mjbuehler commited on
Commit
c64f42e
1 Parent(s): ae681c2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +149 -8
README.md CHANGED
@@ -1,16 +1,157 @@
1
  ---
2
- license: apache-2.0
 
 
3
  tags:
4
  - text-to-image
5
- - science
 
 
 
 
 
 
6
  ---
7
- ### leaf on Stable Diffusion via Dreambooth
8
- #### model by mjbuehler
9
 
10
- This a Stable Diffusion model fine-tuned the leaf concept taught to Stable Diffusion with Dreambooth.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
- It can be used by modifying the `instance_prompt`: **<leaf microstructure>**
13
 
14
- Here are the images used for training this concept:
15
 
16
- ![image 0](https://huggingface.co/lamm-mit/stable-diffusion-leaf-V5/resolve/main/concept_images/0.jpeg)![image 1](https://huggingface.co/lamm-mit/stable-diffusion-leaf-V5/resolve/main/concept_images/1.jpeg)![image 2](https://huggingface.co/lamm-mit/stable-diffusion-leaf-V5/resolve/main/concept_images/2.jpeg)![image 3](https://huggingface.co/lamm-mit/stable-diffusion-leaf-V5/resolve/main/concept_images/3.jpeg)![image 4](https://huggingface.co/lamm-mit/stable-diffusion-leaf-V5/resolve/main/concept_images/4.jpeg)![image 5](https://huggingface.co/lamm-mit/stable-diffusion-leaf-V5/resolve/main/concept_images/5.jpeg)
 
1
  ---
2
+ base_model: stabilityai/stable-diffusion-xl-base-1.0
3
+ library_name: diffusers
4
+ license: openrail++
5
  tags:
6
  - text-to-image
7
+ - text-to-image
8
+ - diffusers-training
9
+ - diffusers
10
+ - stable-diffusion-2
11
+ - stable-diffusion-2-diffusers
12
+ instance_prompt: <leaf microstructure>
13
+ widget: []
14
  ---
 
