Huiyuan Lai commited on
Commit
0d1a3a2
·
1 Parent(s): 24a3874

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +45 -0
README.md ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ ---
6
+
7
+ # mFLAG
8
+ mFLAG is a sequence-to-sequence model for multi-figurative language generation. It was introduced in the paper [Multi-Figurative Language Generation]() paper by Huiyuan Lai and Malvina Nissim.
9
+
10
+ # Model description
11
+ mFLAG is a sequence-to-sequence model for multi-figurative language generation. It is trained by employing a scheme for multi-figurative language pre-training on top of BART, and a mechanism for injecting the target figurative information into the encoder; this enables the generation of text with the target figurative form from another figurative form without parallel figurative-figurative sentence pairs.
12
+
13
+
14
+ # How to use
15
+ ```bash
16
+ git clone git@github.com:laihuiyuan/mFLAG.git
17
+ cd mFLAG
18
+ ```
19
+
20
+ ```python
21
+ from model import MultiFigurativeGeneration
22
+ from tokenization_mflag import MFlagTokenizerFast
23
+
24
+ tokenizer = MFlagTokenizerFast.from_pretrained('checkpoints/mFLAG')
25
+ model = MultiFigurativeGeneration.from_pretrained('checkpoints/mFLAG')
26
+
27
+ # hyperbole to sarcasm
28
+ inp_id = tokenizer.encode("<hyperbole> I am not happy that he urged me to finish all the hardest tasks in the world", return_tensors="pt")
29
+ fig_id = tokenizer.encode("<sarcasm>", add_special_tokens=False, return_tensors="pt")
30
+
31
+ outs = model.generate(input_ids=inp_id[:, 1:], fig_ids=fig_id, forced_bos_token_id=fig_id.item())
32
+ text = tokenizer.decode(outs[0].tolist(), skip_special_tokens=True, clean_up_tokenization_spaces=False)
33
+ ```
34
+
35
+ # Citation Info
36
+ ```BibTeX
37
+ @inproceedings{lai-etal-2022-multi,
38
+ title = "Multi-Figurative Language Generation",
39
+ author = "Lai, Huiyuan and Nissim, Malvina",
40
+ booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
41
+ month = October,
42
+ year = "2022",
43
+ address = "Gyeongju, Republic of korea",
44
+ }
45
+ ```