Upload 6 files
Browse files- configuration_phi3_v.py +217 -0
- image_embedding_phi3_v.py +301 -0
- image_processing_phi3_v.py +274 -0
- modeling_phi3_v.py +1632 -0
- processing_phi3_v.py +217 -0
- sample_inference.py +129 -0
configuration_phi3_v.py
ADDED
@@ -0,0 +1,217 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
""" Phi-3-V model configuration"""
|
17 |
+
|
18 |
+
|
19 |
+
from transformers.configuration_utils import PretrainedConfig
|
20 |
+
from transformers.utils import logging
|
21 |
+
|
22 |
+
|
23 |
+
logger = logging.get_logger(__name__)
|
24 |
+
|
25 |
+
PHI3V_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
26 |
+
"microsoft/Phi-3-vision-128k-instruct": "https://huggingface.co/microsoft/Phi-3-vision-128k-instruct/resolve/main/config.json",
|
27 |
+
}
|
28 |
+
|
29 |
+
|
30 |
+
class Phi3VConfig(PretrainedConfig):
|
31 |
+
r"""
|
32 |
+
This is the configuration class to store the configuration of a [`Phi3VModel`]. It is used to instantiate a Phi-3
|
33 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
34 |
+
defaults will yield a similar configuration to that of the
|
35 |
+
[microsoft/Phi-3-vision-128k-instruct](https://huggingface.co/microsoft/Phi-3-vision-128k-instruct).
|
36 |
+
|
37 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
38 |
+
documentation from [`PretrainedConfig`] for more information.
|
39 |
+
|
40 |
+
Args:
|
41 |
+
vocab_size (`int`, *optional*, defaults to 32064):
|
42 |
+
Vocabulary size of the Phi-3-V model. Defines the number of different tokens that can be represented by the
|
43 |
+
`inputs_ids` passed when calling [`Phi3VModel`].
|
44 |
+
hidden_size (`int`, *optional*, defaults to 3072):
|
45 |
+
Dimension of the hidden representations.
|
46 |
+
intermediate_size (`int`, *optional*, defaults to 8192):
|
47 |
+
Dimension of the MLP representations.
|
48 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
49 |
+
Number of hidden layers in the Transformer decoder.
|
50 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
51 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
52 |
+
num_key_value_heads (`int`, *optional*):
|
53 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
54 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
55 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
56 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
57 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
58 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
59 |
+
`num_attention_heads`.
|
60 |
+
resid_pdrop (`float`, *optional*, defaults to 0.0):
|
61 |
+
Dropout probability for mlp outputs.
|
62 |
+
embd_pdrop (`int`, *optional*, defaults to 0.0):
|
63 |
+
The dropout ratio for the embeddings.
|
64 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
65 |
+
The dropout ratio after computing the attention scores.
|
66 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
67 |
+
The non-linear activation function (function or string) in the decoder.
|
68 |
+
max_position_embeddings (`int`, *optional*, defaults to 4096):
|
69 |
+
The maximum sequence length that this model might ever be used with.
|
70 |
+
original_max_position_embeddings (`int`, *optional*, defaults to 4096):
|
71 |
+
The maximum sequence length that this model was trained with. This is used to determine the size of the
|
72 |
+
original RoPE embeddings when using long scaling.
|
73 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
74 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
75 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
|
76 |
+
The epsilon value used for the RMSNorm.
|
77 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
78 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
79 |
+
relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
|
80 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
81 |
+
Whether to tie weight embeddings
|
82 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
83 |
+
The base period of the RoPE embeddings.
|
84 |
+
rope_scaling (`dict`, *optional*):
|
85 |
+
The scaling strategy for the RoPE embeddings. If `None`, no scaling is applied. If a dictionary, it must
|
86 |
+
contain the following keys: `type`, `short_factor` and `long_factor`. The `type` must be either `su` or `yarn` and
|
87 |
+
the `short_factor` and `long_factor` must be lists of numbers with the same length as the hidden size
|
88 |
+
divided by the number of attention heads divided by 2.
|
89 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
90 |
+
The id of the "beginning-of-sequence" token.
|
91 |
+
eos_token_id (`int`, *optional*, defaults to 32000):
|
92 |
+
The id of the "end-of-sequence" token.
|
93 |
+
pad_token_id (`int`, *optional*, defaults to 32000):
|
94 |
+
The id of the padding token.
|
95 |
+
sliding_window (`int`, *optional*):
|
96 |
+
Sliding window attention window size. If `None`, no sliding window is applied.
|
97 |
+
embd_layer (`str`, *optional*, defaults to `"default"`):
|
98 |
+
The embedding layer to use. Can be either `"default"` or `"image"`. "default" uses the standard embedding for text.
