lagarbure commited on
Commit
f6bdf57
1 Parent(s): f578791

First commit to the Hub for the LunarLanderv2 env

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: -155.39 +/- 53.77
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 271.77 +/- 15.69
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff080d16c10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff080d16ca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff080d16d30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff080d16dc0>", "_build": "<function ActorCriticPolicy._build at 0x7ff080d16e50>", "forward": "<function ActorCriticPolicy.forward at 0x7ff080d16ee0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff080d16f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff080d1a040>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff080d1a0d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff080d1a160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff080d1a1f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff080d1a280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff080d127b0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 114688, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681201437545670200, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVigIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMWC9ob21lL2xhZ2FycnVlYWwvaGZfcmwvLlJML2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMCN71IOYM/ps0FvqUGU78bw/K9YK0mvQAAAAAAAAAAZm+dPdT/Oj6BsLy9X1GXv/c1hz4LhVo9AAAAAAAAAAAaKio9eTPxPqUnuT2buFa/ZvVQvELgk70AAAAAAAAAAOCDBL4YKJY/APcsv/OfM7+x7WU96t6TPAAAAAAAAAAAzQE7vQSPlT8d/s68arG1vjPJO756ZCe+AAAAAAAAAAAgBLg+wUusPlX2Cz+MeKO/Rn/LObiQDD4AAAAAAAAAABB/rT60DtI9tZYbv3DQEb5z5ZQ/SnqkvgAAAAAAAAAAjf5DPjAzsD7ALSo+JymPv5D3sz6Wfn4+AAAAAAAAAACac149bg6RPxCsPD6rowe/jU3svRKLkj0AAAAAAAAAAMD+o73a/L0/Qj20vlZ5yr39WEA9HMMlPQAAAAAAAAAAADkLviwiuj74bvm+VXWJvzQfgj549FK+AAAAAAAAAACW2uQ+h35qPmgyDD/5aYi/8W2kPWa0wz0AAAAAAAAAAJoRKbv8Mpk/zUzxvA6ENr8l1Q28+oeZPAAAAAAAAAAAM+GUPpSpvT1sIC+/WYCNv96xKD82X4K+AAAAAAAAAACagMA8t0yxP/DO0T4J3lW+wRiPvPAfhLwAAAAAAAAAAE3/Bz0oW7U/JRTwPvZhKb0IPR+9MVyHvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMISfdzCnIZZMCUhpRSlIwBbJRLkYwBdJRHQHJFJDE3sHB1fZQoaAZoCWgPQwhFLc2tEPNQwJSGlFKUaBVLTmgWR0ByRa2Yv38GdX2UKGgGaAloD0MI7lwY6UXdSMCUhpRSlGgVS29oFkdAckcKpDNQj3V9lChoBmgJaA9DCK4upwTEtkjAlIaUUpRoFUuBaBZHQHJHeQEIPbx1fZQoaAZoCWgPQwjspSkCnD5QwJSGlFKUaBVLPmgWR0BySD9GZuyedX2UKGgGaAloD0MIzZGVXwZrXsCUhpRSlGgVS0NoFkdAcki6ab4Ju3V9lChoBmgJaA9DCO4iTFEuhVXAlIaUUpRoFUtnaBZHQHJJd3GGVRl1fZQoaAZoCWgPQwgeqb7zixBTwJSGlFKUaBVLY2gWR0BySWMXJo0zdX2UKGgGaAloD0MIVg3C3O6lOcCUhpRSlGgVS0poFkdAckmaw2VE/nV9lChoBmgJaA9DCFQbnIh+fFvAlIaUUpRoFUuAaBZHQHJKhd2PkrB1fZQoaAZoCWgPQwg7jEl/L5xXwJSGlFKUaBVLi2gWR0ByS8mTkhicdX2UKGgGaAloD0MI6jwq/u+DWcCUhpRSlGgVS2VoFkdAckx7w8W9DnV9lChoBmgJaA9DCB/ylqsf+FHAlIaUUpRoFUtiaBZHQHJMszqKP4p1fZQoaAZoCWgPQwiCNjl80txSwJSGlFKUaBVLRGgWR0ByTZbRnezldX2UKGgGaAloD0MIZ7XAHhONN8CUhpRSlGgVS1hoFkdAck4MKCxu9HV9lChoBmgJaA9DCNemsb0WakjAlIaUUpRoFUtmaBZHQHJOrSmZVn51fZQoaAZoCWgPQwjvx+2XT2ZVwJSGlFKUaBVLo2gWR0ByT1E+gUUPdX2UKGgGaAloD0MIbCHIQQkmUsCUhpRSlGgVS0NoFkdAck9Dl5nlGXV9lChoBmgJaA9DCL8Qct7/ilDAlIaUUpRoFUtxaBZHQHJPsmBvrGB1fZQoaAZoCWgPQwgr3zMSoflBwJSGlFKUaBVLWWgWR0ByUAVtXPqtdX2UKGgGaAloD0MIEynN5nFfV8CUhpRSlGgVS4poFkdAclEDej2zwHV9lChoBmgJaA9DCBcoKbAAg1XAlIaUUpRoFUtZaBZHQHJQ5TqB3A51fZQoaAZoCWgPQwiOIQA49vRYwJSGlFKUaBVLQ2gWR0ByUS1eBxxUdX2UKGgGaAloD0MIyQImcOsEV8CUhpRSlGgVS2doFkdAclOUb1h9cHV9lChoBmgJaA9DCEfn/BTHBFrAlIaUUpRoFUtMaBZHQHJTvp2U0N11fZQoaAZoCWgPQwhgrkULUIdjwJSGlFKUaBVLa2gWR0ByU+VX3g1ndX2UKGgGaAloD0MIXmOXqN5jUMCUhpRSlGgVS0xoFkdAclVg0CRwInV9lChoBmgJaA9DCDKuuDiqcmXAlIaUUpRoFUtpaBZHQHJWMWTHKfZ1fZQoaAZoCWgPQwj1S8Rb5wFYwJSGlFKUaBVLY2gWR0ByVjqt5le4dX2UKGgGaAloD0MIY0Z4exAFVcCUhpRSlGgVS0poFkdAcladuHerMnV9lChoBmgJaA9DCAYQPpRoNF7AlIaUUpRoFUthaBZHQHJXEVFhG6R1fZQoaAZoCWgPQwhYPPVIg8dEwJSGlFKUaBVLQmgWR0ByV7khib2EdX2UKGgGaAloD0MIpu7KLhinUsCUhpRSlGgVS5JoFkdAclhOLzf78HV9lChoBmgJaA9DCPpGdM+6Uk7AlIaUUpRoFUtfaBZHQHJYUZ3s5XF1fZQoaAZoCWgPQwhf8GlOXqRUwJSGlFKUaBVLbGgWR0ByWg5xR2r5dX2UKGgGaAloD0MIBHXKoxstTMCUhpRSlGgVS0xoFkdAcluZFXq7iHV9lChoBmgJaA9DCK2HLxNF6k/AlIaUUpRoFUuBaBZHQHJclAu7HyV1fZQoaAZoCWgPQwg8M8FwrhtbwJSGlFKUaBVLfmgWR0ByXJ/3FkxzdX2UKGgGaAloD0MI+8vuycPMVsCUhpRSlGgVS2JoFkdAcl1u0kWyknV9lChoBmgJaA9DCFoRNdHnIVvAlIaUUpRoFUt8aBZHQHJdTeTFERd1fZQoaAZoCWgPQwgoLVxWYStRwJSGlFKUaBVLgWgWR0ByXh9G7SRbdX2UKGgGaAloD0MI/KpcqPxzSMCUhpRSlGgVS0poFkdAcl8BDG96C3V9lChoBmgJaA9DCKvpeqLrBVPAlIaUUpRoFUtUaBZHQHJfD2nKnvV1fZQoaAZoCWgPQwi7fsFu2HpWwJSGlFKUaBVLV2gWR0ByXwRbr1M/dX2UKGgGaAloD0MInG1uTE/9WsCUhpRSlGgVS1toFkdAcl9eWOZLI3V9lChoBmgJaA9DCF1wBn+/CkzAlIaUUpRoFUtWaBZHQHJfnFkxyn11fZQoaAZoCWgPQwgbECGunLxQwJSGlFKUaBVLc2gWR0ByYRSGahHtdX2UKGgGaAloD0MI1skZijskXMCUhpRSlGgVS1toFkdAcmFMvRJEpnV9lChoBmgJaA9DCLyUumQca1PAlIaUUpRoFUuXaBZHQHJjEXDWK/F1fZQoaAZoCWgPQwhf7/54r3xLwJSGlFKUaBVLbmgWR0ByYz7XQMQVdX2UKGgGaAloD0MIeXjPgeXcOMCUhpRSlGgVS2loFkdAcmSim2sq8XV9lChoBmgJaA9DCGwiMxe4uErAlIaUUpRoFUtLaBZHQHJk59uxbB51fZQoaAZoCWgPQwh9lXzsLrFUwJSGlFKUaBVLWWgWR0ByZYiB5HEudX2UKGgGaAloD0MIaXBbW3jlXcCUhpRSlGgVS15oFkdAcmbXhOxja3V9lChoBmgJaA9DCEmil1EsUUXAlIaUUpRoFUtXaBZHQHJoGXgLqlh1fZQoaAZoCWgPQwhjRnh7EB9QwJSGlFKUaBVLcmgWR0ByaAB2fTTfdX2UKGgGaAloD0MIij4fZcTDTsCUhpRSlGgVS1xoFkdAcmgzwMH8j3V9lChoBmgJaA9DCODaiZKQV1PAlIaUUpRoFUtZaBZHQHJoj+R5kbx1fZQoaAZoCWgPQwgT7pV5q81awJSGlFKUaBVLYmgWR0ByaMj3VTaTdX2UKGgGaAloD0MIjXxe8dTxXsCUhpRSlGgVS4VoFkdAcmjS13MY/HV9lChoBmgJaA9DCABYHTnSMUbAlIaUUpRoFUtTaBZHQHJpZSR8twt1fZQoaAZoCWgPQwgVrHE2nUpiwJSGlFKUaBVLaGgWR0ByaWgam4y5dX2UKGgGaAloD0MIGD4ipkStWMCUhpRSlGgVS3RoFkdAcmmauwHJLnV9lChoBmgJaA9DCKWkh6HVyU/AlIaUUpRoFUtAaBZHQHJq+gUUO/d1fZQoaAZoCWgPQwg7wmnBi6JBwJSGlFKUaBVLb2gWR0Bya7skY4yXdX2UKGgGaAloD0MI7tEb7qNyY8CUhpRSlGgVS3doFkdAcm5+6Ae7tnV9lChoBmgJaA9DCLg6AOKunEzAlIaUUpRoFUtEaBZHQHJuqySmqHZ1fZQoaAZoCWgPQwiPxqF+F4BSwJSGlFKUaBVLU2gWR0BycA+nqFAWdX2UKGgGaAloD0MIZmZmZmamMMCUhpRSlGgVS0xoFkdAcm/giu+yq3V9lChoBmgJaA9DCBLeHoQAd2vAlIaUUpRoFUuIaBZHQHJwadtl7MR1fZQoaAZoCWgPQwj92vrpP7tFwJSGlFKUaBVLTmgWR0BycQKb8WKudX2UKGgGaAloD0MI7+NojqwpZ8CUhpRSlGgVS39oFkdAcnD0Cih37nV9lChoBmgJaA9DCJiHTPkQsFPAlIaUUpRoFUt4aBZHQHJxN1QqI8B1fZQoaAZoCWgPQwi6FcJqLHpnwJSGlFKUaBVLZWgWR0ByczaGpMpPdX2UKGgGaAloD0MI2lazzvh/VMCUhpRSlGgVS4RoFkdAcnOp/wy6+XV9lChoBmgJaA9DCLA9syRA1VDAlIaUUpRoFUt9aBZHQHJ0FyaNMoN1fZQoaAZoCWgPQwjSp1X0BzJlwJSGlFKUaBVLeGgWR0BydG4LCvX9dX2UKGgGaAloD0MImL1sO22YXcCUhpRSlGgVS15oFkdAcnUelKsdUHV9lChoBmgJaA9DCCLFAIkmxVvAlIaUUpRoFUuAaBZHQHJ2DOkcjqx1fZQoaAZoCWgPQwholZnS+rhXwJSGlFKUaBVLiWgWR0BydhhfBvaUdX2UKGgGaAloD0MIOL2L9+P8QsCUhpRSlGgVS0hoFkdAcnbXpW3jMnV9lChoBmgJaA9DCPuw3qgVt1XAlIaUUpRoFUtGaBZHQHJ3naN+9al1fZQoaAZoCWgPQwi0yeGTTglYwJSGlFKUaBVLg2gWR0Byd7obGWD6dX2UKGgGaAloD0MI5WA2AYajSsCUhpRSlGgVS1VoFkdAcnhHVf/m1nV9lChoBmgJaA9DCBNHHogsF1DAlIaUUpRoFUtxaBZHQHJ5myX2M851fZQoaAZoCWgPQwicpzrkZpdWwJSGlFKUaBVLTGgWR0ByepSZSeiBdX2UKGgGaAloD0MIrB4wD5nCWcCUhpRSlGgVS2doFkdAcnsL6DXe33V9lChoBmgJaA9DCBSuR+F6k1jAlIaUUpRoFUtnaBZHQHJ7OrdWQwN1fZQoaAZoCWgPQwiWJTrLLBtXwJSGlFKUaBVLgGgWR0Bye0T238XOdX2UKGgGaAloD0MIdsWM8PaaYsCUhpRSlGgVS3JoFkdAcnuSDyvs7nV9lChoBmgJaA9DCJs3TgrzJFDAlIaUUpRoFUtMaBZHQHJ9fKuB+Wp1fZQoaAZoCWgPQwgJibSNPylbwJSGlFKUaBVLWWgWR0Byfb029+PSdX2UKGgGaAloD0MIsHWpEfpkWcCUhpRSlGgVS1VoFkdAcn5jNpudgHV9lChoBmgJaA9DCOaTFcPVxVXAlIaUUpRoFUt2aBZHQHJ/7kGRmsh1fZQoaAZoCWgPQwgh5/1/nDlXwJSGlFKUaBVLUWgWR0BygEkX1rZbdX2UKGgGaAloD0MIATEJF/KdUsCUhpRSlGgVS05oFkdAcoFPOpsGgXV9lChoBmgJaA9DCCQKLev+XUTAlIaUUpRoFUuPaBZHQHKBxddE9dN1fZQoaAZoCWgPQwggtYmT+xlNwJSGlFKUaBVLQGgWR0Byge0kWykcdX2UKGgGaAloD0MIfcoxWdyeVMCUhpRSlGgVS5VoFkdAcoLclPacqnV9lChoBmgJaA9DCKnaboJvK1vAlIaUUpRoFUt5aBZHQHKC+JpFkQR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 28, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVigIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMWC9ob21lL2xhZ2FycnVlYWwvaGZfcmwvLlJML2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.16.3-microsoft-standard-WSL2-x86_64-with-glibc2.29 # 1 SMP Fri Apr 2 22:23:49 UTC 2021", "Python": "3.8.10", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu117", "GPU Enabled": "True", "Numpy": "1.24.2", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff080d16c10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff080d16ca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff080d16d30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff080d16dc0>", "_build": "<function ActorCriticPolicy._build at 0x7ff080d16e50>", "forward": "<function ActorCriticPolicy.forward at 0x7ff080d16ee0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff080d16f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff080d1a040>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff080d1a0d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff080d1a160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff080d1a1f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff080d1a280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff080d127b0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681203256740055000, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVigIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMWC9ob21lL2xhZ2FycnVlYWwvaGZfcmwvLlJML2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE22UL32hHi6g5XAunPesrU0lkE661PhOQAAgD8AAIA/gEttvsDkQz9qu6g7NojAvhbe+L0K25M9AAAAAAAAAABmCbY9uAbKuSbf5zvzxRE4HqrhOvjP5TYAAAAAAACAPxrcSr3DPT26/il7uxE1GbXVYzW7RgGTOgAAgD8AAIA/AMhvO8wwHz+4P7c8bSzOvkqGMDywR249AAAAAAAAAADNlIi74aySut50VbrvjZmznf8dutZldjkAAIA/AACAP2aGhjz2PE66zMgVuTOtBbS4/Zq6y/AwOAAAgD8AAIA/sz8bPa5btbrFyZA8jJIrvY7kNbtUNha+AAAAAAAAgD+a+S09w5kpul2zsbsefL81P66kujC9K7UAAIA/AACAPyZWQz7//ik+Dp5cvkXBjL4o2Ja8a1ayPQAAAAAAAAAAM9fVvFyDJbqMQIW7AOVrtawW/bl235o6AACAPwAAgD961ho+T7suvIuAyDsv00S6+rCTvQq0ILsAAIA/AACAP5q+k7yuDYK6XZ6KOfkIgTScZBM6NRmeuAAAgD8AAIA/czbqvVLQgrndLwu69vMUtUJcTruTviU5AACAPwAAgD8mHMg94TKduqJQsLu5MXc4omUFu14rEDgAAAAAAACAP83VXb1cTwu6YUm7Oy72szcdzOQ6NdBXNgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVaxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYabtX1lqUECUhpRSlIwBbJRL1IwBdJRHQKsv6A/cFhZ1fZQoaAZoCWgPQwiZuiu7YNtRQJSGlFKUaBVLz2gWR0CrMET4k/r0dX2UKGgGaAloD0MIyvyjb9JMZkCUhpRSlGgVTegDaBZHQKswrtm+TNd1fZQoaAZoCWgPQwjEsMOY9OdlQJSGlFKUaBVN6ANoFkdAqzFgTwlSj3V9lChoBmgJaA9DCEeP39v0iWZAlIaUUpRoFU3oA2gWR0CrMsQljVhDdX2UKGgGaAloD0MIcAZ/v5jGZECUhpRSlGgVTegDaBZHQKsz+7/4qPR1fZQoaAZoCWgPQwgurYbEPdZOQJSGlFKUaBVLwWgWR0CrNEoCU5dXdX2UKGgGaAloD0MIZf88DZjVY0CUhpRSlGgVTegDaBZHQKs1e0PYnOV1fZQoaAZoCWgPQwgN4gM7PutwQJSGlFKUaBVNZANoFkdAqzY30mMOw3V9lChoBmgJaA9DCPrS25+LJF1AlIaUUpRoFU3oA2gWR0CrNyIKc/dJdX2UKGgGaAloD0MISN+kadBLbECUhpRSlGgVTd0DaBZHQKs3TmeUY9B1fZQoaAZoCWgPQwhzuiwmNrNiQJSGlFKUaBVN6ANoFkdAqzpflIVdonV9lChoBmgJaA9DCHZvRWICXGdAlIaUUpRoFU3oA2gWR0CrOmfWMCLddX2UKGgGaAloD0MIYFeTp6wsZUCUhpRSlGgVTegDaBZHQKtC9l9Sde91fZQoaAZoCWgPQwiesS/ZeBNoQJSGlFKUaBVN6ANoFkdAq0gevECNj3V9lChoBmgJaA9DCHODoQ6r23BAlIaUUpRoFU0+A2gWR0CrTZM/Y8MedX2UKGgGaAloD0MIezGUE+3jY0CUhpRSlGgVTegDaBZHQKtPbSxZ+x51fZQoaAZoCWgPQwi05sdfWr1jQJSGlFKUaBVN6ANoFkdAq2ZsTewcHXV9lChoBmgJaA9DCEsjZvZ5h19AlIaUUpRoFU3oA2gWR0CrZsvLxI8RdX2UKGgGaAloD0MIQGzp0dQPYkCUhpRSlGgVTegDaBZHQKtnPfqHGjt1fZQoaAZoCWgPQwgUlQ1rKlFlQJSGlFKUaBVN6ANoFkdAq2gGPxQSBnV9lChoBmgJaA9DCCb+KOrMETBAlIaUUpRoFUusaBZHQKtpmsK9f1J1fZQoaAZoCWgPQwi86CtIMxRlQJSGlFKUaBVN6ANoFkdAq2rprxiG4HV9lChoBmgJaA9DCP8EFytqL2ZAlIaUUpRoFU3oA2gWR0Cra0KuKXOXdX2UKGgGaAloD0MIurpjsU2gTECUhpRSlGgVS8JoFkdAq2vUMNMGo3V9lChoBmgJaA9DCOSghJm29mJAlIaUUpRoFU3oA2gWR0CrbHzErGzbdX2UKGgGaAloD0MI7QxTW+oYTkCUhpRSlGgVS7doFkdAq2yLJyQxOHV9lChoBmgJaA9DCGzRArSt71BAlIaUUpRoFUujaBZHQKtsth3qzJJ1fZQoaAZoCWgPQwg8pYP1/wxlQJSGlFKUaBVN6ANoFkdAq20lie/Ya3V9lChoBmgJaA9DCAU25+AZL2RAlIaUUpRoFU3oA2gWR0CrbfOvt+kQdX2UKGgGaAloD0MIrMq+K4JTYUCUhpRSlGgVTegDaBZHQKtuF7N0NjN1fZQoaAZoCWgPQwg9uDtrtxpRQJSGlFKUaBVL2GgWR0Crb1SCnP3SdX2UKGgGaAloD0MI+BbWjXcwZECUhpRSlGgVTegDaBZHQKtwtm7J4jd1fZQoaAZoCWgPQwhEwYwpWHVkQJSGlFKUaBVN6ANoFkdAq3C+jTKDCnV9lChoBmgJaA9DCLOVl/xPMjpAlIaUUpRoFUvOaBZHQKtzQo2n8891fZQoaAZoCWgPQwhwXpz46uNhQJSGlFKUaBVN6ANoFkdAq3j27SRbKXV9lChoBmgJaA9DCNaO4hz1FWdAlIaUUpRoFU3oA2gWR0CrfhoCMglodX2UKGgGaAloD0MIrKjBNAwOb0CUhpRSlGgVTbACaBZHQKuC0mdiDul1fZQoaAZoCWgPQwhx5eyd0dlhQJSGlFKUaBVN6ANoFkdAq4Vsp7TlT3V9lChoBmgJaA9DCKAVGLI6K2lAlIaUUpRoFU3oA2gWR0CrhdI+nqFAdX2UKGgGaAloD0MIJQUWwBRBYkCUhpRSlGgVTegDaBZHQKuhl0TURWd1fZQoaAZoCWgPQwhdcAZ/v/dfQJSGlFKUaBVN6ANoFkdAq6H/0oScsnV9lChoBmgJaA9DCLRXHw99EGZAlIaUUpRoFU3oA2gWR0CropYxk/bCdX2UKGgGaAloD0MILdDukGI4ZUCUhpRSlGgVTegDaBZHQKujRMxoIv91fZQoaAZoCWgPQwj6mXrdIldjQJSGlFKUaBVN6ANoFkdAq6NRoGpuM3V9lChoBmgJaA9DCA/yejCpLWNAlIaUUpRoFU3oA2gWR0Cro3wBYFJQdX2UKGgGaAloD0MIOl0WExujZECUhpRSlGgVTegDaBZHQKuk1KraM751fZQoaAZoCWgPQwhodt1bETJjQJSGlFKUaBVN6ANoFkdAq6Y8sBhhIHV9lChoBmgJaA9DCJNuS+SCGmFAlIaUUpRoFU3oA2gWR0Crp6MvIwM6dX2UKGgGaAloD0MIgsmNImtsaECUhpRSlGgVTegDaBZHQKunqth/iHZ1fZQoaAZoCWgPQwgArmTHxg1mQJSGlFKUaBVN6ANoFkdAq6ou0CzTnnV9lChoBmgJaA9DCPrTRnU6iWZAlIaUUpRoFU3oA2gWR0Crr4s90RvndX2UKGgGaAloD0MIL9y5MNITSkCUhpRSlGgVS69oFkdAq6/V6eGwinV9lChoBmgJaA9DCFxzR//LjGRAlIaUUpRoFU3oA2gWR0CrtFEcCHRDdX2UKGgGaAloD0MIU5J1OLqEUkCUhpRSlGgVS9JoFkdAq7ZcZHd43XV9lChoBmgJaA9DCLDKhcq/cGdAlIaUUpRoFU3oA2gWR0CruKoQ4CIUdX2UKGgGaAloD0MIYJSgv1CmY0CUhpRSlGgVTegDaBZHQKu7CyrxRVJ1fZQoaAZoCWgPQwhzK4TV2HhkQJSGlFKUaBVN6ANoFkdAq7tvkPtlZ3V9lChoBmgJaA9DCCXpmsk3q0dAlIaUUpRoFUvAaBZHQKvWpJVbRnh1fZQoaAZoCWgPQwg+yogLQF9kQJSGlFKUaBVN6ANoFkdAq9fQRIz3y3V9lChoBmgJaA9DCCPA6V28gGFAlIaUUpRoFU3oA2gWR0Cr2CbUPQOXdX2UKGgGaAloD0MIGqa21MGtYECUhpRSlGgVTegDaBZHQKvYwOmzjWF1fZQoaAZoCWgPQwga3NYWntpiQJSGlFKUaBVN6ANoFkdAq9lzeqJdjXV9lChoBmgJaA9DCPMDV3kCrl5AlIaUUpRoFU3oA2gWR0Cr2YBcZ9/jdX2UKGgGaAloD0MIowIn20BsZUCUhpRSlGgVTegDaBZHQKvZq/UONHZ1fZQoaAZoCWgPQwjHoX4XtqxkQJSGlFKUaBVN6ANoFkdAq9sGQXAM2HV9lChoBmgJaA9DCGLWi6GcKWNAlIaUUpRoFU3oA2gWR0Cr3G3RXwLFdX2UKGgGaAloD0MIieqtga3SSUCUhpRSlGgVS7BoFkdAq9yKRB/qgXV9lChoBmgJaA9DCGqkpfL2gGFAlIaUUpRoFU3oA2gWR0Cr3cuoxYaHdX2UKGgGaAloD0MIJXZtbzcvYkCUhpRSlGgVTegDaBZHQKvd1c0Ltu11fZQoaAZoCWgPQwh1r5P6srBMQJSGlFKUaBVLvWgWR0Cr3kpIUahpdX2UKGgGaAloD0MIhc0AF2TAUUCUhpRSlGgVS8xoFkdAq96aGvfTC3V9lChoBmgJaA9DCC81Qj9T6UtAlIaUUpRoFUutaBZHQKvfc5IYm9h1fZQoaAZoCWgPQwiLqfQTziJNQJSGlFKUaBVLomgWR0Cr4h6d+XqrdX2UKGgGaAloD0MIjlph+l7QUECUhpRSlGgVS7BoFkdAq+KN6mfoR3V9lChoBmgJaA9DCBebVgqBglNAlIaUUpRoFUvIaBZHQKvlQdXko4N1fZQoaAZoCWgPQwjyJVRweO9nQJSGlFKUaBVN6ANoFkdAq+VTR6Ww/3V9lChoBmgJaA9DCBJosKnzZGhAlIaUUpRoFU3oA2gWR0Cr6aH2IwdsdX2UKGgGaAloD0MIBf2FHrFEZUCUhpRSlGgVTegDaBZHQKvry0bcXWR1fZQoaAZoCWgPQwi2EyUh0dlyQJSGlFKUaBVNfAFoFkdAq+5A9RrJsHV9lChoBmgJaA9DCCFYVS+/7z9AlIaUUpRoFUujaBZHQKvvFTrmhdt1fZQoaAZoCWgPQwjGMZI9QtJhQJSGlFKUaBVN6ANoFkdAq/DwaFVT73V9lChoBmgJaA9DCNJwytx8JWVAlIaUUpRoFU3oA2gWR0Cr8VpQLux9dX2UKGgGaAloD0MIDaoNTsRyY0CUhpRSlGgVTegDaBZHQKwJ0tRNyo51fZQoaAZoCWgPQwhx4qsdxYRUQJSGlFKUaBVLtmgWR0CsCjevpyIYdX2UKGgGaAloD0MIETY8vVLKZECUhpRSlGgVTegDaBZHQKwLY/JNj9Z1fZQoaAZoCWgPQwgdr0D0JPdhQJSGlFKUaBVN6ANoFkdArAv5QFcIJXV9lChoBmgJaA9DCBkCgGPPNmJAlIaUUpRoFU3oA2gWR0CsDOeumrKedX2UKGgGaAloD0MIXaYmwRt2YUCUhpRSlGgVTegDaBZHQKwQJzDn/1h1fZQoaAZoCWgPQwhz1TxHZKplQJSGlFKUaBVN6ANoFkdArBBKJGe+VXV9lChoBmgJaA9DCFJ95xclNWRAlIaUUpRoFU3oA2gWR0CsEnDc2zfKdX2UKGgGaAloD0MIveE+cmsvZUCUhpRSlGgVTegDaBZHQKwS3YzSCvp1fZQoaAZoCWgPQwhnKy/5n9ZIQJSGlFKUaBVLqmgWR0CsFWjyFwkxdX2UKGgGaAloD0MIbqKW5laAZkCUhpRSlGgVTegDaBZHQKwXHDP4VRF1fZQoaAZoCWgPQwgnE7cKYvNkQJSGlFKUaBVN6ANoFkdArBm5gJC0GHV9lChoBmgJaA9DCF653jbTkGhAlIaUUpRoFU3oA2gWR0CsGcybx3FDdX2UKGgGaAloD0MIjWDj+vccaUCUhpRSlGgVTegDaBZHQKwfewg1WKd1fZQoaAZoCWgPQwh9kdCWcwRnQJSGlFKUaBVN6ANoFkdArCGcjZ+QVHV9lChoBmgJaA9DCC0mNh9XZWFAlIaUUpRoFU3oA2gWR0CsI/zWwu/UdX2UKGgGaAloD0MIqpog6r6AZkCUhpRSlGgVTegDaBZHQKwkVwWFev91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVigIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMWC9ob21lL2xhZ2FycnVlYWwvaGZfcmwvLlJML2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.16.3-microsoft-standard-WSL2-x86_64-with-glibc2.29 # 1 SMP Fri Apr 2 22:23:49 UTC 2021", "Python": "3.8.10", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu117", "GPU Enabled": "True", "Numpy": "1.24.2", "Gym": "0.21.0"}}
lunar-lander-ppo-1M.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d40696c4008d155504cbf41c3f23604ffc0e5ffa816c613032aadfd9712c6ab
3
+ size 147233
lunar-lander-ppo-1M/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