 
15
 
16
+ # Stable Diffusion 2.x Fine-tuned with Leaf Images
17
+
18
+ ## Model description
19
+
20
+ These are fine-tuned weights for the ```stabilityai/stable-diffusion-2``` model. This is a full fine-tune of the model using DreamBooth.
21
+
22
+ ## Trigger keywords
23
+
24
+ The following image were used during fine-tuning using the keyword \<leaf microstructure\>:
25
+
26
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/sI_exTnLy6AtOFDX1-7eq.png)
27
+
28
+ You should use <leaf microstructure> to trigger the image generation.
29
+
30
+ ## How to use
31
+
32
+ Defining some helper functions:
33
+
34
+ ```python
35
+ from diffusers import DiffusionPipeline
36
+ import torch
37
+ import os
38
+ from datetime import datetime
39
+ from PIL import Image
40
+
41
+ def generate_filename(base_name, extension=".png"):
42
+ timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
43
+ return f"{base_name}_{timestamp}{extension}"
44
+
45
+ def save_image(image, directory, base_name="image_grid"):
46
+
47
+ filename = generate_filename(base_name)
48
+ file_path = os.path.join(directory, filename)
49
+ image.save(file_path)
50
+ print(f"Image saved as {file_path}")
51
+
52
+ def image_grid(imgs, rows, cols, save=True, save_dir='generated_images', base_name="image_grid",
53
+ save_individual_files=False):
54
+
55
+ if not os.path.exists(save_dir):
56
+ os.makedirs(save_dir)
57
+
58
+ assert len(imgs) == rows * cols
59
+
60
+ w, h = imgs[0].size
61
+ grid = Image.new('RGB', size=(cols * w, rows * h))
62
+ grid_w, grid_h = grid.size
63
+
64
+ for i, img in enumerate(imgs):
65
+ grid.paste(img, box=(i % cols * w, i // cols * h))
66
+ if save_individual_files:
67
+ save_image(img, save_dir, base_name=base_name+f'_{i}-of-{len(imgs)}_')
68
+
69
+ if save and save_dir:
70
+ save_image(grid, save_dir, base_name)
71
+
72
+ return grid
73
+ ```
74
+
75
+ ### Text-to-image
76
+
77
+ Model loading:
78
+
79
+ ```python
80
+
81
+ import torch
82
+ from diffusers import DPMSolverMultistepScheduler
83
+
84
+ repo_id='lamm-mit/SD2x-leaf-inspired'
85
+
86
+ pipe = StableDiffusionPipeline.from_pretrained(repo_id,
87
+ scheduler = DPMSolverMultistepScheduler.from_pretrained(args.output_dir, subfolder="scheduler"),
88
+ torch_dtype=torch.float16,
89
+ ).to("cuda")
90
+
91
+ ```
92
+
93
+ Image generation:
94
+
95
+ ```python
96
+ prompt = "a vase that resembles a <leaf microstructure>, high quality"
97
+ num_samples = 4
98
+ num_rows = 4
99
+
100
+ all_images = []
101
+ for _ in range(num_rows):
102
+ images = pipe(prompt, num_images_per_prompt=num_samples, num_inference_steps=50, guidance_scale=15).images
103
+ all_images.extend(images)
104
+
105
+ grid = image_grid(all_images, num_rows, num_samples)
106
+ grid
107
+ ```
108
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/SI5aYv2dygJn0Y12LIqqe.png)
109
+
110
+ ## Fine-tuning script
111
+
112
+ Download this script: [SD2x DreamBooth-Fine-Tune.ipynb](https://huggingface.co/lamm-mit/SDXL-leaf-inspired/resolve/main/SDXL_DreamBooth_LoRA_Fine-Tune.ipynb)
113
+
114
+ You need to create a local folder ```leaf_concept_dir``` and add the leaf images (provided in this repository, see subfolder), like so:
115
+
116
+ ```python
117
+ save_path='leaf_concept_dir'
118
+ urls = [
119
+ "https://www.dropbox.com/scl/fi/4s09djm4nqxmq6vhvv9si/13_.jpg?rlkey=3m2f90pjofljmlqg5uc722i6y&dl=1",
120
+ "https://www.dropbox.com/scl/fi/w4jsrf0qmrcro37nxutbx/25_.jpg?rlkey=e52gnoqaar33kwrd01h1mwcnk&dl=1",
121
+ "https://www.dropbox.com/scl/fi/x0xgavduor4cbxz0sdcd2/33_.jpg?rlkey=5htaicapahhn66wnsr23v1nxz&dl=1",
122
+ "https://www.dropbox.com/scl/fi/2grt40acypah9h9ok607q/72_.jpg?rlkey=bl6vfv0rcas2ygsz6o3behlst&dl=1",
123
+ "https://www.dropbox.com/scl/fi/ecaf9agzdj2cawspmyt5i/117_.jpg?rlkey=oqxyk9i1wtu1wtkqadd6ylyjj&dl=1",
124
+ "https://www.dropbox.com/scl/fi/gw3p73r99fleozr6ckfa3/126_.jpg?rlkey=6n7kqaklczshht1ntyqunh2lt&dl=1",
125
+ ## You can add additional images here
126
+ ]
127
+ images = list(filter(None,[download_image(url) for url in urls]))
128
+
129
+ if not os.path.exists(save_path):
130
+ os.mkdir(save_path)
131
+
132
+ [image.save(f"{save_path}/{i}.jpeg") for i, image in enumerate(images)]
133
+ image_grid(images, 1, len(images))
134
+ ```
135
+
136
+ The training script is included in the Jupyter notebook.
137
+
138
+ ## More examples
139
+
140
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/eE1xBqyVA4sP4gx6tAEGc.png)
141
+
142
+
143
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/Ga808aW5H27f0hPq_RNme.png)
144
+
145
+
146
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/prUGFeSQWaslOUhYusCcg.png)
147
+
148
+
149
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/r0dUyA-Gh_biy5d-4lTl0.png)
150
+
151
+
152
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/iEjozBWOQQwxNVuKWZ7TT.png)
153
+
154
 
155
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/ESvd6cCkyJZ52Cu3iYfoP.png)
156
 
 
157