|
99 |
+
|
100 |
+
Example:
|
101 |
+
|
102 |
+
```python
|
103 |
+
>>> from transformers import Phi3VModel, Phi3VConfig
|
104 |
+
|
105 |
+
>>> # Initializing a Phi-3-V style configuration
|
106 |
+
>>> configuration = Phi3Config.from_pretrained("microsoft/Phi-3-vision-128k-instruct")
|
107 |
+
|
108 |
+
>>> # Initializing a model from the configuration
|
109 |
+
>>> model = Phi3VModel(configuration)
|
110 |
+
|
111 |
+
>>> # Accessing the model configuration
|
112 |
+
>>> configuration = model.config
|
113 |
+
```"""
|
114 |
+
|
115 |
+
model_type = "phi3_v"
|
116 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
117 |
+
|
118 |
+
def __init__(
|
119 |
+
self,
|
120 |
+
vocab_size=32064,
|
121 |
+
hidden_size=3072,
|
122 |
+
intermediate_size=8192,
|
123 |
+
num_hidden_layers=32,
|
124 |
+
num_attention_heads=32,
|
125 |
+
num_key_value_heads=None,
|
126 |
+
resid_pdrop=0.0,
|
127 |
+
embd_pdrop=0.0,
|
128 |
+
attention_dropout=0.0,
|
129 |
+
hidden_act="silu",
|
130 |
+
max_position_embeddings=4096,
|
131 |
+
original_max_position_embeddings=4096,
|
132 |
+
initializer_range=0.02,
|
133 |
+
rms_norm_eps=1e-5,
|
134 |
+
use_cache=True,
|
135 |
+
tie_word_embeddings=False,
|
136 |
+
rope_theta=10000.0,
|
137 |
+
rope_scaling=None,
|
138 |
+
bos_token_id=1,
|
139 |
+
eos_token_id=32000,
|
140 |
+
pad_token_id=32000,
|
141 |
+
sliding_window=None,
|
142 |
+
embd_layer: str = "default",
|
143 |
+
**kwargs,
|
144 |
+
):
|
145 |
+
self.vocab_size = vocab_size
|
146 |
+
self.hidden_size = hidden_size
|
147 |
+
self.intermediate_size = intermediate_size
|
148 |
+
self.num_hidden_layers = num_hidden_layers
|
149 |
+
self.num_attention_heads = num_attention_heads
|
150 |
+
|
151 |
+
if num_key_value_heads is None:
|
152 |
+
num_key_value_heads = num_attention_heads
|
153 |
+
|
154 |
+
self.num_key_value_heads = num_key_value_heads
|
155 |
+
self.resid_pdrop = resid_pdrop
|
156 |
+
self.embd_pdrop = embd_pdrop
|
157 |
+
self.attention_dropout = attention_dropout
|
158 |
+
self.hidden_act = hidden_act
|
159 |
+
self.max_position_embeddings = max_position_embeddings
|
160 |
+
self.original_max_position_embeddings = original_max_position_embeddings
|
161 |
+
self.initializer_range = initializer_range
|
162 |
+
self.rms_norm_eps = rms_norm_eps
|
163 |
+
self.use_cache = use_cache
|
164 |
+
self.rope_theta = rope_theta
|
165 |
+
self.rope_scaling = rope_scaling
|
166 |
+
self._rope_scaling_validation()
|
167 |
+
self.sliding_window = sliding_window
|
168 |
+
self.embd_layer = embd_layer
|
169 |
+
|
170 |
+
|
171 |
+
super().__init__(
|
172 |
+
bos_token_id=bos_token_id,
|
173 |
+
eos_token_id=eos_token_id,
|
174 |
+
pad_token_id=pad_token_id,
|
175 |
+
tie_word_embeddings=tie_word_embeddings,
|
176 |
+
**kwargs,
|
177 |
+
)
|
178 |
+
|
179 |
+
def _rope_scaling_validation(self):
|
180 |
+
"""
|
181 |
+
Validate the `rope_scaling` configuration.
|
182 |
+
"""
|
183 |
+
if self.rope_scaling is None:
|
184 |
+
return
|
185 |
+
|
186 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 3:
|
187 |
+
raise ValueError(
|
188 |
+
"`rope_scaling` must be a dictionary with three fields, `type`, `short_factor` and `long_factor`, "
|
189 |
+
f"got {self.rope_scaling}"
|
190 |
+
)
|
191 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
192 |
+
rope_scaling_short_factor = self.rope_scaling.get("short_factor", None)
|
193 |
+
rope_scaling_long_factor = self.rope_scaling.get("long_factor", None)
|
194 |
+
if rope_scaling_type is None or rope_scaling_type not in ["su", "yarn"]:
|
195 |
+
raise ValueError(f"`rope_scaling`'s type field must be one of ['su', 'yarn'], got {rope_scaling_type}")
|
196 |
+
if not (
|
197 |
+
isinstance(rope_scaling_short_factor, list)
|
198 |
+
and all(isinstance(x, (int, float)) for x in rope_scaling_short_factor)
|
199 |
+
):
|
200 |
+
raise ValueError(
|
201 |
+
f"`rope_scaling`'s short_factor field must be a list of numbers, got {rope_scaling_short_factor}"
|
202 |
+
)
|
203 |
+
if not len(rope_scaling_short_factor) == self.hidden_size // self.num_attention_heads // 2:
