l3cube-pune commited on
Commit
5fceb8a
·
1 Parent(s): b9a01d2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -57
README.md CHANGED
@@ -81,60 +81,3 @@ sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask'])
81
  print("Sentence embeddings:")
82
  print(sentence_embeddings)
83
  ```
84
-
85
-
86
-
87
- ## Evaluation Results
88
-
89
- <!--- Describe how your model was evaluated -->
90
-
91
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
92
-
93
-
94
- ## Training
95
- The model was trained with the parameters:
96
-
97
- **DataLoader**:
98
-
99
- `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 15687 with parameters:
100
- ```
101
- {'batch_size': 4}
102
- ```
103
-
104
- **Loss**:
105
-
106
- `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
107
- ```
108
- {'scale': 20.0, 'similarity_fct': 'cos_sim'}
109
- ```
110
-
111
- Parameters of the fit()-Method:
112
- ```
113
- {
114
- "epochs": 1,
115
- "evaluation_steps": 0,
116
- "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
117
- "max_grad_norm": 1,
118
- "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
119
- "optimizer_params": {
120
- "lr": 2e-05
121
- },
122
- "scheduler": "WarmupLinear",
123
- "steps_per_epoch": null,
124
- "warmup_steps": 1568,
125
- "weight_decay": 0.01
126
- }
127
- ```
128
-
129
-
130
- ## Full Model Architecture
131
- ```
132
- SentenceTransformer(
133
- (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
134
- (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
135
- )
136
- ```
137
-
138
- ## Citing & Authors
139
-
140
- <!--- Describe where people can find more information -->
 
81
  print("Sentence embeddings:")
82
  print(sentence_embeddings)
83
  ```