kunC commited on
Commit
f851bcf
1 Parent(s): 8f6cede

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 265.73 +/- 17.52
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 256.46 +/- 82.79
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4a1d1d0040>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4a1d1d00d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4a1d1d0160>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4a1d1d01f0>", "_build": "<function ActorCriticPolicy._build at 0x7f4a1d1d0280>", "forward": "<function ActorCriticPolicy.forward at 0x7f4a1d1d0310>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f4a1d1d03a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4a1d1d0430>", "_predict": "<function ActorCriticPolicy._predict at 0x7f4a1d1d04c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4a1d1d0550>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4a1d1d05e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4a1d1d0670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f4a1d1c8db0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676461534467485336, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV6wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXC9ob21lL252bWUyL2t1bnpob25nL2FuYWNvbmRhMy9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxcL2hvbWUvbnZtZTIva3VuemhvbmcvYW5hY29uZGEzL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOD5Rr6M8T8+466MPmQkc74gmD69LtkcPgAAAAAAAAAAJirIvUgmszs0tj4+L3Qtvkwz6LyVpNQ8AAAAAAAAAACasYo8TrNCP/PeZz2MX+++ZDv8usmLDD0AAAAAAAAAAPPskz5hrAA/cElavgJo2772RiQ+MlmivQAAAAAAAAAAbSC1PiwpVD/eu2U+hfIBv5eXyT7rzNs9AAAAAAAAAACzCCQ94WSDulq0aDaeOF8xGqYZuqJfibUAAIA/AACAP0Csuj2PBmq6QfuHs7Dzea6g5Qc54hWqMwAAgD8AAIA/ZuK+u67ZqboVVFK2xvxPsVbQjroSrn01AACAPwAAgD/NT209hSPrudrCLTWNtzswpf2UufO6VbQAAIA/AACAP2APQz5TCBU/gNVVvTFg2L5viww+viqyvQAAAAAAAAAAAD70vd8f3zzAfGQ+HM5+vW7PTj2yBdc8AAAAAAAAAADaF4+94WTRuv2IH7xRcZm6LonLO0O31ToAAIA/AACAP5p5MjsFR8O7fym3PHzPJTxVnku91p4QPQAAgD8AAIA/AJ+TPfQCCT57/C6+hQGGvgBnTr1uzz27AAAAAAAAAADaCVY+mTuHPmG+CL6Gkoi+6uoTPVxVAr0AAAAAAAAAAM042T1DPbE/3kEBP3B/mr5x7X89jAWIPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVURAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMISU27mCZrcECUhpRSlIwBbJRNewGMAXSUR0DYeE9vn8sMdX2UKGgGaAloD0MICvKzkesDU0CUhpRSlGgVS3xoFkdA2HhP5CF9KHV9lChoBmgJaA9DCDT1ukVgAHJAlIaUUpRoFU1QAWgWR0DYeFJgv115dX2UKGgGaAloD0MI8FLqkjFwcUCUhpRSlGgVTRUBaBZHQNh4VqBun/F1fZQoaAZoCWgPQwjn4m97gvQ/QJSGlFKUaBVLhWgWR0DYeFjokiUxdX2UKGgGaAloD0MIzqj5KnlEcECUhpRSlGgVS9poFkdA2HhfcophF3V9lChoBmgJaA9DCDy+vWsQtnJAlIaUUpRoFU2WAWgWR0DYeGCdVea8dX2UKGgGaAloD0MI/0EkQ46jcECUhpRSlGgVTUsBaBZHQNh4YvI4lyB1fZQoaAZoCWgPQwgoDMo0mmxsQJSGlFKUaBVL5mgWR0DYeGj0I1LrdX2UKGgGaAloD0MIvcKC+4H3cECUhpRSlGgVS/BoFkdA2Hh2edTYNHV9lChoBmgJaA9DCKZ+3lSk+3JAlIaUUpRoFUv6aBZHQNh4hEoF3ZB1fZQoaAZoCWgPQwia7Qp9MK5xQJSGlFKUaBVNHwFoFkdA2HiHjEvTPXV9lChoBmgJaA9DCKlOB7KeCiRAlIaUUpRoFUuBaBZHQNh4lWn889x1fZQoaAZoCWgPQwhFEyhiUYNxQJSGlFKUaBVL9WgWR0DYeKbl6qsEdX2UKGgGaAloD0MIYoGv6NbHcECUhpRSlGgVTQgBaBZHQNh4qC/XXiB1fZQoaAZoCWgPQwjgDz///UNzQJSGlFKUaBVNLwFoFkdA2HisWCmMwXV9lChoBmgJaA9DCJ8cBYgC73FAlIaUUpRoFU1pAWgWR0DYeK95B1LbdX2UKGgGaAloD0MI4SU49UEFc0CUhpRSlGgVS/1oFkdA2HixbL2YfHV9lChoBmgJaA9DCFb18jsNPHRAlIaUUpRoFU0aAWgWR0DYeLYDvE0jdX2UKGgGaAloD0MItHOaBVoNb0CUhpRSlGgVTQIBaBZHQNh4vPGdZq51fZQoaAZoCWgPQwgJ/OHn/15zQJSGlFKUaBVNAAFoFkdA2Hi+3W4EwHV9lChoBmgJaA9DCOi8xi4R7XJAlIaUUpRoFU0wAWgWR0DYeL9+XqqwdX2UKGgGaAloD0MIyEEJMy1TcECUhpRSlGgVTTQBaBZHQNh4xejIq9Z1fZQoaAZoCWgPQwhKmdTQhpRyQJSGlFKUaBVNOAFoFkdA2HjMERaouXV9lChoBmgJaA9DCEimQ6dnGHJAlIaUUpRoFUvkaBZHQNh41We6I311fZQoaAZoCWgPQwipMoy7AShyQJSGlFKUaBVL6GgWR0DYeNkwIt17dX2UKGgGaAloD0MIK6bST3gMckCUhpRSlGgVTSQBaBZHQNh43G7OE/V1fZQoaAZoCWgPQwg0oN6MmslsQJSGlFKUaBVNkwJoFkdA2HjdtZV4o3V9lChoBmgJaA9DCO+tSExQRHBAlIaUUpRoFUvbaBZHQNh48ZDArQR1fZQoaAZoCWgPQwhn7bYLDQJzQJSGlFKUaBVL5WgWR0DYePGROk+HdX2UKGgGaAloD0MI16IFaNs6ckCUhpRSlGgVTRMBaBZHQNh48eOXE611fZQoaAZoCWgPQwhwCisVlMdwQJSGlFKUaBVL0mgWR0DYePLLlmvodX2UKGgGaAloD0MIppnudRJCcUCUhpRSlGgVTRkBaBZHQNh5AThYNiJ1fZQoaAZoCWgPQwjZQpCDkiFvQJSGlFKUaBVL0mgWR0DYeQbPMSsbdX2UKGgGaAloD0MIhjyCGylicECUhpRSlGgVS/5oFkdA2HkOojv/i3V9lChoBmgJaA9DCGx3D9A9U3BAlIaUUpRoFU0DAWgWR0DYeREsVclgdX2UKGgGaAloD0MI8FF/vUITckCUhpRSlGgVS91oFkdA2HknkmQbM3V9lChoBmgJaA9DCH/3jhrTJ3JAlIaUUpRoFUvbaBZHQNh5KIzvZyx1fZQoaAZoCWgPQwhClZo9kJhwQJSGlFKUaBVNfAFoFkdA2HrLhOP/73V9lChoBmgJaA9DCLdELjjDWnFAlIaUUpRoFU0MAWgWR0DYes3SNOuadX2UKGgGaAloD0MIxM4UOq+vbUCUhpRSlGgVTQIBaBZHQNh6zuZCv5h1fZQoaAZoCWgPQwiTcYxkD5BxQJSGlFKUaBVNZgFoFkdA2HrQ5nlGPXV9lChoBmgJaA9DCL99HThneW5AlIaUUpRoFU1BAWgWR0DYetVhiLEUdX2UKGgGaAloD0MILGFtjB1IckCUhpRSlGgVTQYBaBZHQNh67F0PpY91fZQoaAZoCWgPQwhxHeOKy9hxQJSGlFKUaBVNDQFoFkdA2HrvU/fO2XV9lChoBmgJaA9DCCu/DMaI6HFAlIaUUpRoFUvxaBZHQNh69uFDfFd1fZQoaAZoCWgPQwhp/MIryS9yQJSGlFKUaBVNIAFoFkdA2Hr3isXBQHV9lChoBmgJaA9DCCY2H9eGZHNAlIaUUpRoFUv1aBZHQNh6/a0dBB11fZQoaAZoCWgPQwhE4EigQZBtQJSGlFKUaBVL5mgWR0DYev+BClabdX2UKGgGaAloD0MIJ6PKMO55UECUhpRSlGgVS6RoFkdA2HsJ+o99t3V9lChoBmgJaA9DCN7KEp1lA3JAlIaUUpRoFU1rAWgWR0DYew9m4AjqdX2UKGgGaAloD0MIRWPt7+zacECUhpRSlGgVTU4CaBZHQNh7G66WgOB1fZQoaAZoCWgPQwgSEf5FUCdwQJSGlFKUaBVNOwFoFkdA2HsgCL/CInV9lChoBmgJaA9DCKiPwB/+qXBAlIaUUpRoFUvxaBZHQNh7INuYQat1fZQoaAZoCWgPQwimmllLAS5xQJSGlFKUaBVL8GgWR0DYeyNg4OtodX2UKGgGaAloD0MImfG20mv9cUCUhpRSlGgVTQsBaBZHQNh7I5Uo8ZF1fZQoaAZoCWgPQwiR8SiVsNtyQJSGlFKUaBVL9GgWR0DYeyobn5i3dX2UKGgGaAloD0MI8piByjhRc0CUhpRSlGgVTUQBaBZHQNh7NY5DJEJ1fZQoaAZoCWgPQwhbKJmc2ulNQJSGlFKUaBVLxWgWR0DYe0EmsvIwdX2UKGgGaAloD0MI/BpJgnAFcECUhpRSlGgVS+JoFkdA2HtC03fhuXV9lChoBmgJaA9DCKhWX12VlXJAlIaUUpRoFU0IAWgWR0DYe0hcTrVwdX2UKGgGaAloD0MIqP5BJEPmc0CUhpRSlGgVS+JoFkdA2HtJKwIMSnV9lChoBmgJaA9DCN18I7pnim5AlIaUUpRoFU1xAWgWR0DYe0vAnDzidX2UKGgGaAloD0MIMepae58/cECUhpRSlGgVTRoBaBZHQNh7VHTAnD11fZQoaAZoCWgPQwgDCYofI7JxQJSGlFKUaBVNOwFoFkdA2HtWIAOrhnV9lChoBmgJaA9DCIEFMGXgSnNAlIaUUpRoFUvcaBZHQNh7V8H8jzJ1fZQoaAZoCWgPQwjZlZaR+qRyQJSGlFKUaBVL4GgWR0DYe2mipNsWdX2UKGgGaAloD0MINLkYA+t/cECUhpRSlGgVS/toFkdA2HtrI1cdHXV9lChoBmgJaA9DCPda0HtjKXNAlIaUUpRoFU02AWgWR0DYe27YVZcLdX2UKGgGaAloD0MIsaayKKwcckCUhpRSlGgVTQMBaBZHQNh7cbeyiVV1fZQoaAZoCWgPQwhl+5C3XKVzQJSGlFKUaBVL7GgWR0DYe3U/4ZdfdX2UKGgGaAloD0MILV+X4T8dbkCUhpRSlGgVTR4BaBZHQNh7exUR3/x1fZQoaAZoCWgPQwiCHJQwU0pwQJSGlFKUaBVNHQFoFkdA2Ht9M5wOv3V9lChoBmgJaA9DCN80fXbAJW9AlIaUUpRoFUvuaBZHQNh7gP0/W2B1fZQoaAZoCWgPQwgFptO6jdZtQJSGlFKUaBVL1GgWR0DYe4mtYB/7dX2UKGgGaAloD0MIuLBuvHvccUCUhpRSlGgVS/toFkdA2HuPdo3713V9lChoBmgJaA9DCGGowwq3cG9AlIaUUpRoFUv9aBZHQNh7l7D2rXF1fZQoaAZoCWgPQwgnv0Uni3ByQJSGlFKUaBVNNAFoFkdA2HukW1+iJ3V9lChoBmgJaA9DCOLNGryvPHBAlIaUUpRoFU0BAWgWR0DYe6dsVLzxdX2UKGgGaAloD0MIwFyLFuAkc0CUhpRSlGgVTQYBaBZHQNh7q1HWjGl1fZQoaAZoCWgPQwiWXpuNFTpuQJSGlFKUaBVNEgFoFkdA2HurvtMPBnV9lChoBmgJaA9DCCk/qfZpGHNAlIaUUpRoFU0xAWgWR0DYe6yxC6YmdX2UKGgGaAloD0MIGXCWkuXOb0CUhpRSlGgVS+BoFkdA2Huxz8P4EnV9lChoBmgJaA9DCJF8JZCSQm9AlIaUUpRoFUv0aBZHQNh7vEKeCkJ1fZQoaAZoCWgPQwiCV8ud2SVyQJSGlFKUaBVNAAFoFkdA2Hu8mQbMo3V9lChoBmgJaA9DCHv6CPxhiXFAlIaUUpRoFUvOaBZHQNh7wlJpWWB1fZQoaAZoCWgPQwh6VtKKb45uQJSGlFKUaBVL52gWR0DYe8YFSsKcdX2UKGgGaAloD0MIEf3a+qldc0CUhpRSlGgVS/1oFkdA2HvKj2SMcnV9lChoBmgJaA9DCHL6er4msXFAlIaUUpRoFU0bAWgWR0DYe8rEUCaJdX2UKGgGaAloD0MIqDXNO85AckCUhpRSlGgVS/xoFkdA2HvYqzZ6EHV9lChoBmgJaA9DCK5H4XqUG25AlIaUUpRoFU0CAWgWR0DYe+CB8QZodX2UKGgGaAloD0MIHt/eNSjecECUhpRSlGgVS+9oFkdA2Hviic5Ke3V9lChoBmgJaA9DCBMqOLyg5G9AlIaUUpRoFU1uAWgWR0DYe+dQEZBLdX2UKGgGaAloD0MIxQPKplwVc0CUhpRSlGgVS8loFkdA2HvvPJaJRHV9lChoBmgJaA9DCCuk/KQaY3FAlIaUUpRoFUvuaBZHQNh78Man7551fZQoaAZoCWgPQwhz843oXkVyQJSGlFKUaBVL6mgWR0DYe/Q0elsQdX2UKGgGaAloD0MInx7bMmAqb0CUhpRSlGgVS/hoFkdA2Hv3PE87p3V9lChoBmgJaA9DCNbJGYq7hHJAlIaUUpRoFU0GAWgWR0DYe/vJFLFodX2UKGgGaAloD0MI31D4bB0bckCUhpRSlGgVS9xoFkdA2HwAIXCTEHV9lChoBmgJaA9DCOmayTfbGHJAlIaUUpRoFU1TAWgWR0DYfA4zJp35dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV6wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXC9ob21lL252bWUyL2t1bnpob25nL2FuYWNvbmRhMy9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxcL2hvbWUvbnZtZTIva3VuemhvbmcvYW5hY29uZGEzL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.13.0-30-generic-x86_64-with-glibc2.10 # 33~20.04.1-Ubuntu SMP Mon Feb 7 14:25:10 UTC 2022", "Python": "3.8.3", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.23.2", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0d14d2aee0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0d14d2af70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0d14d2e040>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0d14d2e0d0>", "_build": "<function ActorCriticPolicy._build at 0x7f0d14d2e160>", "forward": "<function ActorCriticPolicy.forward at 0x7f0d14d2e1f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0d14d2e280>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0d14d2e310>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0d14d2e3a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0d14d2e430>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0d14d2e4c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0d14d2e550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0d14d16c30>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 5013504, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676472967663721312, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV6wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXC9ob21lL252bWUyL2t1bnpob25nL2FuYWNvbmRhMy9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxcL2hvbWUvbnZtZTIva3VuemhvbmcvYW5hY29uZGEzL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI1PIDVzk0cUCUhpRSlIwBbJRL3owBdJRHQLHDywe/5+J1fZQoaAZoCWgPQwgAxciSuQRyQJSGlFKUaBVL0mgWR0Cxw/3XNC7cdX2UKGgGaAloD0MIyxRzEPSrcUCUhpRSlGgVS/toFkdAscQCtPpIMHV9lChoBmgJaA9DCFuzlZe8PXBAlIaUUpRoFUvRaBZHQLHEIc8kleF1fZQoaAZoCWgPQwgi4Xt/g9xyQJSGlFKUaBVL4mgWR0CxxCY86mwadX2UKGgGaAloD0MIXU4JiAkockCUhpRSlGgVS9NoFkdAscQrX5FgD3V9lChoBmgJaA9DCBDrjVohMXNAlIaUUpRoFUvdaBZHQLHEaeRPoFF1fZQoaAZoCWgPQwhSmPc4U4dxQJSGlFKUaBVL42gWR0CxxHMOkLx7dX2UKGgGaAloD0MIdH6K40DGcECUhpRSlGgVS8doFkdAscSGlzltCXV9lChoBmgJaA9DCAjKbfueOHFAlIaUUpRoFUvLaBZHQLHEokLx7Rh1fZQoaAZoCWgPQwh+dOrKJxlxQJSGlFKUaBVLwmgWR0CxxLD4tYjjdX2UKGgGaAloD0MIW7VrQtqbb0CUhpRSlGgVS+RoFkdAscTKsNlRQHV9lChoBmgJaA9DCJZ31QOmX3FAlIaUUpRoFUvWaBZHQLHEz1q33Ht1fZQoaAZoCWgPQwhKJxJMNcFzQJSGlFKUaBVL82gWR0CxxNQ8jiXIdX2UKGgGaAloD0MIP1OvW8QhckCUhpRSlGgVS+1oFkdAscTexkd3jnV9lChoBmgJaA9DCC7jpgYaXW9AlIaUUpRoFUvYaBZHQLHE4MgEEDB1fZQoaAZoCWgPQwhNgczOophwQJSGlFKUaBVL4mgWR0CxxSVt4zJqdX2UKGgGaAloD0MI2GX4T3edcUCUhpRSlGgVS+doFkdAscUmQJXyRXV9lChoBmgJaA9DCD6V057SmHBAlIaUUpRoFUviaBZHQLHFSzZYgaF1fZQoaAZoCWgPQwgr9pfdU2ByQJSGlFKUaBVL4WgWR0CxxUyeumrKdX2UKGgGaAloD0MIyjfb3Jgwb0CUhpRSlGgVS+hoFkdAscVNw3o9tHV9lChoBmgJaA9DCFJDG4ANDXJAlIaUUpRoFUvUaBZHQLHFevi97F91fZQoaAZoCWgPQwjzID1FDtRvQJSGlFKUaBVL2WgWR0CxxaQpvxYrdX2UKGgGaAloD0MIgQhx5ezsckCUhpRSlGgVS/doFkdAscW7KbKA8XV9lChoBmgJaA9DCPynGyjwRG5AlIaUUpRoFUvYaBZHQLHF0sdT5wh1fZQoaAZoCWgPQwjKTj+oSz5wQJSGlFKUaBVLzGgWR0CxxeET6BRRdX2UKGgGaAloD0MIHY8ZqIzBcUCUhpRSlGgVS/ZoFkdAscXtUm2LHnV9lChoBmgJaA9DCBpOmZsvT3BAlIaUUpRoFUvRaBZHQLHM6onKGL11fZQoaAZoCWgPQwjizK/mAPhwQJSGlFKUaBVL5WgWR0CxzO3AM2FWdX2UKGgGaAloD0MIBfhu80apb0CUhpRSlGgVS+JoFkdAscz9RdhRZXV9lChoBmgJaA9DCO5BCMjXRHFAlIaUUpRoFUvxaBZHQLHM/sjFAFB1fZQoaAZoCWgPQwgLDcSymddvQJSGlFKUaBVL1WgWR0CxzTaPsAvMdX2UKGgGaAloD0MIEmdF1MQpckCUhpRSlGgVS8RoFkdAsc1ErRSgoXV9lChoBmgJaA9DCLafjPEheHNAlIaUUpRoFUv9aBZHQLHNbFx4ptt1fZQoaAZoCWgPQwhMjGX65d1xQJSGlFKUaBVLyWgWR0CxzXrNB4UvdX2UKGgGaAloD0MIq0AtBk8lckCUhpRSlGgVS+xoFkdAsc183XI2fnV9lChoBmgJaA9DCKbydoRTE3JAlIaUUpRoFUvqaBZHQLHNe+VTrE91fZQoaAZoCWgPQwjYR6euvPpyQJSGlFKUaBVL2GgWR0CxzaxdQfp2dX2UKGgGaAloD0MIXOUJhJ13b0CUhpRSlGgVS9NoFkdAsc280qH45HV9lChoBmgJaA9DCAO2gxE7WnNAlIaUUpRoFUvYaBZHQLHN4/EwWWR1fZQoaAZoCWgPQwgib7n6MYJzQJSGlFKUaBVL4WgWR0Cxzf7YPGyYdX2UKGgGaAloD0MIDqK1ok1jckCUhpRSlGgVS9hoFkdAsc4M5EMLGHV9lChoBmgJaA9DCAQ6kzYVg3JAlIaUUpRoFUvoaBZHQLHOEMmnfl91fZQoaAZoCWgPQwg82c2MfoJwQJSGlFKUaBVL2WgWR0CxzhzUiILxdX2UKGgGaAloD0MISRRa1n1MckCUhpRSlGgVS9doFkdAsc4cIppeu3V9lChoBmgJaA9DCAoUsYghG3FAlIaUUpRoFUvtaBZHQLHOIfnfVI91fZQoaAZoCWgPQwhskh/xqxFvQJSGlFKUaBVLxGgWR0CxzkyE12q2dX2UKGgGaAloD0MIgPRNmoZucUCUhpRSlGgVS+JoFkdAsc5ioQ4CIXV9lChoBmgJaA9DCJliDoLOdHJAlIaUUpRoFUvVaBZHQLHOiuYQarF1fZQoaAZoCWgPQwinrRHB+BlyQJSGlFKUaBVLzWgWR0CxzpBHTZxrdX2UKGgGaAloD0MIcjEG1rHqcECUhpRSlGgVS9NoFkdAsc6e7iADrHV9lChoBmgJaA9DCERtG0aBgnJAlIaUUpRoFUvaaBZHQLHOpIacZtN1fZQoaAZoCWgPQwgHsTOFzrVOQJSGlFKUaBVLi2gWR0CxzrphjOLSdX2UKGgGaAloD0MIon+CixWOcUCUhpRSlGgVS9ZoFkdAsc7jFJg9eXV9lChoBmgJaA9DCFcHQNzVr3JAlIaUUpRoFU0AAWgWR0CxzxIhhYvGdX2UKGgGaAloD0MITrSrkPKscUCUhpRSlGgVS+NoFkdAsc8VAE+xGHV9lChoBmgJaA9DCK8GKA11XnBAlIaUUpRoFUvHaBZHQLHPGwQUYbd1fZQoaAZoCWgPQwjgZBu4AwRyQJSGlFKUaBVL8mgWR0Cxz095MURGdX2UKGgGaAloD0MITmGlgkqhc0CUhpRSlGgVS+RoFkdAsc9UqRU3oHV9lChoBmgJaA9DCOl/uRatFXFAlIaUUpRoFUvuaBZHQLHPXhStNi91fZQoaAZoCWgPQwgZVvFGJuxwQJSGlFKUaBVLzWgWR0Cxz2O2qkuZdX2UKGgGaAloD0MI0eY4t0k3ckCUhpRSlGgVS/VoFkdAsc9k8ifQKXV9lChoBmgJaA9DCDlhwmgW7HJAlIaUUpRoFUvQaBZHQLHPe3qRlpZ1fZQoaAZoCWgPQwhkzcggN1JwQJSGlFKUaBVLz2gWR0Cxz6wtapxWdX2UKGgGaAloD0MIzjP2JRsncUCUhpRSlGgVS9xoFkdAsc+1E/jbSXV9lChoBmgJaA9DCJon1xSIiHJAlIaUUpRoFUvkaBZHQLHPuJul41R1fZQoaAZoCWgPQwheY5eo3glwQJSGlFKUaBVLxGgWR0Cxz7ntjTa1dX2UKGgGaAloD0MIGvuSjYe9ZkCUhpRSlGgVTegDaBZHQLHPuvsJIDp1fZQoaAZoCWgPQwi8zRsnRX5wQJSGlFKUaBVL3GgWR0Cxz8HXRPXTdX2UKGgGaAloD0MIx2Xc1IA6ckCUhpRSlGgVS79oFkdAsc/9A3T/hnV9lChoBmgJaA9DCIoFvqJbe29AlIaUUpRoFUvLaBZHQLHQEHARChN1fZQoaAZoCWgPQwjmd5rMOKRyQJSGlFKUaBVL3GgWR0Cx0ByQDFIedX2UKGgGaAloD0MIpiiXxi9sckCUhpRSlGgVTQ4BaBZHQLHQNdBBzFN1fZQoaAZoCWgPQwgsnQ/P0mdyQJSGlFKUaBVLyWgWR0Cx0EYywfQsdX2UKGgGaAloD0MIa2XCL/UgcECUhpRSlGgVS9hoFkdAsdBVIJ7b+XV9lChoBmgJaA9DCGH8NO6NW3NAlIaUUpRoFUvHaBZHQLHQU9Jz1bt1fZQoaAZoCWgPQwhFt17Tg15xQJSGlFKUaBVL1WgWR0Cx0GEhvBJqdX2UKGgGaAloD0MIukxNgjftcECUhpRSlGgVS+NoFkdAsdBuMCLde3V9lChoBmgJaA9DCBJKXwh5pXFAlIaUUpRoFUvlaBZHQLHQjms/6ft1fZQoaAZoCWgPQwg4hCo1+zRzQJSGlFKUaBVLu2gWR0Cx0JAiJO32dX2UKGgGaAloD0MIBYpYxDCrcUCUhpRSlGgVS8JoFkdAsdCaO801qHV9lChoBmgJaA9DCE8fgT+8jHFAlIaUUpRoFUvPaBZHQLHQsEGZ/kN1fZQoaAZoCWgPQwgI5BJH3opzQJSGlFKUaBVL6GgWR0Cx0MA2VE/jdX2UKGgGaAloD0MI4Lw48RU7ckCUhpRSlGgVS+BoFkdAsdDDYoRZlnV9lChoBmgJaA9DCHNjesKS1W5AlIaUUpRoFUveaBZHQLHQyCCjDbd1fZQoaAZoCWgPQwh3vMlvUUNuQJSGlFKUaBVL1WgWR0Cx0Qt5t3wDdX2UKGgGaAloD0MISpUoews0c0CUhpRSlGgVS/hoFkdAsdEiBXjlxXV9lChoBmgJaA9DCAeynlq9T3BAlIaUUpRoFUvQaBZHQLHRJ1hb4ah1fZQoaAZoCWgPQwgCSkONQmlvQJSGlFKUaBVL6mgWR0Cx0TKZpi7TdX2UKGgGaAloD0MI9Kj4v2MWc0CUhpRSlGgVS9doFkdAsdFBfG+9J3V9lChoBmgJaA9DCKtdE9IaiHFAlIaUUpRoFUvRaBZHQLHRR/dZaFF1fZQoaAZoCWgPQwg2XOSeLiBzQJSGlFKUaBVL7WgWR0Cx0W3gDRtxdX2UKGgGaAloD0MIVKhuLj7YckCUhpRSlGgVS+poFkdAsdGHXJ5miHV9lChoBmgJaA9DCMpv0clSenBAlIaUUpRoFUviaBZHQLHRpvl2eQN1fZQoaAZoCWgPQwi9VkJ3SVFyQJSGlFKUaBVL42gWR0Cx0anWSU1RdX2UKGgGaAloD0MI3q6XpsjNcUCUhpRSlGgVS81oFkdAsdHEraufVnV9lChoBmgJaA9DCOxph78mTXFAlIaUUpRoFUvvaBZHQLHRypSrHVB1fZQoaAZoCWgPQwix22eV2TxxQJSGlFKUaBVLzGgWR0Cx0czvE0iydX2UKGgGaAloD0MIcTyfAXU3bkCUhpRSlGgVS9ZoFkdAsdHW3QUpNXV9lChoBmgJaA9DCFKY9zhTDnFAlIaUUpRoFUvtaBZHQLHR3UYKpkx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1224, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV6wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXC9ob21lL252bWUyL2t1bnpob25nL2FuYWNvbmRhMy9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxcL2hvbWUvbnZtZTIva3VuemhvbmcvYW5hY29uZGEzL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.13.0-30-generic-x86_64-with-glibc2.10 # 33~20.04.1-Ubuntu SMP Mon Feb 7 14:25:10 UTC 2022", "Python": "3.8.3", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.23.2", "Gym": "0.21.0"}}
models/unit1/ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:48b64a65be127659501be6ebc0cc96a677362070e004f441e5a840ff93665e96
3
- size 147486
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ad99587dcc4e41ab78bcf1e6d5f79762776331caf9cfaf6127cb520e871e8318