|
204 |
+
raise ValueError(
|
205 |
+
f"`rope_scaling`'s short_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_short_factor)}"
|
206 |
+
)
|
207 |
+
if not (
|
208 |
+
isinstance(rope_scaling_long_factor, list)
|
209 |
+
and all(isinstance(x, (int, float)) for x in rope_scaling_long_factor)
|
210 |
+
):
|
211 |
+
raise ValueError(
|
212 |
+
f"`rope_scaling`'s long_factor field must be a list of numbers, got {rope_scaling_long_factor}"
|
213 |
+
)
|
214 |
+
if not len(rope_scaling_long_factor) == self.hidden_size // self.num_attention_heads // 2:
|
215 |
+
raise ValueError(
|
216 |
+
f"`rope_scaling`'s long_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_long_factor)}"
|
217 |
+
)
|
image_embedding_phi3_v.py
ADDED
@@ -0,0 +1,301 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import math
|
17 |
+
import torch
|
18 |
+
import torch.nn as nn
|
19 |
+
from transformers import CLIPVisionModel, PretrainedConfig
|
20 |
+
from transformers import CLIPVisionConfig
|
21 |
+
from transformers.utils import logging
|
22 |
+
from datetime import datetime
|
23 |
+
|
24 |
+
logger = logging.get_logger(__name__)
|
25 |
+
|
26 |
+
CLIP_VIT_LARGE_PATCH14_336_CONFIG = CLIPVisionConfig(
|
27 |
+
attention_dropout=0.0,
|
28 |
+
dropout=0.0,
|
29 |
+
hidden_act="quick_gelu",
|
30 |
+
hidden_size=1024,
|
31 |
+
image_size=336,
|
32 |
+
initializer_factor=1.0,
|
33 |
+
initializer_range=0.02,
|
34 |
+
intermediate_size=4096,
|
35 |
+
layer_norm_eps=1e-05,
|
36 |
+
num_attention_heads=16,
|
37 |
+
num_channels=3,
|
38 |
+
num_hidden_layers=24,
|
39 |
+
patch_size=14,
|
40 |
+
projection_dim=768
|
41 |
+
)
|
42 |
+
|
43 |
+
class Phi3ImageEmbedding(nn.Module):
|
44 |
+
"""Phi3 Image embedding."""
|
45 |
+
|
46 |
+
def __init__(self, config: PretrainedConfig, wte=None, **kwargs) -> None:
|
47 |
+
super().__init__()
|
48 |
+
|
49 |
+
# n_embed or hidden_size
|
50 |
+
hidden_size = config.n_embd if hasattr(config, 'n_embd') else config.hidden_size
|
51 |
+
if hasattr(config, 'embd_pdrop') or hasattr(config, 'embed_pdrop'):
|
52 |
+
embd_drop = config.embd_pdrop if hasattr(config, 'embd_pdrop') else config.embed_pdrop
|
53 |
+
self.drop = nn.Dropout(embd_drop)
|
54 |
+
else:
|
55 |
+
self.drop = None
|
56 |
+
|
57 |
+
self.wte = wte
|
58 |
+
|
59 |
+
if isinstance(config.img_processor, dict) and config.img_processor.get('name', None) == 'clip_vision_model':
|
60 |
+
assert 'model_name' in config.img_processor, 'model_name must be provided for CLIPVisionModel'
|
61 |
+
assert 'image_dim_out' in config.img_processor, 'image_dim_out must be provided for CLIPVisionModel'
|
62 |
+
assert 'num_img_tokens' in config.img_processor, 'num_img_tokens must be provided for CLIPVisionModel'
|
63 |
+
assert config.img_processor['model_name'] == 'openai/clip-vit-large-patch14-336'
|
64 |
+
clip_config = CLIP_VIT_LARGE_PATCH14_336_CONFIG
|
65 |
+
self.img_processor = CLIPVisionModel(clip_config)
|
66 |
+
image_dim_out = config.img_processor['image_dim_out']
|
67 |
+
self.num_img_tokens = config.img_processor['num_img_tokens']
|
68 |
+
else:
|
69 |
+
raise NotImplementedError(f'img_processor = {config.img_processor}, not implemented')
|
70 |
+
|
71 |
+
self.image_dim_out = image_dim_out
|
72 |
+
self.img_sizes = None
|
73 |
+
|
74 |
+
# global_gn and sub_gn for hd transform, serves as line separator
|
75 |
+
self.use_hd_transform = kwargs.get('use_hd_transform', False)
|
76 |
+
self.with_learnable_separator = kwargs.get('with_learnable_separator', False)
|
77 |
+
self.hd_transform_order = kwargs.get('hd_transform_order', 'glb_sub')
|
78 |
+
# with_hd_transform and with_learnable_separator should have same value
|
79 |
+
assert self.use_hd_transform == self.with_learnable_separator, 'use_hd_transform and with_learnable_separator should have same value'
|
80 |
+
if self.with_learnable_separator:
|
81 |
+
assert self.use_hd_transform, 'learnable separator is only for hd transform'
|
82 |
+
# 1024 * 4, merge spatial to channel dimension
|
83 |
+
