ppo-LunarLander-v2 / config.json
lacknerm's picture
Upload PPO LunarLander-v2 trained agent
26f1b87 verified
raw
history blame
13.8 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a8b12956cb0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a8b12956d40>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a8b12956dd0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a8b12956e60>", "_build": "<function ActorCriticPolicy._build at 0x7a8b12956ef0>", "forward": "<function ActorCriticPolicy.forward at 0x7a8b12956f80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a8b12957010>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a8b129570a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7a8b12957130>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a8b129571c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a8b12957250>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a8b129572e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a8b12958480>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1713106645280468907, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJpnL72Pmi26PsIquPpqXrN06iE7olhHNwAAgD8AAIA/JgTTPeNsFz1T38W9yyYJvml1Tj3qwNY7AAAAAAAAAACa6ya9jwZeullwjLv97oA4VMs5ugCH8jgAAIA/AACAP+Y/+72QsaY/083ivnnrUb6MWyW+2tlsvgAAAAAAAAAAM7v2u/AOmD+ZE8m7NIfMvpIRPb3Y84k7AAAAAAAAAAAaIbY9FC6Luja1MTsNI6g2H24lu5qhL7oAAIA/AACAP2bGnz2uVY66qEo9OmKU5DRhwKC6VuNYuQAAgD8AAAAAZtIiPZTmpD6INkw8f/48vnYXPD2DMIu9AAAAAAAAAABmlGG8ruGDuho107r80ee117kAOsZo9jkAAIA/AACAPwDKMLz2vH+6Or7Xub730jT2vmY7+rD1OAAAgD8AAIA/mtdLvCmcTbqti9a6Z51atqlfhDswb/k5AACAPwAAgD9mUKI8SNucuogO3Ds744u163FcOTOfhLQAAIA/AACAP8194jzGJSI/cJjYPU3wkb4ocwq86DvIPQAAAAAAAAAAoFAuPtsSi7yH3zi58jDKNuzU9L2q1W44AACAPwAAgD+mbpG9uMaguTCc0bqehZq2KCiBOhDU9DkAAAAAAACAPxoAg70Ufo+6a1OKO2IDuDWPGCq7BICgugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGW/+lKsdT6MAWyUTegDjAF0lEdAluWUPMB6r3V9lChoBkdAaG78aXKKYWgHTegDaAhHQJb7c/IKc/d1fZQoaAZHQGKaCEpRXOpoB03oA2gIR0CXAP+sYEW7dX2UKGgGR0BkR3Cbc45taAdN6ANoCEdAlwJ9tEXtSnV9lChoBkdAZu9QUHpr12gHTegDaAhHQJcDFjTa0yB1fZQoaAZHQGMaeDFqBVdoB03oA2gIR0CXDXP8yeqadX2UKGgGR0Bgosox59mZaAdN6ANoCEdAlxNzXJ5miHV9lChoBkdAYpYhDgIhQmgHTegDaAhHQJcioA+6iCd1fZQoaAZHQGTHRTCLuQZoB03oA2gIR0CXIzy7wrlOdX2UKGgGR0BfWlkhA4XGaAdN6ANoCEdAlyYp2ZAprnV9lChoBkdAZfA8BdUsF2gHTegDaAhHQJcmWcqe9SN1fZQoaAZHQGTLAMtsen1oB03oA2gIR0CXKCBsQ/X5dX2UKGgGR0Bh1zBwdbPhaAdN6ANoCEdAlyr2SlnAZnV9lChoBkdAY8VAnlXA/WgHTegDaAhHQJcrpy4nWrh1fZQoaAZHQGQZRwhnrY5oB03oA2gIR0CXLIsyBTXKdX2UKGgGR0BiDKvvBrN4aAdN6ANoCEdAlzIBpQDV6XV9lChoBkdAZ84zWwu/UWgHTegDaAhHQJc1Nzq8lHB1fZQoaAZHQGNV0/nnuAtoB03oA2gIR0CXSU6MR6F/dX2UKGgGR0BlVDHCGetkaAdN6ANoCEdAl1GDXvphW3V9lChoBkdAXzzz6JqIrWgHTegDaAhHQJdTVNVR1ox1fZQoaAZHQGcDdV/+bVloB03oA2gIR0CXU/cSXdCWdX2UKGgGR0BjapVU+9rXaAdN6ANoCEdAl17C9VWCE3V9lChoBkdAYvyZ+hGpdmgHTegDaAhHQJdlNDQZ4wB1fZQoaAZHQGJw/gBLf1poB03oA2gIR0CXc3qy4Wk8dX2UKGgGR0Bh0XC/GlyjaAdN6ANoCEdAl3QRuwX67HV9lChoBkdAXWJKe05U+GgHTegDaAhHQJd3Cjafzz51fZQoaAZHQGRksK9f1HxoB03oA2gIR0CXdzkhzNlidX2UKGgGR0BmZo2ZRbbDaAdN6ANoCEdAl3j9lNDc/XV9lChoBkdAYms4NI9TxWgHTegDaAhHQJd8Onn+yZ91fZQoaAZHQFwzA1ejVQRoB03oA2gIR0CXfSjaPCEYdX2UKGgGR0BjBx6jWTX8aAdN6ANoCEdAl35TtCzC13V9lChoBkdAZD5jZL7GemgHTegDaAhHQJeFFzbN8md1fZQoaAZHQGHsdpZfUnZoB03oA2gIR0CXiA+mm+CcdX2UKGgGR0Bn4xePaL4vaAdN6ANoCEdAl4qJuQ6p53V9lChoBkdAcEkWAf+0gWgHTQoDaAhHQJehNznzQNV1fZQoaAZHQGONKEeyRjloB03oA2gIR0CXoWJfYzzmdX2UKGgGR0BhbRc3VCokaAdN6ANoCEdAl6LcU7CBPXV9lChoBkdAYQmm7aqS5mgHTegDaAhHQJejZIFvAGl1fZQoaAZHQGbqtzS1E3NoB03oA2gIR0CXtGOlfqoqdX2UKGgGR0BggUAR02cbaAdN6ANoCEdAl8AWrfcesHV9lChoBkdAYrwQ04zabmgHTegDaAhHQJfAls0pEx91fZQoaAZHQGb/JmNBF/hoB03oA2gIR0CXwu8bJfY0dX2UKGgGR0BigFGI9C/oaAdN6ANoCEdAl8MVs+FDfHV9lChoBkdAYid2Rq46O2gHTegDaAhHQJfEjU7Sy+p1fZQoaAZHQGIIhbfP5YZoB03oA2gIR0CXxtX+2mYTdX2UKGgGR0BidS9oN/e+aAdN6ANoCEdAl8dmmxdIG3V9lChoBkdAZJ0M1CPZI2gHTegDaAhHQJfIG53C9AZ1fZQoaAZHQGO7wbuMMqloB03oA2gIR0CXzLNYbKigdX2UKGgGR0BmWJWaMJhOaAdN6ANoCEdAl89KfFrEcnV9lChoBkdAZMt9Cu2ZzGgHTegDaAhHQJfRfdcjZ+R1fZQoaAZHQGEDoNd7fHhoB03oA2gIR0CX6kqYZ2pydX2UKGgGR0BkSypo9LYgaAdN6ANoCEdAl+p4KtxMnXV9lChoBkdAZU4AKfFrEmgHTegDaAhHQJfr52