3
+ size 146621
models/unit1/ppo-LunarLander-v2/data CHANGED
@@ -4,20 +4,20 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4a1d1d0040>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4a1d1d00d0>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4a1d1d0160>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4a1d1d01f0>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7f4a1d1d0280>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7f4a1d1d0310>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f4a1d1d03a0>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4a1d1d0430>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7f4a1d1d04c0>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4a1d1d0550>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4a1d1d05e0>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4a1d1d0670>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc_data object at 0x7f4a1d1c8db0>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
@@ -43,22 +43,19 @@
43
  "_np_random": null
44
  },
45
  "n_envs": 16,
46
- "num_timesteps": 1015808,
47
- "_total_timesteps": 1000000,
48
  "_num_timesteps_at_start": 0,
49
  "seed": null,
50
  "action_noise": null,
51
- "start_time": 1676461534467485336,
52
  "learning_rate": 0.0003,
53
  "tensorboard_log": null,
54
  "lr_schedule": {
55
  ":type:": "<class 'function'>",
56
  ":serialized:": "gAWV6wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXC9ob21lL252bWUyL2t1bnpob25nL2FuYWNvbmRhMy9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxcL2hvbWUvbnZtZTIva3VuemhvbmcvYW5hY29uZGEzL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
57
  },
58
- "_last_obs": {
59
- ":type:": "<class 'numpy.ndarray'>",
60
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOD5Rr6M8T8+466MPmQkc74gmD69LtkcPgAAAAAAAAAAJirIvUgmszs0tj4+L3Qtvkwz6LyVpNQ8AAAAAAAAAACasYo8TrNCP/PeZz2MX+++ZDv8usmLDD0AAAAAAAAAAPPskz5hrAA/cElavgJo2772RiQ+MlmivQAAAAAAAAAAbSC1PiwpVD/eu2U+hfIBv5eXyT7rzNs9AAAAAAAAAACzCCQ94WSDulq0aDaeOF8xGqYZuqJfibUAAIA/AACAP0Csuj2PBmq6QfuHs7Dzea6g5Qc54hWqMwAAgD8AAIA/ZuK+u67ZqboVVFK2xvxPsVbQjroSrn01AACAPwAAgD/NT209hSPrudrCLTWNtzswpf2UufO6VbQAAIA/AACAP2APQz5TCBU/gNVVvTFg2L5viww+viqyvQAAAAAAAAAAAD70vd8f3zzAfGQ+HM5+vW7PTj2yBdc8AAAAAAAAAADaF4+94WTRuv2IH7xRcZm6LonLO0O31ToAAIA/AACAP5p5MjsFR8O7fym3PHzPJTxVnku91p4QPQAAgD8AAIA/AJ+TPfQCCT57/C6+hQGGvgBnTr1uzz27AAAAAAAAAADaCVY+mTuHPmG+CL6Gkoi+6uoTPVxVAr0AAAAAAAAAAM042T1DPbE/3kEBP3B/mr5x7X89jAWIPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
- },
62
  "_last_episode_starts": {
63
  ":type:": "<class 'numpy.ndarray'>",
64
  ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
@@ -67,16 +64,16 @@
67
  "_episode_num": 0,
68
  "use_sde": false,
69
  "sde_sample_freq": -1,
70
- "_current_progress_remaining": -0.015808000000000044,
71
  "ep_info_buffer": {
72
  ":type:": "<class 'collections.deque'>",
73
- ":serialized:": "gAWVURAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMISU27mCZrcECUhpRSlIwBbJRNewGMAXSUR0DYeE9vn8sMdX2UKGgGaAloD0MICvKzkesDU0CUhpRSlGgVS3xoFkdA2HhP5CF9KHV9lChoBmgJaA9DCDT1ukVgAHJAlIaUUpRoFU1QAWgWR0DYeFJgv115dX2UKGgGaAloD0MI8FLqkjFwcUCUhpRSlGgVTRUBaBZHQNh4VqBun/F1fZQoaAZoCWgPQwjn4m97gvQ/QJSGlFKUaBVLhWgWR0DYeFjokiUxdX2UKGgGaAloD0MIzqj5KnlEcECUhpRSlGgVS9poFkdA2HhfcophF3V9lChoBmgJaA9DCDy+vWsQtnJAlIaUUpRoFU2WAWgWR0DYeGCdVea8dX2UKGgGaAloD0MI/0EkQ46jcECUhpRSlGgVTUsBaBZHQNh4YvI4lyB1fZQoaAZoCWgPQwgoDMo0mmxsQJSGlFKUaBVL5mgWR0DYeGj0I1LrdX2UKGgGaAloD0MIvcKC+4H3cECUhpRSlGgVS/BoFkdA2Hh2edTYNHV9lChoBmgJaA9DCKZ+3lSk+3JAlIaUUpRoFUv6aBZHQNh4hEoF3ZB1fZQoaAZoCWgPQwia7Qp9MK5xQJSGlFKUaBVNHwFoFkdA2HiHjEvTPXV9lChoBmgJaA9DCKlOB7KeCiRAlIaUUpRoFUuBaBZHQNh4lWn889x1fZQoaAZoCWgPQwhFEyhiUYNxQJSGlFKUaBVL9WgWR0DYeKbl6qsEdX2UKGgGaAloD0MIYoGv6NbHcECUhpRSlGgVTQgBaBZHQNh4qC/XXiB1fZQoaAZoCWgPQwjgDz///UNzQJSGlFKUaBVNLwFoFkdA2HisWCmMwXV9lChoBmgJaA9DCJ8cBYgC73FAlIaUUpRoFU1pAWgWR0DYeK95B1LbdX2UKGgGaAloD0MI