self.glb_GN = nn.Parameter(torch.zeros([1, 1, self.image_dim_out * 4]))
|
84 |
+
self.sub_GN = nn.Parameter(torch.zeros([1, 1, 1, self.image_dim_out * 4]))
|
85 |
+
logger.info(f'learnable separator enabled for hd transform, hd_transform_order = {self.hd_transform_order}')
|
86 |
+
|
87 |
+
projection_cls = kwargs.get('projection_cls', 'linear')
|
88 |
+
if projection_cls == 'linear':
|
89 |
+
self.img_projection = nn.Linear(image_dim_out, hidden_size)
|
90 |
+
elif projection_cls == 'mlp' and self.use_hd_transform:
|
91 |
+
dim_projection = hidden_size
|
92 |
+
depth = 2
|
93 |
+
layers = [nn.Linear(image_dim_out * 4, dim_projection)]
|
94 |
+
for _ in range(1, depth):
|
95 |
+
layers.extend([nn.GELU(),
|
96 |
+
nn.Linear(dim_projection, dim_projection)])
|
97 |
+
self.img_projection = nn.Sequential(*layers)
|
98 |
+
elif projection_cls == 'mlp':
|
99 |
+
dim_projection = hidden_size
|
100 |
+
depth = 2
|
101 |
+
layers = [nn.Linear(image_dim_out, dim_projection)]
|
102 |
+
for _ in range(1, depth):
|
103 |
+
layers.extend([nn.GELU(),
|
104 |
+
nn.Linear(dim_projection, dim_projection)])
|
105 |
+
self.img_projection = nn.Sequential(*layers)
|
106 |
+
else:
|
107 |
+
raise NotImplementedError(f'projection_cls = {projection_cls}, not implemented')
|
108 |
+
|
109 |
+
self.vocab_size = config.vocab_size
|
110 |
+
self.img_features = None
|
111 |
+
|
112 |
+
if isinstance(config.img_processor, dict):
|
113 |
+
self.layer_idx = config.img_processor.get('layer_idx', -2)
|
114 |
+
self.type_feature = config.img_processor.get('type_feature', 'patch')
|
115 |
+
else:
|
116 |
+
self.layer_idx = -2
|
117 |
+
self.type_feature = 'patch'
|
118 |
+
|
119 |
+
|
120 |
+
def set_img_features(self, img_features: torch.FloatTensor) -> None:
|
121 |
+
self.img_features = img_features
|
122 |
+
|
123 |
+
def set_img_sizes(self, img_sizes: torch.LongTensor) -> None:
|
124 |
+
self.img_sizes = img_sizes
|
125 |
+
|
126 |
+
def get_img_features(self, img_embeds: torch.FloatTensor) -> torch.FloatTensor:
|
127 |
+
LAYER_IDX = self.layer_idx
|
128 |
+
TYPE_FEATURE = self.type_feature
|
129 |
+
|
130 |
+
img_processor_output = self.img_processor(img_embeds, output_hidden_states=True)
|
131 |
+
img_feature = img_processor_output.hidden_states[LAYER_IDX]
|
132 |
+
|
133 |
+
if TYPE_FEATURE == "patch":
|
134 |
+
patch_feature = img_feature[:, 1:]
|
135 |
+
return patch_feature
|
136 |
+
|
137 |
+
if TYPE_FEATURE == "cls_patch":
|
138 |
+
return img_feature
|
139 |
+
|
140 |
+
raise NotImplementedError
|
141 |
+
|
142 |
+
def forward(self, input_ids: torch.LongTensor, pixel_values: torch.FloatTensor, image_sizes=None) -> torch.FloatTensor:
|
143 |
+
|
144 |
+
MAX_INPUT_ID = int(1e9)
|
145 |
+
img_embeds = pixel_values
|
146 |
+
img_sizes = image_sizes
|
147 |
+
|
148 |
+
if self.img_features is not None:
|
149 |
+
img_embeds = self.img_features.clone()
|
150 |
+
self.img_features = None
|
151 |
+
|
152 |
+
if self.img_sizes is not None:
|
153 |
+
img_sizes = self.img_sizes
|
154 |
+
|
155 |
+
input_shape = input_ids.size()
|
156 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
157 |
+
|
158 |
+
with torch.no_grad():
|
159 |
+
positions = torch.nonzero((input_ids < 0) & (input_ids > -MAX_INPUT_ID), as_tuple=False)
|
160 |
+
|
161 |
+
select = False
|
162 |
+
|
163 |
+
if isinstance(self.img_projection, nn.Sequential):
|
164 |
+
target_device = self.img_projection[0].bias.device
|
165 |
+
target_dtype = self.img_projection[0].bias.dtype
|
166 |
+
else: # It's a single nn.Linear layer
|
167 |
+
target_device = self.img_projection.bias.device
|
168 |
+
target_dtype = self.img_projection.bias.dtype
|
169 |
+
|
170 |
+
if len(positions.tolist()) > 0:
|
171 |
+
with torch.no_grad():
|
172 |
+
g_values = abs(input_ids[positions[:, 0], positions[:, 1]])
|
173 |
+
|
174 |
+
if self.use_hd_transform and img_sizes is not None and len(img_sizes):
|
175 |
+
hd_transform = True
|
176 |
+
assert img_embeds.ndim == 5, f'img_embeds size: {img_embeds.size()}, expect 5D tensor for hd transform'
|
177 |
+
