69 |
+
"bounded_above": "[False False False False False False False False]",
|
| 70 |
+
"_np_random": null
|
| 71 |
+
},
|
| 72 |
+
"action_space": {
|
| 73 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
| 74 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
| 75 |
+
"n": 4,
|
| 76 |
+
"_shape": [],
|
| 77 |
+
"dtype": "int64",
|
| 78 |
+
"_np_random": null
|
| 79 |
+
},
|
| 80 |
+
"n_envs": 16,
|
| 81 |
+
"n_steps": 1024,
|
| 82 |
+
"gamma": 0.999,
|
| 83 |
+
"gae_lambda": 0.98,
|
| 84 |
+
"ent_coef": 0.01,
|
| 85 |
+
"vf_coef": 0.5,
|
| 86 |
+
"max_grad_norm": 0.5,
|
| 87 |
+
"batch_size": 64,
|
| 88 |
+
"n_epochs": 4,
|
| 89 |
+
"clip_range": {
|
| 90 |
+
":type:": "<class 'function'>",
|
| 91 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
| 92 |
+
},
|
| 93 |
+
"clip_range_vf": null,
|
| 94 |
+
"normalize_advantage": true,
|
| 95 |
+
"target_kl": null
|
| 96 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8ff7c0526c3869880b2a87c8848e32be262844b617e0e25f3546052afbe48263
|
| 3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5f47a6921b34778df7e3dac6c72840103525cdc68cbb7f73fb928bb13f2fe0a6
|
| 3 |
+
size 43329
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
| 3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
| 2 |
+
- Python: 3.9.16
|
| 3 |
+
- Stable-Baselines3: 1.8.0
|
| 4 |
+
- PyTorch: 2.0.0+cu118
|
| 5 |
+
- GPU Enabled: True
|
| 6 |
+
- Numpy: 1.22.4
|
| 7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
|
Binary file (201 kB). View file
|
|
|
results.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"mean_reward": 286.70885251862023, "std_reward": 19.361972895104685, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-15T11:53:36.186344"}
|