4SU49UEFc0CUhpRSlGgVS/1oFkdA2HixbL2YfHV9lChoBmgJaA9DCFb18jsNPHRAlIaUUpRoFU0aAWgWR0DYeLYDvE0jdX2UKGgGaAloD0MItHOaBVoNb0CUhpRSlGgVTQIBaBZHQNh4vPGdZq51fZQoaAZoCWgPQwgJ/OHn/15zQJSGlFKUaBVNAAFoFkdA2Hi+3W4EwHV9lChoBmgJaA9DCOi8xi4R7XJAlIaUUpRoFU0wAWgWR0DYeL9+XqqwdX2UKGgGaAloD0MIyEEJMy1TcECUhpRSlGgVTTQBaBZHQNh4xejIq9Z1fZQoaAZoCWgPQwhKmdTQhpRyQJSGlFKUaBVNOAFoFkdA2HjMERaouXV9lChoBmgJaA9DCEimQ6dnGHJAlIaUUpRoFUvkaBZHQNh41We6I311fZQoaAZoCWgPQwipMoy7AShyQJSGlFKUaBVL6GgWR0DYeNkwIt17dX2UKGgGaAloD0MIK6bST3gMckCUhpRSlGgVTSQBaBZHQNh43G7OE/V1fZQoaAZoCWgPQwg0oN6MmslsQJSGlFKUaBVNkwJoFkdA2HjdtZV4o3V9lChoBmgJaA9DCO+tSExQRHBAlIaUUpRoFUvbaBZHQNh48ZDArQR1fZQoaAZoCWgPQwhn7bYLDQJzQJSGlFKUaBVL5WgWR0DYePGROk+HdX2UKGgGaAloD0MI16IFaNs6ckCUhpRSlGgVTRMBaBZHQNh48eOXE611fZQoaAZoCWgPQwhwCisVlMdwQJSGlFKUaBVL0mgWR0DYePLLlmvodX2UKGgGaAloD0MIppnudRJCcUCUhpRSlGgVTRkBaBZHQNh5AThYNiJ1fZQoaAZoCWgPQwjZQpCDkiFvQJSGlFKUaBVL0mgWR0DYeQbPMSsbdX2UKGgGaAloD0MIhjyCGylicECUhpRSlGgVS/5oFkdA2HkOojv/i3V9lChoBmgJaA9DCGx3D9A9U3BAlIaUUpRoFU0DAWgWR0DYeREsVclgdX2UKGgGaAloD0MI8FF/vUITckCUhpRSlGgVS91oFkdA2HknkmQbM3V9lChoBmgJaA9DCH/3jhrTJ3JAlIaUUpRoFUvbaBZHQNh5KIzvZyx1fZQoaAZoCWgPQwhClZo9kJhwQJSGlFKUaBVNfAFoFkdA2HrLhOP/73V9lChoBmgJaA9DCLdELjjDWnFAlIaUUpRoFU0MAWgWR0DYes3SNOuadX2UKGgGaAloD0MIxM4UOq+vbUCUhpRSlGgVTQIBaBZHQNh6zuZCv5h1fZQoaAZoCWgPQwiTcYxkD5BxQJSGlFKUaBVNZgFoFkdA2HrQ5nlGPXV9lChoBmgJaA9DCL99HThneW5AlIaUUpRoFU1BAWgWR0DYetVhiLEUdX2UKGgGaAloD0MILGFtjB1IckCUhpRSlGgVTQYBaBZHQNh67F0PpY91fZQoaAZoCWgPQwhxHeOKy9hxQJSGlFKUaBVNDQFoFkdA2HrvU/fO2XV9lChoBmgJaA9DCCu/DMaI6HFAlIaUUpRoFUvxaBZHQNh69uFDfFd1fZQoaAZoCWgPQwhp/MIryS9yQJSGlFKUaBVNIAFoFkdA2Hr3isXBQHV9lChoBmgJaA9DCCY2H9eGZHNAlIaUUpRoFUv1aBZHQNh6/a0dBB11fZQoaAZoCWgPQwhE4EigQZBtQJSGlFKUaBVL5mgWR0DYev+BClabdX2UKGgGaAloD0MIJ6PKMO55UECUhpRSlGgVS6RoFkdA2HsJ+o99t3V9lChoBmgJaA9DCN7KEp1lA3JAlIaUUpRoFU1rAWgWR0DYew9m4AjqdX2UKGgGaAloD0MIRWPt7+zacECUhpRSlGgVTU4CaBZHQNh7G66WgOB1fZQoaAZoCWgPQwgSEf5FUCdwQJSGlFKUaBVNOwFoFkdA2HsgCL/CInV9lChoBmgJaA9DCKiPwB/+qXBAlIaUUpRoFUvxaBZHQNh7INuYQat1fZQoaAZoCWgPQwimmllLAS5xQJSGlFKUaBVL8GgWR0DYeyNg4OtodX2UKGgGaAloD0MImfG20mv9cUCUhpRSlGgVTQsBaBZHQNh7I5Uo8ZF1fZQoaAZoCWgPQwiR8SiVsNtyQJSGlFKUaBVL9GgWR0DYeyobn5i3dX2UKGgGaAloD0MI8piByjhRc0CUhpRSlGgVTUQBaBZHQNh7NY5DJEJ1fZQoaAZoCWgPQwhbKJmc2ulNQJSGlFKUaBVLxWgWR0DYe0EmsvIwdX2UKGgGaAloD0MI/BpJgnAFcECUhpRSlGgVS+JoFkdA2HtC03fhuXV9lChoBmgJaA9DCKhWX12VlXJAlIaUUpRoFU0IAWgWR0DYe0hcTrVwdX2UKGgGaAloD0MIqP5BJEPmc0CUhpRSlGgVS+JoFkdA2HtJKwIMSnV9lChoBmgJaA9DCN18I7pnim5AlIaUUpRoFU1xAWgWR0DYe0vAnDzidX2UKGgGaAloD0MIMepae58/cECUhpRSlGgVTRoBaBZHQNh7VHTAnD11fZQoaAZoCWgPQwgDCYofI7JxQJSGlFKUaBVNOwFoFkdA2HtWIAOrhnV9lChoBmgJaA9DCIEFMGXgSnNAlIaUUpRoFUvcaBZHQNh7V8H8jzJ1fZQoaAZoCWgPQwjZlZaR+qRyQJSGlFKUaBVL4GgWR0DYe2mipNsWdX2UKGgGaAloD0MINLkYA+t/cECUhpRSlGgVS/toFkdA2HtrI1cdHXV9lChoBmgJaA9DCPda0HtjKXNAlIaUUpRoFU02AWgWR0DYe27YVZcLdX2UKGgGaAloD0MIsaayKKwcckCUhpRSlGgVTQMBaBZHQNh7cbeyiVV1fZQoaAZoCWgPQwhl+5C3XKVzQJSGlFKUaBVL7GgWR0DYe3U/4ZdfdX2UKGgGaAloD0MILV+X4T8dbkCUhpRSlGgVTR4BaBZHQNh7exUR3/x1fZQoaAZoCWgPQwiCHJQwU0pwQJSGlFKUaBVNHQFoFkdA2Ht9M5wOv3V9lChoBmgJaA9DCN80fXbAJW9AlIaUUpRoFUvuaBZHQNh7gP0/W2B1fZQoaAZoCWgPQwgFptO6jdZtQJSGlFKUaBVL1GgWR0DYe4mtYB/7dX2UKGgGaAloD0MIuLBuvHvccUCUhpRSlGgVS/toFkdA2HuPdo3713V9lChoBmgJaA9DCGGowwq3cG9AlIaUUpRoFUv9aBZHQNh7l7D2rXF1fZQoaAZoCWgPQwgnv0Uni3ByQJSGlFKUaBVNNAFoFkdA2HukW1+iJ3V9lChoBmgJaA9DCOLNGryvPHBAlIaUUpRoFU0BAWgWR0DYe6dsVLzxdX2UKGgGaAloD0MIwFyLFuAkc0CUhpRSlGgVTQYBaBZHQNh7q1HWjGl1fZQoaAZoCWgPQwiWXpuNFTpuQJSGlFKUaBVNEgFoFkdA2HurvtMPBnV9lChoBmgJaA9DCCk/qfZpGHNAlIaUUpRoFU0xAWgWR0DYe6yxC6YmdX2UKGgGaAloD0MIGXCWkuXOb0CUhpRSlGgVS+BoFkdA2Huxz8P4EnV9lChoBmgJaA9DCJF8JZCSQm9AlIaUUpRoFUv0aBZHQNh7vEKeCkJ1fZQoaAZoCWgPQwiCV8ud2SVyQJSGlFKUaBVNAAFoFkdA2Hu8mQbMo3V9lChoBmgJaA9DCHv6CPxhiXFAlIaUUpRoFUvOaBZHQNh7wlJpWWB1fZQoaAZoCWgPQwh6VtKKb45uQJSGlFKUaBVL52gWR0DYe8YFSsKcdX2UKGgGaAloD0MIEf3a+qldc0CUhpRSlGgVS/1oFkdA2HvKj2SMcnV9lChoBmgJaA9DCHL6er4msXFAlIaUUpRoFU0bAWgWR