# img_embeds: (num_images, max_num_crops, 3, H, W)
|
178 |
+
# img_sizes: (num_images, 2).view(1, -1)
|
179 |
+
|
180 |
+
start_time = datetime.now()
|
181 |
+
bs = img_embeds.shape[0]
|
182 |
+
# Nx(HW)xC
|
183 |
+
img_features = self.get_img_features(img_embeds.flatten(0, 1))
|
184 |
+
base_feat_height = base_feat_width = int(img_features.shape[1] ** 0.5)
|
185 |
+
|
186 |
+
assert base_feat_height == 24 and base_feat_width == 24, f'base_feat_height: {base_feat_height}, base_feat_width: {base_feat_width}, expect 24x24 features for hd transform'
|
187 |
+
|
188 |
+
# bs x max_num_crops x (24x24) x C
|
189 |
+
img_features = img_features.view(bs, -1, base_feat_height * base_feat_width, self.image_dim_out)
|
190 |
+
C = self.image_dim_out
|
191 |
+
H = base_feat_height
|
192 |
+
|
193 |
+
output_imgs = []
|
194 |
+
output_len = []
|
195 |
+
# training is tensor, inference is list
|
196 |
+
if isinstance(img_sizes, torch.Tensor):
|
197 |
+
img_sizes = img_sizes.view(-1, 2)
|
198 |
+
for _bs in range(bs):
|
199 |
+
h, w = img_sizes[_bs]
|
200 |
+
h = h // 336
|
201 |
+
w = w // 336
|
202 |
+
B_ = h * w
|
203 |
+
|
204 |
+
# 1 x (24x24) x 1024
|
205 |
+
global_img_feature = img_features[_bs, :1]
|
206 |
+
|
207 |
+
# 1 x 12 x 12 x 4096
|
208 |
+
glb_img = global_img_feature.reshape(1,H,H,C).reshape(1,H//2,2,H//2,2,C).contiguous().permute(0,1,3,2,4,5).reshape(1,H//2,H//2,4*C).contiguous()
|
209 |
+
temp_glb_GN = self.sub_GN.repeat(1, H//2, 1, 1)
|
210 |
+
|
211 |
+
# 1 x 156 x 4096
|
212 |
+
glb_img = torch.cat([glb_img, temp_glb_GN], dim=2).reshape(1,-1,4*C)
|
213 |
+
|
214 |
+
# (max_num_crops-1) x (12x12) x C
|
215 |
+
sub_img = img_features[_bs, 1:]
|
216 |
+
# 16x574x1024
|
217 |
+
# get rid of padding sub_img
|
218 |
+
sub_img = sub_img[:B_]
|
219 |
+
|
220 |
+
# (num_crops, 12, 2, 12, 2, 1024) -> (num_crops, 12, 12, 2, 2, 1024) -> (num_crops, 12*12, 4*1024)
|
221 |
+
sub_img = sub_img.reshape(B_,H,H,C).reshape(B_,H//2,2,H//2,2,C).contiguous().permute(0,1,3,2,4,5).reshape(B_,-1,4*C).contiguous()
|
222 |
+
sub_img = sub_img.reshape(1, h, w, 12, 12, -1).permute(0,1,3,2,4,5).reshape(1,h*12,w*12,4*C)
|
223 |
+
temp_sub_GN = self.sub_GN.repeat(1, h*12, 1, 1)
|
224 |
+
sub_img = torch.cat([sub_img, temp_sub_GN], dim=2).reshape(1,-1,4*C)
|
225 |
+
# (1, num_img_tokens, 1024*4)
|
226 |
+
|
227 |
+
# glb + sub
|
228 |
+
if self.hd_transform_order == 'glb_sub':
|
229 |
+
output_imgs.append(torch.cat([glb_img, self.glb_GN, sub_img], dim=1))
|
230 |
+
elif self.hd_transform_order == 'sub_glb':
|
231 |
+
output_imgs.append(torch.cat([sub_img, self.glb_GN, glb_img], dim=1))
|
232 |
+
else:
|
233 |
+
raise NotImplementedError(f'hd_transform_order = {self.hd_transform_order}, not implemented')
|
234 |
+
|
235 |
+
temp_len = int((h*w+1)*144 + 1 + (h+1)*12)
|
236 |
+
assert temp_len == output_imgs[-1].shape[1], f'temp_len: {temp_len}, output_imgs[-1].shape[1]: {output_imgs[-1].shape[1]}'
|
237 |
+
output_len.append(temp_len)
|
238 |
+
|
239 |
+
num_img_tokens = output_len
|
240 |
+
img_set_tensor = []
|
241 |
+
for _output_img in output_imgs:
|
242 |
+
img_feature_proj = self.img_projection(_output_img.to(target_device).to(target_dtype))
|
243 |
+
img_set_tensor.append(img_feature_proj)
|
244 |
+
logger.info(f'img_embeds size: {img_embeds.size()}, image sizes: {img_sizes} loading time {datetime.now() - start_time}')
|
245 |
+
elif img_embeds.ndim == 4:
|
246 |
+
selected_g_values = g_values[::self.num_img_tokens]
|
247 |
+
assert len(img_embeds) == len(selected_g_values), f'img_embeds size: {img_embeds.size()}, selected_g_values size: {len(selected_g_values)}, selected_g_value {selected_g_values}'
|
248 |
+
start_time = datetime.now()
|
249 |
+
tt = (
|
250 |
+
self.get_img_features(img_embeds)
|
251 |
+
.to(target_device)
|
252 |
+
.to(target_dtype)
|
253 |
+
.reshape(-1, self.image_dim_out)
|
254 |
+
)
|
255 |
+
logger.info(f'img_embeds size: {img_embeds.size()}, loading time {datetime.now() - start_time}')
|
256 |
+
img_set_tensor = self.img_projection(tt) # adapted visual features.