lunar-lander-ppo-1M/data ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff080d16c10>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff080d16ca0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff080d16d30>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff080d16dc0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7ff080d16e50>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7ff080d16ee0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff080d16f70>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff080d1a040>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7ff080d1a0d0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff080d1a160>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff080d1a1f0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff080d1a280>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7ff080d127b0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1681203256740055000,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "lr_schedule": {
33
+ ":type:": "<class 'function'>",
34
+ ":serialized:": "gAWVigIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMWC9ob21lL2xhZ2FycnVlYWwvaGZfcmwvLlJML2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
35
+ },
36
+ "_last_obs": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE22UL32hHi6g5XAunPesrU0lkE661PhOQAAgD8AAIA/gEttvsDkQz9qu6g7NojAvhbe+L0K25M9AAAAAAAAAABmCbY9uAbKuSbf5zvzxRE4HqrhOvjP5TYAAAAAAACAPxrcSr3DPT26/il7uxE1GbXVYzW7RgGTOgAAgD8AAIA/AMhvO8wwHz+4P7c8bSzOvkqGMDywR249AAAAAAAAAADNlIi74aySut50VbrvjZmznf8dutZldjkAAIA/AACAP2aGhjz2PE66zMgVuTOtBbS4/Zq6y/AwOAAAgD8AAIA/sz8bPa5btbrFyZA8jJIrvY7kNbtUNha+AAAAAAAAgD+a+S09w5kpul2zsbsefL81P66kujC9K7UAAIA/AACAPyZWQz7//ik+Dp5cvkXBjL4o2Ja8a1ayPQAAAAAAAAAAM9fVvFyDJbqMQIW7AOVrtawW/bl235o6AACAPwAAgD961ho+T7suvIuAyDsv00S6+rCTvQq0ILsAAIA/AACAP5q+k7yuDYK6XZ6KOfkIgTScZBM6NRmeuAAAgD8AAIA/czbqvVLQgrndLwu69vMUtUJcTruTviU5AACAPwAAgD8mHMg94TKduqJQsLu5MXc4omUFu14rEDgAAAAAAACAP83VXb1cTwu6YUm7Oy72szcdzOQ6NdBXNgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_episode_starts": {
41
+ ":type:": "<class 'numpy.ndarray'>",
42
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
43
+ },
44
+ "_last_original_obs": null,
45
+ "_episode_num": 0,
46
+ "use_sde": false,
47
+ "sde_sample_freq": -1,
48
+ "_current_progress_remaining": -0.015808000000000044,
49
+ "_stats_window_size": 100,
50
+ "ep_info_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVaxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYabtX1lqUECUhpRSlIwBbJRL1IwBdJRHQKsv6A/cFhZ1fZQoaAZoCWgPQwiZuiu7YNtRQJSGlFKUaBVLz2gWR0CrMET4k/r0dX2UKGgGaAloD0MIyvyjb9JMZkCUhpRSlGgVTegDaBZHQKswrtm+TNd1fZQoaAZoCWgPQwjEsMOY9OdlQJSGlFKUaBVN6ANoFkdAqzFgTwlSj3V9lChoBmgJaA9DCEeP39v0iWZAlIaUUpRoFU3oA2gWR0CrMsQljVhDdX2UKGgGaAloD0MIcAZ/v5jGZECUhpRSlGgVTegDaBZHQKsz+7/4qPR1fZQoaAZoCWgPQwgurYbEPdZOQJSGlFKUaBVLwWgWR0CrNEoCU5dXdX2UKGgGaAloD0MIZf88DZjVY0CUhpRSlGgVTegDaBZHQKs1e0PYnOV1fZQoaAZoCWgPQwgN4gM7PutwQJSGlFKUaBVNZANoFkdAqzY30mMOw3V9lChoBmgJaA9DCPrS25+LJF1AlIaUUpRoFU3oA2gWR0CrNyIKc/dJdX2UKGgGaAloD0MISN+kadBLbECUhpRSlGgVTd0DaBZHQKs3TmeUY9B1fZQoaAZoCWgPQwhzuiwmNrNiQJSGlFKUaBVN6ANoFkdAqzpflIVdonV9lChoBmgJaA9DCHZvRWICXGdAlIaUUpRoFU3oA2gWR0CrOmfWMCLddX2UKGgGaAloD0MIYFeTp6wsZUCUhpRSlGgVTegDaBZHQKtC9l9Sde91fZQoaAZoCWgPQwiesS/ZeBNoQJSGlFKUaBVN6ANoFkdAq0gevECNj3V9lChoBmgJaA9DCHODoQ6r23BAlIaUUpRoFU0+A2gWR0CrTZM/Y8MedX2UKGgGaAloD0MIezGUE+3jY0CUhpRSlGgVTegDaBZHQKtPbSxZ+x51fZQoaAZoCWgPQwi05sdfWr1jQJSGlFKUaBVN6ANoFkdAq2ZsTewcHXV9lChoBmgJaA9DCEsjZvZ5h19AlIaUUpRoFU3oA2gWR0CrZsvLxI8RdX2UKGgGaAloD0MIQGzp0dQPYkCUhpRSlGgVTegDaBZHQKtnPfqHGjt1fZQoaAZoCWgPQwgUlQ1rKlFlQJSGlFKUaBVN6ANoFkdAq2gGPxQSBnV9lChoBmgJaA9DCCb+KOrMETBAlIaUUpRoFUusaBZHQKtpmsK9f1J1fZQoaAZoCWgPQwi86CtIMxRlQJSGlFKUaBVN6ANoFkdAq2rprxiG4HV9lChoBmgJaA9DCP8EFytqL2ZAlIaUUpRoFU