myscarlet commited on
Commit
625d434
1 Parent(s): 3caa03d

update readme

Browse files
Files changed (1) hide show
  1. README.md +55 -1
README.md CHANGED
@@ -7,4 +7,58 @@ language:
7
  - en
8
  - zh
9
  pipeline_tag: text2text-generation
10
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  - en
8
  - zh
9
  pipeline_tag: text2text-generation
10
+ ---
11
+
12
+
13
+ KwaiAgents ([Github](https://github.com/KwaiKEG/KwaiAgents)) is a series of Agent-related works open-sourced by the [KwaiKEG](https://github.com/KwaiKEG) from [Kuaishou Technology](https://www.kuaishou.com/en). The open-sourced content includes:
14
+
15
+ 1. **KAgentSys-Lite**: An experimental Agent Loop implemented based on open-source search engines, browsers, time, calendar, weather, and other tools, which is only missing the memory mechanism and some search capabilities compared to the system in the paper.
16
+ 2. **KAgentLMs**: A series of large language models with Agent capabilities such as planning, reflection, and tool-use, acquired through the Meta-agent tuning proposed in the paper.
17
+ 3. **KAgentInstruct**: Fine-tuned data of instructions generated by the Meta-agent in the paper.
18
+ 4. **KAgentBench**: Over 3,000 human-edited, automated evaluation data for testing Agent capabilities, with evaluation dimensions including planning, tool-use, reflection, concluding, and profiling.
19
+
20
+
21
+ ## User Guide
22
+
23
+ ### Direct usage
24
+
25
+ Tutorial can refer to [baichuan-inc/Baichuan2-13B-Base](https://github.com/baichuan-inc/Baichuan2)
26
+ ```python
27
+ import torch
28
+ from transformers import AutoModelForCausalLM, AutoTokenizer
29
+ tokenizer = AutoTokenizer.from_pretrained("baichuan-inc/Baichuan2-13B-Base", use_fast=False, trust_remote_code=True)
30
+ model = AutoModelForCausalLM.from_pretrained("baichuan-inc/Baichuan2-13B-Base", device_map="auto", trust_remote_code=True)
31
+ inputs = tokenizer('登鹳雀楼->王之涣\n夜雨寄北->', return_tensors='pt')
32
+ inputs = inputs.to('cuda:0')
33
+ pred = model.generate(**inputs, max_new_tokens=64, repetition_penalty=1.1)
34
+ print(tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))
35
+ ```
36
+
37
+ ### AgentLMs as service
38
+ We recommend using [vLLM](https://github.com/vllm-project/vllm) and [FastChat](https://github.com/lm-sys/FastChat) to deploy the model inference service. First, you need to install the corresponding packages (for detailed usage, please refer to the documentation of the two projects):
39
+ ```bash
40
+ pip install "fschat[model_worker,webui]"
41
+ pip install vllm==0.2.0
42
+ pip install transformers==4.33.2
43
+ ```
44
+ To deploy KAgentLMs, you first need to start the controller in one terminal.
45
+ ```bash
46
+ python -m fastchat.serve.controller
47
+ ```
48
+ Secondly, you should use the following command in another terminal for single-gpu inference service deployment:
49
+ ```bash
50
+ python -m fastchat.serve.vllm_worker --model-path $model_path --trust-remote-code
51
+ ```
52
+ Where `$model_path` is the local path of the model downloaded. If the GPU does not support Bfloat16, you can add `--dtype half` to the command line.
53
+
54
+ Thirdly, start the REST API server in the third terminal.
55
+ ```bash
56
+ python -m fastchat.serve.openai_api_server --host localhost --port 8888
57
+ ```
58
+
59
+ Finally, you can use the curl command to invoke the model same as the OpenAI calling format. Here's an example:
60
+ ```bash
61
+ curl http://localhost:8888/v1/chat/completions \
62
+ -H "Content-Type: application/json" \
63
+ -d '{"model": "kagentlms_baichuan2_13b_mat", "messages": [{"role": "user", "content": "Who is Andy Lau"}]}'
64
+ ```