|
257 |
+
elif img_embeds.ndim == 3:
|
258 |
+
selected_g_values = g_values[::self.num_img_tokens]
|
259 |
+
assert len(img_embeds) == len(selected_g_values), f'img_embeds size: {img_embeds.size()}, selected_g_values size: {len(selected_g_values)}, selected_g_value {selected_g_values}'
|
260 |
+
tt = (
|
261 |
+
img_embeds
|
262 |
+
.to(target_device)
|
263 |
+
.to(target_dtype)
|
264 |
+
.view(-1, self.image_dim_out)
|
265 |
+
)
|
266 |
+
img_set_tensor = self.img_projection(tt) # adapted visual features.
|
267 |
+
else:
|
268 |
+
raise NotImplementedError
|
269 |
+
select = True
|
270 |
+
|
271 |
+
with torch.no_grad():
|
272 |
+
input_ids.clamp_min_(0).clamp_max_(self.vocab_size)
|
273 |
+
|
274 |
+
hidden_states = self.wte(input_ids)
|
275 |
+
|
276 |
+
if select:
|
277 |
+
if hd_transform:
|
278 |
+
idx = 0
|
279 |
+
for i, cnt in enumerate(num_img_tokens):
|
280 |
+
hidden_states[positions[idx, 0], positions[idx, 1] : positions[idx, 1] + cnt] = (
|
281 |
+
img_set_tensor[i]
|
282 |
+
.to(hidden_states.dtype)
|
283 |
+
.to(hidden_states.device)
|
284 |
+
)
|
285 |
+
idx += cnt
|
286 |
+
else:
|
287 |
+
idx = 0
|
288 |
+
assert len(selected_g_values) * self.num_img_tokens == len(img_set_tensor), f'len(selected_g_values) * self.num_img_tokens = {len(selected_g_values) * self.num_img_tokens}, len(img_set_tensor) = {len(img_set_tensor)}'
|
289 |
+
for i, g in enumerate(selected_g_values):
|
290 |
+
cnt = self.num_img_tokens
|
291 |
+
hidden_states[positions[idx, 0], positions[idx, 1] : positions[idx, 1] + cnt] = (
|
292 |
+
img_set_tensor[i * cnt : (i + 1) * cnt]
|
293 |
+
.to(hidden_states.dtype)
|
294 |
+
.to(hidden_states.device)
|
295 |
+
)
|
296 |
+
idx += cnt
|
297 |
+
|
298 |
+
if self.drop is not None:
|
299 |
+
hidden_states = self.drop(hidden_states)
|
300 |
+
|
301 |
+
return hidden_states
|
image_processing_phi3_v.py
ADDED
@@ -0,0 +1,274 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
"""Image processor class for Phi3-V."""
|
17 |
+
|
18 |
+
from typing import List, Optional, Union
|
19 |
+
|
20 |
+
import numpy as np
|
21 |
+
|
22 |
+
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
|
23 |
+
from transformers.image_transforms import (
|
24 |
+
convert_to_rgb,
|
25 |
+
)
|
26 |
+
from transformers.image_utils import (
|
27 |
+
OPENAI_CLIP_MEAN,
|
28 |
+
OPENAI_CLIP_STD,
|
29 |
+
ImageInput,
|
30 |
+
make_list_of_images,
|
31 |
+
valid_images,
|
32 |
+
)
|
33 |
+
from transformers.utils import TensorType, is_vision_available, logging
|
34 |
+
|
35 |
+
from transformers import AutoImageProcessor
|
36 |
+
|
37 |
+
logger = logging.get_logger(__name__)
|
38 |
+
|
39 |
+
|
40 |
+
if is_vision_available():
|
41 |
+
from PIL import Image
|
42 |
+
|
43 |
+
import torch
|
44 |
+
import torchvision
|
45 |
+
|
46 |
+
def padding_336(b):
|
47 |
+
width, height = b.size
|
48 |
+
tar = int(np.ceil(height / 336) * 336)
|
49 |
+
top_padding = int((tar - height)/2)
|
50 |
+
bottom_padding = tar - height - top_padding
|
51 |
+
left_padding = 0
|
52 |
+
right_padding = 0
|
53 |
+
b = torchvision.transforms.functional.pad(b, [left_padding, top_padding, right_padding, bottom_padding], fill=[255,255,255])
|
54 |
+
|
55 |
+
return b
|
56 |
+
|
57 |
+
def calc_padded_size(width, height, padding_unit=336):
|
58 |
+
target_height = int(np.ceil(height / padding_unit) * padding_unit)
|
59 |
+
top_padding = int((target_height - height) / 2)
|
60 |
+
bottom_padding = target_height - height - top_padding
|
61 |
+
left_padding = 0
|
62 |
+
right_padding = 0
|
63 |
+
padded_width = width + left_padding + right_padding
|
64 |
+
padded_height = height + top_padding + bottom_padding
|
65 |
+
return padded_width, padded_height
|
66 |
+
|
67 |
+
def HD_transform(img, hd_num=16):
|
68 |
+
width, height = img.size
|
69 |
+
trans = False
|
70 |
+
if width < height:
|
71 |
+
img = img.transpose(Image.TRANSPOSE)
|
72 |
+
trans = True
|
73 |
+
width, height = img.size
|
74 |
+
ratio = (width/ height)
|
75 |
+
scale = 1
|
76 |
+
while scale*np.ceil(scale/ratio) <= hd_num:
|
77 |
+
scale += 1
|
78 |
+
scale -= 1
|
79 |
