End of training
Browse files
README.md
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: ybelkada/falcon-7b-sharded-bf16
|
3 |
+
library_name: peft
|
4 |
+
tags:
|
5 |
+
- trl
|
6 |
+
- sft
|
7 |
+
- generated_from_trainer
|
8 |
+
model-index:
|
9 |
+
- name: falcon-7b-sharded-bf16-finetuned-mental-health-dsm5mistral
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# falcon-7b-sharded-bf16-finetuned-mental-health-dsm5mistral
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [ybelkada/falcon-7b-sharded-bf16](https://huggingface.co/ybelkada/falcon-7b-sharded-bf16) on the None dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 1.7448
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 0.0002
|
40 |
+
- train_batch_size: 16
|
41 |
+
- eval_batch_size: 16
|
42 |
+
- seed: 42
|
43 |
+
- gradient_accumulation_steps: 4
|
44 |
+
- total_train_batch_size: 64
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: cosine
|
47 |
+
- lr_scheduler_warmup_ratio: 0.03
|
48 |
+
- training_steps: 200
|
49 |
+
|
50 |
+
### Training results
|
51 |
+
|
52 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
53 |
+
|:-------------:|:------:|:----:|:---------------:|
|
54 |
+
| 2.1353 | 0.1028 | 10 | 2.2214 |
|
55 |
+
| 2.2465 | 0.2057 | 20 | 2.1292 |
|
56 |
+
| 1.8446 | 0.3085 | 30 | 2.0584 |
|
57 |
+
| 1.9796 | 0.4113 | 40 | 1.9319 |
|
58 |
+
| 1.6682 | 0.5141 | 50 | 2.1183 |
|
59 |
+
| 1.9888 | 0.6170 | 60 | 1.8794 |
|
60 |
+
| 1.7142 | 0.7198 | 70 | 1.8562 |
|
61 |
+
| 1.8108 | 0.8226 | 80 | 1.8650 |
|
62 |
+
| 1.7122 | 0.9254 | 90 | 1.8313 |
|
63 |
+
| 1.5926 | 1.0283 | 100 | 1.8228 |
|
64 |
+
| 1.6881 | 1.1311 | 110 | 1.8095 |
|
65 |
+
| 1.4018 | 1.2339 | 120 | 1.8231 |
|
66 |
+
| 1.7688 | 1.3368 | 130 | 1.7767 |
|
67 |
+
| 1.4843 | 1.4396 | 140 | 1.7667 |
|
68 |
+
| 1.5288 | 1.5424 | 150 | 1.7607 |
|
69 |
+
| 1.5946 | 1.6452 | 160 | 1.7498 |
|
70 |
+
| 1.3308 | 1.7481 | 170 | 1.7463 |
|
71 |
+
| 1.6712 | 1.8509 | 180 | 1.7454 |
|
72 |
+
| 1.3342 | 1.9537 | 190 | 1.7449 |
|
73 |
+
| 1.5714 | 2.0566 | 200 | 1.7448 |
|
74 |
+
|
75 |
+
|
76 |
+
### Framework versions
|
77 |
+
|
78 |
+
- PEFT 0.13.1.dev0
|
79 |
+
- Transformers 4.45.1
|
80 |
+
- Pytorch 2.4.1+cu121
|
81 |
+
- Datasets 3.0.1
|
82 |
+
- Tokenizers 0.20.0
|