l3cube-pune commited on
Commit
656faa4
1 Parent(s): 7bd69fe

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +37 -59
README.md CHANGED
@@ -5,14 +5,46 @@ tags:
5
  - feature-extraction
6
  - sentence-similarity
7
  - transformers
8
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  ---
10
 
11
- # {MODEL_NAME}
 
 
 
12
 
13
- This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
14
 
15
- <!--- Describe your model here -->
 
 
 
 
 
 
 
16
 
17
  ## Usage (Sentence-Transformers)
18
 
@@ -69,58 +101,4 @@ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']
69
 
70
  print("Sentence embeddings:")
71
  print(sentence_embeddings)
72
- ```
73
-
74
-
75
-
76
- ## Evaluation Results
77
-
78
- <!--- Describe how your model was evaluated -->
79
-
80
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
81
-
82
-
83
- ## Training
84
- The model was trained with the parameters:
85
-
86
- **DataLoader**:
87
-
88
- `torch.utils.data.dataloader.DataLoader` of length 719 with parameters:
89
- ```
90
- {'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
91
- ```
92
-
93
- **Loss**:
94
-
95
- `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
96
-
97
- Parameters of the fit()-Method:
98
- ```
99
- {
100
- "epochs": 4,
101
- "evaluation_steps": 0,
102
- "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
103
- "max_grad_norm": 1,
104
- "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
105
- "optimizer_params": {
106
- "lr": 2e-05
107
- },
108
- "scheduler": "WarmupLinear",
109
- "steps_per_epoch": null,
110
- "warmup_steps": 287,
111
- "weight_decay": 0.01
112
- }
113
- ```
114
-
115
-
116
- ## Full Model Architecture
117
- ```
118
- SentenceTransformer(
119
- (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
120
- (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
121
- )
122
- ```
123
-
124
- ## Citing & Authors
125
-
126
- <!--- Describe where people can find more information -->
 
5
  - feature-extraction
6
  - sentence-similarity
7
  - transformers
8
+ license: cc-by-4.0
9
+ language: kn
10
+ widget:
11
+ - source_sentence: "ನಮ್ಮ ಪರಿಸರದ ಬಗ್ಗೆ ನಾವು ಕಾಳಜಿ ವಹಿಸಬೇಕು"
12
+ sentences:
13
+ - "ನಮ್ಮ ಪರಿಸರವನ್ನು ಸ್ವಚ್ಛವಾಗಿಟ್ಟುಕೊಳ್ಳೋಣ"
14
+ - "ಜಾಗತಿಕ ತಾಪಮಾನವು ಗಂಭೀರ ಸಮಸ್ಯೆಯಾಗಿದೆ"
15
+ - "ಹೆಚ್ಚು ಮರಗಳನ್ನು ನೆಡಿ"
16
+ example_title: "Example 1"
17
+
18
+ - source_sentence: "ಕೆಲವರು ಹಾಡುತ್ತಿದ್ದಾರೆ"
19
+ sentences:
20
+ - "ಜನರ ಗುಂಪು ಹಾಡುತ್ತಿದೆ"
21
+ - "ಬೆಕ್ಕು ಹಾಲು ಕುಡಿಯುತ್ತಿದೆ"
22
+ - "ಇಬ್ಬರು ಪುರುಷರು ಜಗಳವಾಡುತ್ತಿದ್ದಾರೆ"
23
+ example_title: "Example 2"
24
+
25
+ - source_sentence: "ಫೆಡರರ್ ವಿಂಬಲ್ಡನ್ ಪ್ರಶಸ್ತಿ ಗೆದ್ದಿದ್ದಾರೆ"
26
+ sentences:
27
+ - "ಫೆಡರರ್ ತಮ್ಮ ವೃತ್ತಿಜೀವನದಲ್ಲಿ ಒಟ್ಟು 20 ಗ್ರ್ಯಾನ್ ಸ್ಲಾಮ್ ಪ್ರಶಸ್ತಿಗಳನ್ನು ಗೆದ್ದಿದ್ದಾರೆ "
28
+ - "ಫೆಡರರ್ ಸೆಪ್ಟೆಂಬರ್‌ನಲ್ಲಿ ನಿವೃತ್ತಿ ಘೋಷಿಸಿದರು"
29
+ - "ಒಬ್ಬ ಮನುಷ್ಯ ಒಂದು ಪಾತ್ರೆಯಲ್ಲಿ ಸ್ವಲ್ಪ ಅಡುಗೆ ಎಣ್ಣೆಯನ್ನು ಸುರಿಯುತ್ತಾನೆ"
30
+ example_title: "Example 3"
31
  ---
32
 
33
+ # KannadaSBERT-STS
34
+
35
+ This is a KannadaSBERT model (l3cube-pune/nannada-sentence-bert-nli) fine-tuned on the STS dataset. <br>
36
+ Released as a part of project MahaNLP : https://github.com/l3cube-pune/MarathiNLP <br>
37
 
38
+ More details on the dataset, models, and baseline results can be found in our [paper] (https://arxiv.org/abs/2211.11187)
39
 
40
+ ```
41
+ @article{joshi2022l3cubemahasbert,
42
+ title={L3Cube-MahaSBERT and HindSBERT: Sentence BERT Models and Benchmarking BERT Sentence Representations for Hindi and Marathi},
43
+ author={Joshi, Ananya and Kajale, Aditi and Gadre, Janhavi and Deode, Samruddhi and Joshi, Raviraj},
44
+ journal={arXiv preprint arXiv:2211.11187},
45
+ year={2022}
46
+ }
47
+ ```
48
 
49
  ## Usage (Sentence-Transformers)
50
 
 
101
 
102
  print("Sentence embeddings:")
103
  print(sentence_embeddings)
104
+ ```