l3cube-pune commited on
Commit
0fc74e2
·
1 Parent(s): c355a3f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +39 -62
README.md CHANGED
@@ -5,14 +5,48 @@ tags:
5
  - feature-extraction
6
  - sentence-similarity
7
  - transformers
8
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  ---
10
 
11
- # {MODEL_NAME}
 
 
 
12
 
13
- This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
14
 
15
- <!--- Describe your model here -->
 
 
 
 
 
 
 
 
 
16
 
17
  ## Usage (Sentence-Transformers)
18
 
@@ -66,61 +100,4 @@ sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask'])
66
 
67
  print("Sentence embeddings:")
68
  print(sentence_embeddings)
69
- ```
70
-
71
-
72
-
73
- ## Evaluation Results
74
-
75
- <!--- Describe how your model was evaluated -->
76
-
77
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
78
-
79
-
80
- ## Training
81
- The model was trained with the parameters:
82
-
83
- **DataLoader**:
84
-
85
- `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 15692 with parameters:
86
- ```
87
- {'batch_size': 4}
88
- ```
89
-
90
- **Loss**:
91
-
92
- `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
93
- ```
94
- {'scale': 20.0, 'similarity_fct': 'cos_sim'}
95
- ```
96
-
97
- Parameters of the fit()-Method:
98
- ```
99
- {
100
- "epochs": 1,
101
- "evaluation_steps": 0,
102
- "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
103
- "max_grad_norm": 1,
104
- "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
105
- "optimizer_params": {
106
- "lr": 2e-05
107
- },
108
- "scheduler": "WarmupLinear",
109
- "steps_per_epoch": null,
110
- "warmup_steps": 1569,
111
- "weight_decay": 0.01
112
- }
113
- ```
114
-
115
-
116
- ## Full Model Architecture
117
- ```
118
- SentenceTransformer(
119
- (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
120
- (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
121
- )
122
- ```
123
-
124
- ## Citing & Authors
125
-
126
- <!--- Describe where people can find more information -->
 
5
  - feature-extraction
6
  - sentence-similarity
7
  - transformers
8
+ license: cc-by-4.0
9
+ language: kn
10
+ widget:
11
+ - source_sentence: "ನಮ್ಮ ಪರಿಸರದ ಬಗ್ಗೆ ನಾವು ಕಾಳಜಿ ವಹಿಸಬೇಕು"
12
+ sentences:
13
+ - "ನಮ್ಮ ಪರಿಸರವನ್ನು ಸ್ವಚ್ಛವಾಗಿಟ್ಟುಕೊಳ್ಳೋಣ"
14
+ - "ಜಾಗತಿಕ ತಾಪಮಾನವು ಗಂಭೀರ ಸಮಸ್ಯೆಯಾಗಿದೆ"
15
+ - "ಹೆಚ್ಚು ಮರಗಳನ್ನು ನೆಡಿ"
16
+ example_title: "Example 1"
17
+
18
+ - source_sentence: "ಕೆಲವರು ಹಾಡುತ್ತಿದ್ದಾರೆ"
19
+ sentences:
20
+ - "ಜನರ ಗುಂಪು ಹಾಡುತ್ತಿದೆ"
21
+ - "ಬೆಕ್ಕು ಹಾಲು ಕುಡಿಯುತ್ತಿದೆ"
22
+ - "ಇಬ್ಬರು ಪುರುಷರು ಜಗಳವಾಡುತ್ತಿದ್ದಾರೆ"
23
+ example_title: "Example 2"
24
+
25
+ - source_sentence: "ಫೆಡರರ್ ವಿಂಬಲ್ಡನ್ ಪ್ರಶಸ್ತಿ ಗೆದ್ದಿದ್ದಾರೆ"
26
+ sentences:
27
+ - "ಫೆಡರರ್ ತಮ್ಮ ವೃತ್ತಿಜೀವನದಲ್ಲಿ ಒಟ್ಟು 20 ಗ್ರ್ಯಾನ್ ಸ್ಲಾಮ್ ಪ್ರಶಸ್ತಿಗಳನ್ನು ಗೆದ್ದಿದ್ದಾರೆ "
28
+ - "ಫೆಡರರ್ ಸೆಪ್ಟೆಂಬರ್‌ನಲ್ಲಿ ನಿವೃತ್ತಿ ಘೋಷಿಸಿದರು"
29
+ - "ಒಬ್ಬ ಮನುಷ್ಯ ಒಂದು ಪಾತ್ರೆಯಲ್ಲಿ ಸ್ವಲ್ಪ ಅಡುಗೆ ಎಣ್ಣೆಯನ್ನು ಸುರಿಯುತ್ತಾನೆ"
30
+ example_title: "Example 3"
31
  ---
32
 
33
+ # KannadaSBERT
34
+
35
+ This is a KannadaBERT model (l3cube-pune/kannada-bert) trained on the NLI dataset. <br>
36
+ Released as a part of project MahaNLP: https://github.com/l3cube-pune/MarathiNLP <br>
37
 
38
+ A better sentence similarity model (fine-tuned version of this model) is shared here: https://huggingface.co/l3cube-pune/kannada-sentence-similarity-sbert <br>
39
 
40
+ More details on the dataset, models, and baseline results can be found in our [paper] (https://arxiv.org/abs/2211.11187)
41
+
42
+ ```
43
+ @article{joshi2022l3cubemahasbert,
44
+ title={L3Cube-MahaSBERT and HindSBERT: Sentence BERT Models and Benchmarking BERT Sentence Representations for Hindi and Marathi},
45
+ author={Joshi, Ananya and Kajale, Aditi and Gadre, Janhavi and Deode, Samruddhi and Joshi, Raviraj},
46
+ journal={arXiv preprint arXiv:2211.11187},
47
+ year={2022}
48
+ }
49
+ ```
50
 
51
  ## Usage (Sentence-Transformers)
52
 
 
100
 
101
  print("Sentence embeddings:")
102
  print(sentence_embeddings)
103
+ ```