vB7/p1fZQoaAZHQGIpfVAiV0NoB03oA2gIR0CX7Ifq5byIdX2UKGgGR0BiwMdeY2KmaAdN6ANoCEdAl/3DkZJkG3V9lChoBkdAY2v1IRRMvmgHTegDaAhHQJgLY/X5FgF1fZQoaAZHQGFYZzPrv9doB03oA2gIR0CYC/i8FpwkdX2UKGgGR0BkS+tQsPJ8aAdN6ANoCEdAmA/Lns9jgHV9lChoBkdAY1ojgydnTWgHTegDaAhHQJgQD5sTFl11fZQoaAZHQGPzNWluWKNoB03oA2gIR0CYElkt29tedX2UKGgGR0BjA8GJN0vHaAdN6ANoCEdAmBYeaa1CxHV9lChoBkdAYOVVGTcIq2gHTegDaAhHQJgWzTjNpud1fZQoaAZHQGEYNqxkd3loB03oA2gIR0CYF6Ew35vcdX2UKGgGR0Bg6t3bEgnuaAdN6ANoCEdAmBz//io86nV9lChoBkdAYULg4Otnw2gHTegDaAhHQJggBzOoo/l1fZQoaAZHQF5os2vStvJoB03oA2gIR0CYInTm4iHJdX2UKGgGR0Bn8S+HrQgLaAdN6ANoCEdAmDkHQD3dsXV9lChoBkdAYqnFYuCf6GgHTegDaAhHQJg5N6Uqx1R1fZQoaAZHQGcFmlyimEZoB03oA2gIR0CYOp5y2hIwdX2UKGgGR0Bj5RTbWVeKaAdN6ANoCEdAmDstb5dnkHV9lChoBkdAY9YMwUQCjmgHTegDaAhHQJhNzC53C9B1fZQoaAZHQGUMNuk1uR9oB03oA2gIR0CYWkPpY9xIdX2UKGgGR0Bj+jU9ZA6daAdN6ANoCEdAmFrL30wrUnV9lChoBkdAXt/EYO2AoWgHTegDaAhHQJhdT9LpRoB1fZQoaAZHQGJDwhwEQoVoB03oA2gIR0CYXXg4ffXPdX2UKGgGR0Bc7KFqSHM2aAdN6ANoCEdAmF74GpuMuXV9lChoBkdAZ1I9Net0WGgHTegDaAhHQJhha5kK/mF1fZQoaAZHQGWh2RaHKwJoB03oA2gIR0CYYgsY2sJZdX2UKGgGR0Blm7F2mpEQaAdN6ANoCEdAmGLVT3qRl3V9lChoBkdAYUQXZXdTHmgHTegDaAhHQJhn6AnUlRh1fZQoaAZHQGAArk0aZQZoB03oA2gIR0CYaoUxEfDDdX2UKGgGR0BnbPcxj8UFaAdN6ANoCEdAmGyPci4axXV9lChoBkdAY39j5sTFl2gHTegDaAhHQJhyKwRoRI11fZQoaAZHQGRfhiTdLxtoB03oA2gIR0CYcmEHMUypdX2UKGgGR0BhHaeZof0VaAdN6ANoCEdAmIY8fvF3p3V9lChoBkdAZkiVrRBu42gHTegDaAhHQJiGu0dBBzF1fZQoaAZHQGahYVZcLShoB03oA2gIR0CYlXkXUH6edX2UKGgGR0BmkM4YJmdzaAdN6ANoCEdAmKNzWf9P13V9lChoBkdAZTAOuq3mWGgHTegDaAhHQJikHmDDjzZ1fZQoaAZHQGODIGhVU+9oB03oA2gIR0CYp7cwg1WKdX2UKGgGR0BjgSJZW7voaAdN6ANoCEdAmKf0ytV7yHV9lChoBkdAYvi6q814xGgHTegDaAhHQJipbYnOSnt1fZQoaAZHQGS9jABT4tZoB03oA2gIR0CYq64NqgyudX2UKGgGR0BkBUKVpsXSaAdN6ANoCEdAmKw0bxVhkXV9lChoBkdAYerSFXaJymgHTegDaAhHQJis7qIJqqR1fZQoaAZHQGF5/R3NcGFoB03oA2gIR0CYsXwFTvRadX2UKGgGR0BgTgcYIjW1aAdN6ANoCEdAmLQZo0ygw3V9lChoBkdAZExyFwkxAWgHTegDaAhHQJi2PEdeY2N1fZQoaAZHQF+qz/ZM+NdoB03oA2gIR0CYuul7MPjGdX2UKGgGR0BjWtPN3W4FaAdN6ANoCEdAmLsPMKTjenVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}