+
new_w = int(scale * 336)
|
80 |
+
new_h = int(new_w / ratio)
|
81 |
+
|
82 |
+
img = torchvision.transforms.functional.resize(img, [new_h, new_w],)
|
83 |
+
img = padding_336(img)
|
84 |
+
width, height = img.size
|
85 |
+
if trans:
|
86 |
+
img = img.transpose(Image.TRANSPOSE)
|
87 |
+
|
88 |
+
return img
|
89 |
+
|
90 |
+
def calc_hd_transform_size(width, height, hd_num=16):
|
91 |
+
transposed = False
|
92 |
+
if width < height:
|
93 |
+
width, height = height, width
|
94 |
+
transposed = True
|
95 |
+
|
96 |
+
ratio = width / height
|
97 |
+
scale = 1
|
98 |
+
while scale * np.ceil(scale / ratio) <= hd_num:
|
99 |
+
scale += 1
|
100 |
+
scale -= 1
|
101 |
+
|
102 |
+
new_width = int(scale * 336)
|
103 |
+
new_height = int(new_width / ratio)
|
104 |
+
|
105 |
+
padded_width, padded_height = calc_padded_size(new_width, new_height)
|
106 |
+
|
107 |
+
if transposed:
|
108 |
+
padded_width, padded_height = padded_height, padded_width
|
109 |
+
|
110 |
+
return padded_width, padded_height
|
111 |
+
|
112 |
+
def pad_to_max_num_crops_tensor(images, max_crops=5):
|
113 |
+
"""
|
114 |
+
images: B x 3 x H x W, B<=max_crops
|
115 |
+
"""
|
116 |
+
B, _, H, W = images.shape
|
117 |
+
if B < max_crops:
|
118 |
+
pad = torch.zeros(max_crops - B, 3, H, W, dtype=images.dtype, device=images.device)
|
119 |
+
images = torch.cat([images, pad], dim=0)
|
120 |
+
return images
|
121 |
+
|
122 |
+
|
123 |
+
class Phi3VImageProcessor(BaseImageProcessor):
|
124 |
+
r"""
|
125 |
+
Constructs a Phi3 image processor. Based on [`CLIPImageProcessor`] with incorporation of additional techniques
|
126 |
+
for processing high resolution images as explained in the [InternLM-XComposer2-4KHD](https://arxiv.org/abs/2401.16420)
|
127 |
+
|
128 |
+
Args:
|
129 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`):
|
130 |
+
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
|
131 |
+
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
|
132 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`):
|
133 |
+
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
|
134 |
+
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
|
135 |
+
Can be overridden by the `image_std` parameter in the `preprocess` method.
|
136 |
+
do_convert_rgb (`bool`, *optional*, defaults to `True`):
|
137 |
+
Whether to convert the image to RGB.
|
138 |
+
"""
|
139 |
+
|
140 |
+
model_input_names = ["pixel_values"]
|
141 |
+
|
142 |
+
def __init__(
|
143 |
+
self,
|
144 |
+
num_crops: int = 1,
|
145 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
146 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
147 |
+
do_convert_rgb: bool = True,
|
148 |
+
**kwargs,
|
149 |
+
) -> None:
|
150 |
+
super().__init__(**kwargs)
|
151 |
+
self.num_crops = num_crops
|
152 |
+
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
|
153 |
+
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
|
154 |
+
self.do_convert_rgb = do_convert_rgb
|
155 |
+
|
156 |
+
def calc_num_image_tokens(
|
157 |
+
self,
|
158 |
+
images: ImageInput
|
159 |
+
):
|
160 |
+
""" Calculate the number of image tokens for each image.
|
161 |
+
Args:
|
162 |
+
images (`ImageInput`):
|
163 |
+
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
|
164 |
+
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
|
165 |
+
"""
|
166 |
+
images = make_list_of_images(images)
|
167 |
+
|
168 |
+
if not valid_images(images):
|
169 |
+
raise ValueError(
|
170 |
+
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
171 |
+
"torch.Tensor, tf.Tensor or jax.ndarray."
|
172 |
+
)
|
173 |
+
|
174 |
+
images = [image.convert('RGB') for image in images]
|
175 |
+
# (H, W, C)
|
176 |
+
elems = [HD_transform(im, hd_num = self.num_crops) for im in images]
|
177 |
+
shapes = [[im.size[1], im.size[0]] for im in elems]
|
178 |
+
num_img_tokens = [int((h//336*w//336+1)*144 + 1 + (h//336+1)*12) for h, w in shapes]
|
179 |
+
return num_img_tokens
|
180 |
+
|
181 |
+
def calc_num_image_tokens_from_image_size(self, width, height):
|
182 |
+
"""
|
183 |
+
Calculate the number of image tokens for a given image size.