3oA2gWR0Cra0KuKXOXdX2UKGgGaAloD0MIurpjsU2gTECUhpRSlGgVS8JoFkdAq2vUMNMGo3V9lChoBmgJaA9DCOSghJm29mJAlIaUUpRoFU3oA2gWR0CrbHzErGzbdX2UKGgGaAloD0MI7QxTW+oYTkCUhpRSlGgVS7doFkdAq2yLJyQxOHV9lChoBmgJaA9DCGzRArSt71BAlIaUUpRoFUujaBZHQKtsth3qzJJ1fZQoaAZoCWgPQwg8pYP1/wxlQJSGlFKUaBVN6ANoFkdAq20lie/Ya3V9lChoBmgJaA9DCAU25+AZL2RAlIaUUpRoFU3oA2gWR0CrbfOvt+kQdX2UKGgGaAloD0MIrMq+K4JTYUCUhpRSlGgVTegDaBZHQKtuF7N0NjN1fZQoaAZoCWgPQwg9uDtrtxpRQJSGlFKUaBVL2GgWR0Crb1SCnP3SdX2UKGgGaAloD0MI+BbWjXcwZECUhpRSlGgVTegDaBZHQKtwtm7J4jd1fZQoaAZoCWgPQwhEwYwpWHVkQJSGlFKUaBVN6ANoFkdAq3C+jTKDCnV9lChoBmgJaA9DCLOVl/xPMjpAlIaUUpRoFUvOaBZHQKtzQo2n8891fZQoaAZoCWgPQwhwXpz46uNhQJSGlFKUaBVN6ANoFkdAq3j27SRbKXV9lChoBmgJaA9DCNaO4hz1FWdAlIaUUpRoFU3oA2gWR0CrfhoCMglodX2UKGgGaAloD0MIrKjBNAwOb0CUhpRSlGgVTbACaBZHQKuC0mdiDul1fZQoaAZoCWgPQwhx5eyd0dlhQJSGlFKUaBVN6ANoFkdAq4Vsp7TlT3V9lChoBmgJaA9DCKAVGLI6K2lAlIaUUpRoFU3oA2gWR0CrhdI+nqFAdX2UKGgGaAloD0MIJQUWwBRBYkCUhpRSlGgVTegDaBZHQKuhl0TURWd1fZQoaAZoCWgPQwhdcAZ/v/dfQJSGlFKUaBVN6ANoFkdAq6H/0oScsnV9lChoBmgJaA9DCLRXHw99EGZAlIaUUpRoFU3oA2gWR0CropYxk/bCdX2UKGgGaAloD0MILdDukGI4ZUCUhpRSlGgVTegDaBZHQKujRMxoIv91fZQoaAZoCWgPQwj6mXrdIldjQJSGlFKUaBVN6ANoFkdAq6NRoGpuM3V9lChoBmgJaA9DCA/yejCpLWNAlIaUUpRoFU3oA2gWR0Cro3wBYFJQdX2UKGgGaAloD0MIOl0WExujZECUhpRSlGgVTegDaBZHQKuk1KraM751fZQoaAZoCWgPQwhodt1bETJjQJSGlFKUaBVN6ANoFkdAq6Y8sBhhIHV9lChoBmgJaA9DCJNuS+SCGmFAlIaUUpRoFU3oA2gWR0Crp6MvIwM6dX2UKGgGaAloD0MIgsmNImtsaECUhpRSlGgVTegDaBZHQKunqth/iHZ1fZQoaAZoCWgPQwgArmTHxg1mQJSGlFKUaBVN6ANoFkdAq6ou0CzTnnV9lChoBmgJaA9DCPrTRnU6iWZAlIaUUpRoFU3oA2gWR0Crr4s90RvndX2UKGgGaAloD0MIL9y5MNITSkCUhpRSlGgVS69oFkdAq6/V6eGwinV9lChoBmgJaA9DCFxzR//LjGRAlIaUUpRoFU3oA2gWR0CrtFEcCHRDdX2UKGgGaAloD0MIU5J1OLqEUkCUhpRSlGgVS9JoFkdAq7ZcZHd43XV9lChoBmgJaA9DCLDKhcq/cGdAlIaUUpRoFU3oA2gWR0CruKoQ4CIUdX2UKGgGaAloD0MIYJSgv1CmY0CUhpRSlGgVTegDaBZHQKu7CyrxRVJ1fZQoaAZoCWgPQwhzK4TV2HhkQJSGlFKUaBVN6ANoFkdAq7tvkPtlZ3V9lChoBmgJaA9DCCXpmsk3q0dAlIaUUpRoFUvAaBZHQKvWpJVbRnh1fZQoaAZoCWgPQwg+yogLQF9kQJSGlFKUaBVN6ANoFkdAq9fQRIz3y3V9lChoBmgJaA9DCCPA6V28gGFAlIaUUpRoFU3oA2gWR0Cr2CbUPQOXdX2UKGgGaAloD0MIGqa21MGtYECUhpRSlGgVTegDaBZHQKvYwOmzjWF1fZQoaAZoCWgPQwga3NYWntpiQJSGlFKUaBVN6ANoFkdAq9lzeqJdjXV9lChoBmgJaA9DCPMDV3kCrl5AlIaUUpRoFU3oA2gWR0Cr2YBcZ9/jdX2UKGgGaAloD0MIowIn20BsZUCUhpRSlGgVTegDaBZHQKvZq/UONHZ1fZQoaAZoCWgPQwjHoX4XtqxkQJSGlFKUaBVN6ANoFkdAq9sGQXAM2HV9lChoBmgJaA9DCGLWi6GcKWNAlIaUUpRoFU3oA2gWR0Cr3G3RXwLFdX2UKGgGaAloD0MIieqtga3SSUCUhpRSlGgVS7BoFkdAq9yKRB/qgXV9lChoBmgJaA9DCGqkpfL2gGFAlIaUUpRoFU3oA2gWR0Cr3cuoxYaHdX2UKGgGaAloD0MIJXZtbzcvYkCUhpRSlGgVTegDaBZHQKvd1c0Ltu11fZQoaAZoCWgPQwh1r5P6srBMQJSGlFKUaBVLvWgWR0Cr3kpIUahpdX2UKGgGaAloD0MIhc0AF2TAUUCUhpRSlGgVS8xoFkdAq96aGvfTC3V9lChoBmgJaA9DCC81Qj9T6UtAlIaUUpRoFUutaBZHQKvfc5IYm9h1fZQoaAZoCWgPQwiLqfQTziJNQJSGlFKUaBVLomgWR0Cr4h6d+XqrdX2UKGgGaAloD0MIjlph+l7QUECUhpRSlGgVS7BoFkdAq+KN6mfoR3V9lChoBmgJaA9DCBebVgqBglNAlIaUUpRoFUvIaBZHQKvlQdXko4N1fZQoaAZoCWgPQwjyJVRweO9nQJSGlFKUaBVN6ANoFkdAq+VTR6Ww/3V9lChoBmgJaA9DCBJosKnzZGhAlIaUUpRoFU3oA2gWR0Cr6aH2IwdsdX2UKGgGaAloD0MIBf2FHrFEZUCUhpRSlGgVTegDaBZHQKvry0bcXWR1fZQoaAZoCWgPQwi2EyUh0dlyQJSGlFKUaBVNfAFoFkdAq+5A9RrJsHV9lChoBmgJaA9DCCFYVS+/7z9AlIaUUpRoFUujaBZHQKvvFTrmhdt1fZQoaAZoCWgPQwjGMZI9QtJhQJSGlFKUaBVN6ANoFkdAq/DwaFVT73V9lChoBmgJaA9DCNJwytx8JWVAlIaUUpRoFU3oA2gWR0Cr8VpQLux9dX2UKGgGaAloD0MIDaoNTsRyY0CUhpRSlGgVTegDaBZHQKwJ0tRNyo51fZQoaAZoCWgPQwhx4qsdxYRUQJSGlFKUaBVLtmgWR0CsCjevpyIYdX2UKGgGaAloD0MIETY8vVLKZECUhpRSlGgVTegDaBZHQKwLY/JNj9Z1fZQoaAZoCWgPQwgdr0D0JPdhQJSGlFKUaBVN6ANoFkdArAv5QFcIJXV9lChoBmgJaA9DCBkCgGPPNmJAlIaUUpRoFU3oA2gWR0CsDOeumrKedX2UKGgGaAloD0MIXaYmwRt2YUCUhpRSlGgVTegDaBZHQKwQJzDn/1h1fZQoaAZoCWgPQwhz1TxHZKplQJSGlFKUaBVN6ANoFkdArBBKJGe+VXV9lChoBmgJaA9DCFJ95xclNWRAlIaUUpRoFU3oA2gWR0CsEnDc2zfKdX2UKGgGaAloD0MIveE+cmsvZUCUhpRSlGgVTegDaBZHQKwS3YzSCvp1fZQoaAZoCWgPQwhnKy/5n9ZIQJSGlFKUaBVLqmgWR0CsFWjyFwkxdX2UKGgGaAloD0MIbqKW5laAZkCUhpRSlGgVTegDaBZHQKwXHDP4VRF1fZQoaAZoCWgPQwgnE7cKYvNkQJSGlFKUaBVN6ANoFkdArBm5gJC0GHV9lChoBmgJaA9DCF653jbTkGhAlIaUUpRoFU3oA2gWR0CsGcybx3FDdX2UKGgGaAloD0MIjWDj+vccaUCUhpRSlGgVTegDaBZHQKwfewg1WKd1fZQoaAZoCWgPQwh9kdCWcwRnQJSGlFKUaBVN6ANoFkdArCGcjZ+QVHV9lChoBmgJaA9DCC0mNh9XZWFAlIaUUpRoFU3oA2gWR0CsI/zWwu/UdX2UKGgGaAloD0MIqpog6r6AZkCUhpRSlGgVTegDaBZHQKwkVwWFev91ZS4="
53
+ },
54
+ "ep_success_buffer": {
55
+ ":type:": "<class 'collections.deque'>",
56
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
57
+ },
58
+ "_n_updates": 248,
59
+ "observation_space": {
60
+ ":type:": "<class 'gym.spaces.box.Box'>",
61
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
62
+ "dtype": "float32",
63
+ "_shape": [
64
+ 8
65
+ ],
66
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
67
+ "high": "[inf inf inf inf inf inf inf inf]",
68
+ "bounded_below": "[False False False False False False False False]",
69
+ "bounded_above": "[False False False False False False False False]",
70
+ "_np_random": null
71
+ },
72
+ "action_space": {
73
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
74
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
75
+ "n": 4,
76
+ "_shape": [],
77
+ "dtype": "int64",
78
+ "_np_random": null
79
+ },
80
+ "n_envs": 16,
81
+ "n_steps": 1024,
82
+ "gamma": 0.999,
83
+ "gae_lambda": 0.98,
84
+ "ent_coef": 0.01,
85
+ "vf_coef": 0.5,
86
+ "max_grad_norm": 0.5,
87
+ "batch_size": 64,
88
+ "n_epochs": 4,
89
+ "clip_range": {
90
+ ":type:": "<class 'function'>",
91
+ ":serialized:": "gAWVigIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMWC9ob21lL2xhZ2FycnVlYWwvaGZfcmwvLlJML2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
92
+ },
93
+ "clip_range_vf": null,
94
+ "normalize_advantage": true,
95
+ "target_kl": null
96
+ }
lunar-lander-ppo-1M/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8ea7ea6892e4ba3d5c14acad19755d7af64eab96f05225ad5504d10028eae065
3
+ size 87929
lunar-lander-ppo-1M/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af1c458e004ff244f31735a6f1f20b3ae4ebe35e92bb22458fc0b16ef9127aa9
3
+ size 43329
lunar-lander-ppo-1M/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
lunar-lander-ppo-1M/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.16.3-microsoft-standard-WSL2-x86_64-with-glibc2.29 # 1 SMP Fri Apr 2 22:23:49 UTC 2021
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.0+cu117
5
+ - GPU Enabled: True
6
+ - Numpy: 1.24.2
7
+ - Gym: 0.21.0
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -155.39414318760245, "std_reward": 53.774129412276984, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-11T10:49:06.969658"}
 
1
+ {"mean_reward": 271.7653623511471, "std_reward": 15.694178447002985, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-11T11:21:31.630377"}