|
184 |
+
Args:
|
185 |
+
width (`int`): Width of the image.
|
186 |
+
height (`int`): Height of the image.
|
187 |
+
"""
|
188 |
+
new_width, new_height = calc_hd_transform_size(width, height, hd_num=self.num_crops)
|
189 |
+
num_img_tokens = int((new_height // 336 * new_width // 336 + 1) * 144 + 1 + (new_height // 336 + 1) * 12)
|
190 |
+
return num_img_tokens
|
191 |
+
|
192 |
+
def preprocess(
|
193 |
+
self,
|
194 |
+
images: ImageInput,
|
195 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
196 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
197 |
+
do_convert_rgb: bool = None,
|
198 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
199 |
+
):
|
200 |
+
"""
|
201 |
+
Args:
|
202 |
+
images (`ImageInput`):
|
203 |
+
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
|
204 |
+
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
|
205 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
|
206 |
+
Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
|
207 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
|
208 |
+
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
|
209 |
+
`True`.
|
210 |
+
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
|
211 |
+
Whether to convert the image to RGB.
|
212 |
+
return_tensors (`str` or `TensorType`, *optional*):
|
213 |
+
The type of tensors to return. Can be one of:
|
214 |
+
- Unset: Return a list of `np.ndarray`.
|
215 |
+
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
|
216 |
+
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
|
217 |
+
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
|
218 |
+
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
|
219 |
+
"""
|
220 |
+
image_mean = image_mean if image_mean is not None else self.image_mean
|
221 |
+
image_std = image_std if image_std is not None else self.image_std
|
222 |
+
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
|
223 |
+
|
224 |
+
images = make_list_of_images(images)
|
225 |
+
|
226 |
+
if not valid_images(images):
|
227 |
+
raise ValueError(
|
228 |
+
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
229 |
+
"torch.Tensor, tf.Tensor or jax.ndarray."
|
230 |
+
)
|
231 |
+
|
232 |
+
if do_convert_rgb:
|
233 |
+
images = [convert_to_rgb(image) for image in images]
|
234 |
+
|
235 |
+
image_sizes = []
|
236 |
+
img_processor = torchvision.transforms.Compose([
|
237 |
+
torchvision.transforms.ToTensor(),
|
238 |
+
torchvision.transforms.Normalize(image_mean, image_std)
|
239 |
+
])
|
240 |
+
|
241 |
+
# PIL images
|
242 |
+
# HD_transform pad images to size of multiiply of 336, 336
|
243 |
+
# convert to RGB first
|
244 |
+
images = [image.convert('RGB') for image in images]
|
245 |
+
elems = [HD_transform(im, hd_num = self.num_crops) for im in images]
|
246 |
+
# tensor transform and normalize
|
247 |
+
hd_images = [img_processor(im) for im in elems]
|
248 |
+
# create global image
|
249 |
+
global_image = [torch.nn.functional.interpolate(im.unsqueeze(0).float(), size=(336, 336), mode='bicubic',).to(im.dtype) for im in hd_images]
|
250 |
+
|
251 |
+
# [(3, h, w)], where h, w is multiple of 336
|
252 |
+
shapes = [[im.size(1), im.size(2)] for im in hd_images]
|
253 |
+
num_img_tokens = [int((h//336*w//336+1)*144 + 1 + (h//336+1)*12) for h, w in shapes]
|
254 |
+
# reshape to channel dimension -> (num_images, num_crops, 3, 336, 336)
|
255 |
+
# (1, 3, h//336, 336, w//336, 336) -> (1, h//336, w//336, 3, 336, 336) -> (h//336*w//336, 3, 336, 336)
|
256 |
+
hd_images_reshape = [im.reshape(1, 3, h//336, 336, w//336, 336).permute(0,2,4,1,3,5).reshape(-1, 3, 336, 336).contiguous() for im, (h, w) in zip(hd_images, shapes)]
|
257 |
+
# concat global image and local image
|
258 |
+
hd_images_reshape = [torch.cat([_global_image] + [_im], dim=0) for _global_image, _im in zip(global_image, hd_images_reshape)]
|
259 |
+
|
260 |
+
# pad to max_num_crops
|
261 |
+
image_transformed = [pad_to_max_num_crops_tensor(im, self.num_crops+1) for im in hd_images_reshape]
|
262 |
+
image_transformed = torch.stack(image_transformed, dim=0)
|
263 |
+
image_sizes = [torch.LongTensor(_shapes) for _shapes in shapes]
|
264 |
+
padded_images = image_transformed
|
265 |
+
image_sizes = shapes
|
266 |
+
|
267 |
+
data = {"pixel_values": padded_images,
|
268 |
+
"image_sizes": image_sizes,
|
269 |
+
"num_img_tokens": num_img_tokens
|
270 |
+
}
|
271 |
+
|
272 |
+
return BatchFeature(data=data, tensor_type=return_tensors)
|
273 |
+
|
274 |
+
AutoImageProcessor.register("Phi3VImageProcessor", Phi3VImageProcessor)
|
modeling_phi3_v.py
ADDED
@@ -0,0 +1,1632 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|