0DYe8rEUCaJdX2UKGgGaAloD0MIqDXNO85AckCUhpRSlGgVS/xoFkdA2HvYqzZ6EHV9lChoBmgJaA9DCK5H4XqUG25AlIaUUpRoFU0CAWgWR0DYe+CB8QZodX2UKGgGaAloD0MIHt/eNSjecECUhpRSlGgVS+9oFkdA2Hviic5Ke3V9lChoBmgJaA9DCBMqOLyg5G9AlIaUUpRoFU1uAWgWR0DYe+dQEZBLdX2UKGgGaAloD0MIxQPKplwVc0CUhpRSlGgVS8loFkdA2HvvPJaJRHV9lChoBmgJaA9DCCuk/KQaY3FAlIaUUpRoFUvuaBZHQNh78Man7551fZQoaAZoCWgPQwhz843oXkVyQJSGlFKUaBVL6mgWR0DYe/Q0elsQdX2UKGgGaAloD0MInx7bMmAqb0CUhpRSlGgVS/hoFkdA2Hv3PE87p3V9lChoBmgJaA9DCNbJGYq7hHJAlIaUUpRoFU0GAWgWR0DYe/vJFLFodX2UKGgGaAloD0MI31D4bB0bckCUhpRSlGgVS9xoFkdA2HwAIXCTEHV9lChoBmgJaA9DCOmayTfbGHJAlIaUUpRoFU1TAWgWR0DYfA4zJp35dWUu"
74
  },
75
  "ep_success_buffer": {
76
  ":type:": "<class 'collections.deque'>",
77
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
  },
79
- "_n_updates": 248,
80
  "n_steps": 1024,
81
  "gamma": 0.999,
82
  "gae_lambda": 0.98,
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0d14d2aee0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0d14d2af70>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0d14d2e040>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0d14d2e0d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f0d14d2e160>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f0d14d2e1f0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0d14d2e280>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0d14d2e310>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f0d14d2e3a0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0d14d2e430>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0d14d2e4c0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0d14d2e550>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f0d14d16c30>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
 
43
  "_np_random": null
44
  },
45
  "n_envs": 16,
46
+ "num_timesteps": 5013504,
47
+ "_total_timesteps": 5000000,
48
  "_num_timesteps_at_start": 0,
49
  "seed": null,
50
  "action_noise": null,
51
+ "start_time": 1676472967663721312,
52
  "learning_rate": 0.0003,
53
  "tensorboard_log": null,
54
  "lr_schedule": {
55
  ":type:": "<class 'function'>",
56
  ":serialized:": "gAWV6wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXC9ob21lL252bWUyL2t1bnpob25nL2FuYWNvbmRhMy9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxcL2hvbWUvbnZtZTIva3VuemhvbmcvYW5hY29uZGEzL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
57
  },
58
+ "_last_obs": null,
 
 
 
59
  "_last_episode_starts": {
60
  ":type:": "<class 'numpy.ndarray'>",
61
  ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
 
64
  "_episode_num": 0,
65
  "use_sde": false,
66
  "sde_sample_freq": -1,
67
+ "_current_progress_remaining": -0.0027007999999999477,
68
  "ep_info_buffer": {
69
  ":type:": "<class 'collections.deque'>",
70
+ ":serialized:": "gAWVIBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI1PIDVzk0cUCUhpRSlIwBbJRL3owBdJRHQLHDywe/5+J1fZQoaAZoCWgPQwgAxciSuQRyQJSGlFKUaBVL0mgWR0Cxw/3XNC7cdX2UKGgGaAloD0MIyxRzEPSrcUCUhpRSlGgVS/toFkdAscQCtPpIMHV9lChoBmgJaA9DCFuzlZe8PXBAlIaUUpRoFUvRaBZHQLHEIc8kleF1fZQoaAZoCWgPQwgi4Xt/g9xyQJSGlFKUaBVL4mgWR0CxxCY86mwadX2UKGgGaAloD0MIXU4JiAkockCUhpRSlGgVS9NoFkdAscQrX5FgD3V9lChoBmgJaA9DCBDrjVohMXNAlIaUUpRoFUvdaBZHQLHEaeRPoFF1fZQoaAZoCWgPQwhSmPc4U4dxQJSGlFKUaBVL42gWR0CxxHMOkLx7dX2UKGgGaAloD0MIdH6K40DGcECUhpRSlGgVS8doFkdAscSGlzltCXV9lChoBmgJaA9DCAjKbfueOHFAlIaUUpRoFUvLaBZHQLHEokLx7Rh1fZQoaAZoCWgPQwh+dOrKJxlxQJSGlFKUaBVLwmgWR0CxxLD4tYjjdX2UKGgGaAloD0MIW7VrQtqbb0CUhpRSlGgVS+RoFkdAscTKsNlRQHV9lChoBmgJaA9DCJZ31QOmX3FAlIaUUpRoFUvWaBZHQLHEz1q33Ht1fZQoaAZoCWgPQwhKJxJMNcFzQJSGlFKUaBVL82gWR0CxxNQ8jiXIdX2UKGgGaAloD0MIP1OvW8QhckCUhpRSlGgVS+1oFkdAscTexkd3jnV9lChoBmgJaA9DCC7jpgYaXW9AlIaUUpRoFUvYaBZHQLHE4MgEEDB1fZQoaAZoCWgPQwhNgczOophwQJSGlFKUaBVL4mgWR0CxxSVt4zJqdX2UKGgGaAloD0MI2GX4T3edcUCUhpRSlGgVS+doFkdAscUmQJXyRXV9lChoBmgJaA9DCD6V057SmHBAlIaUUpRoFUviaBZHQLHFSzZYgaF1fZQoaAZoCWgPQwgr9pfdU2ByQJSGlFKUaBVL4WgWR0CxxUyeumrKdX2UKGgGaAloD0MIyjfb3Jgwb0CUhpRSlGgVS+hoFkdAscVNw3o9tHV9lChoBmgJaA9DCFJDG4ANDXJAlIaUUpRoFUvUaBZHQLHFevi97F91fZQoaAZoCWgPQwjzID1FDtRvQJSGlFKUaBVL2WgWR0CxxaQpvxYrdX2UKGgGaAloD0MIgQhx5ezsckCUhpRSlGgVS/doFkdAscW7KbKA8XV9lChoBmgJaA9DCPynGyjwRG5AlIaUUpRoFUvYaBZHQLHF0sdT5wh1fZQoaAZoCWgPQwjKTj+oSz5wQJSGlFKUaBVLzGgWR0CxxeET6BRRdX2UKGgGaAloD0MIHY8ZqIzBcUCUhpRSlGgVS/ZoFkdAscXtUm2LHnV9lChoBmgJaA9DCBpOmZsvT3BAlIaUUpRoFUvRaBZHQLHM6onKGL11fZQoaAZoCWgPQwjizK/mAPhwQJSGlFKUaBVL5WgWR0CxzO3AM2FWdX2UKGgGaAloD0MIBfhu80apb0CUhpRSlGgVS+JoFkdAscz9RdhRZXV9lChoBmgJaA9DCO5BCMjXRHFAlIaUUpRoFUvxaBZHQLHM/sjFAFB1fZQoaAZoCWgPQwgLDcSymddvQJSGlFKUaBVL1WgWR0CxzTaPsAvMdX2UKGgGaAloD0MIEmdF1MQpckCUhpRSlGgVS8RoFkdAsc1ErRSgoXV9lChoBmgJaA9DCLafjPEheHNAlIaUUpRoFUv9aBZHQLHNbFx4ptt1fZQoaAZoCWgPQwhMjGX65d1xQJSGlFKUaBVLyWgWR0CxzXrNB4UvdX2UKGgGaAloD0MIq0AtBk8lckCUhpRSlGgVS+xoFkdAsc183XI2fnV9lChoBmgJaA9DCKbydoRTE3JAlIaUUpRoFUvqaBZHQLHNe+VTrE91fZQoaAZoCWgPQwjYR6euvPpyQJSGlFKUaBVL2GgWR0CxzaxdQfp2dX2UKGgGaAloD0MIXOUJhJ13b0CUhpRSlGgVS9NoFkdAsc280qH45HV9lChoBmgJaA9DCAO2gxE7WnNAlIaUUpRoFUvYaBZHQLHN4/EwWWR1fZQoaAZoCWgPQwgib7n6MYJzQJSGlFKUaBVL4WgWR0Cxzf7YPGyYdX2UKGgGaAloD0MIDqK1ok1jckCUhpRSlGgVS9hoFkdAsc4M5EMLGHV9lChoBmgJaA9DCAQ6kzYVg3JAlIaUUpRoFUvoaBZHQLHOEMmnfl91fZQoaAZoCWgPQwg82c2MfoJwQJSGlFKUaBVL2WgWR0CxzhzUiILxdX2UKGgGaAloD0MISRRa1n1MckCUhpRSlGgVS9doFkdAsc4cIppeu3V9lChoBmgJaA9DCAoUsYghG3FAlIaUUpRoFUvtaBZHQLHOIfnfVI91fZQoaAZoCWgPQwhskh/xqxFvQJSGlFKUaBVLxGgWR0CxzkyE12q2dX2UKGgGaAloD0MIgPRNmoZucUCUhpRSlGgVS+JoFkdAsc5ioQ4CIXV9lChoBmgJaA9DCJliDoLOdHJAlIaUUpRoFUvVaBZHQLHOiuYQarF1fZQoaAZoCWgPQwinrRHB+BlyQJSGlFKUaBVLzWgWR0CxzpBHTZxrdX2UKGgGaAloD0MIcjEG1rHqcECUhpRSlGgVS9NoFkdAsc6e7iADrHV9lChoBmgJaA9DCERtG0aBgnJAlIaUUpRoFUvaaBZHQLHOpIacZtN1fZQoaAZoCWgPQwgHsTOFzrVOQJSGlFKUaBVLi2gWR0CxzrphjOLSdX2UKGgGaAloD0MIon+CixWOcUCUhpRSlGgVS9ZoFkdAsc7jFJg9eXV9lChoBmgJaA9DCFcHQNzVr3JAlIaUUpRoFU0AAWgWR0CxzxIhhYvGdX2UKGgGaAloD0MITrSrkPKscUCUhpRSlGgVS+NoFkdAsc8VAE+xGHV9lChoBmgJaA9DCK8GKA11XnBAlIaUUpRoFUvHaBZHQLHPGwQUYbd1fZQoaAZoCWgPQwjgZBu4AwRyQJSGlFKUaBVL8mgWR0Cxz095MURGdX2UKGgGaAloD0MITmGlgkqhc0CUhpRSlGgVS+RoFkdAsc9UqRU3oHV9lChoBmgJaA9DCOl/uRatFXFAlIaUUpRoFUvuaBZHQLHPXhStNi91fZQoaAZoCWgPQwgZVvFGJuxwQJSGlFKUaBVLzWgWR0Cxz2O2qkuZdX2UKGgGaAloD0MI0eY4t0k3ckCUhpRSlGgVS/VoFkdAsc9k8ifQKXV9lChoBmgJaA9DCDlhwmgW7HJAlIaUUpRoFUvQaBZHQLHPe3qRlpZ1fZQoaAZoCWgPQwhkzcggN1JwQJSGlFKUaBVLz2gWR0Cxz6wtapxWdX2UKGgGaAloD0MIzjP2JRsncUCUhpRSlGgVS9xoFkdAsc+1E/jbSXV9lChoBmgJaA9DCJon1xSIiHJAlIaUUpRoFUvkaBZHQLHPuJul41R1fZQoaAZoCWgPQwheY5eo3glwQJSGlFKUaBVLxGgWR0Cxz7ntjTa1dX2UKGgGaAloD0MIGvuSjYe9ZkCUhpRSlGgVTegDaBZHQLHPuvsJIDp1fZQoaAZoCWgPQwi8zRsnRX5wQJSGlFKUaBVL3GgWR0Cxz8HXRPXTdX2UKGgGaAloD0MIx2Xc1IA6ckCUhpRSlGgVS79oFkdAsc/9A3T/hnV9lChoBmgJaA9DCIoFvqJbe29AlIaUUpRoFUvLaBZHQLHQEHARChN1fZQoaAZoCWgPQwjmd5rMOKRyQJSGlFKUaBVL3GgWR0Cx0ByQDFIedX2UKGgGaAloD0MIpiiXxi9sckCUhpRSlGgVTQ4BaBZHQLHQNdBBzFN1fZQoaAZoCWgPQwgsnQ/P0mdyQJSGlFKUaBVLyWgWR0Cx0EYywfQsdX2UKGgGaAloD0MIa2XCL/UgcECUhpRSlGgVS9hoFkdAsdBVIJ7b+XV9lChoBmgJaA9DCGH8NO6NW3NAlIaUUpRoFUvHaBZHQLHQU9Jz1bt1fZQoaAZoCWgPQwhFt17Tg15xQJSGlFKUaBVL1WgWR0Cx0GEhvBJqdX2UKGgGaAloD0MIukxNgjftcECUhpRSlGgVS+NoFkdAsdBuMCLde3V9lChoBmgJaA9DCBJKXwh5pXFAlIaUUpRoFUvlaBZHQLHQjms/6ft1fZQoaAZoCWgPQwg4hCo1+zRzQJSGlFKUaBVLu2gWR0Cx0JAiJO32dX2UKGgGaAloD0MIBYpYxDCrcUCUhpRSlGgVS8JoFkdAsdCaO801qHV9lChoBmgJaA9DCE8fgT+8jHFAlIaUUpRoFUvPaBZHQLHQsEGZ/kN1fZQoaAZoCWgPQwgI5BJH3opzQJSGlFKUaBVL6GgWR0Cx0MA2VE/jdX2UKGgGaAloD0MI4Lw48RU7ckCUhpRSlGgVS+BoFkdAsdDDYoRZlnV9lChoBmgJaA9DCHNjesKS1W5AlIaUUpRoFUveaBZHQLHQyCCjDbd1fZQoaAZoCWgPQwh3vMlvUUNuQJSGlFKUaBVL1WgWR0Cx0Qt5t3wDdX2UKGgGaAloD0MISpUoews0c0CUhpRSlGgVS/hoFkdAsdEiBXjlxXV9lChoBmgJaA9DCAeynlq9T3BAlIaUUpRoFUvQaBZHQLHRJ1hb4ah1fZQoaAZoCWgPQwgCSkONQmlvQJSGlFKUaBVL6mgWR0Cx0TKZpi7TdX2UKGgGaAloD0MI9Kj4v2MWc0CUhpRSlGgVS9doFkdAsdFBfG+9J3V9lChoBmgJaA9DCKtdE9IaiHFAlIaUUpRoFUvRaBZHQLHRR/dZaFF1fZQoaAZoCWgPQwg2XOSeLiBzQJSGlFKUaBVL7WgWR0Cx0W3gDRtxdX2UKGgGaAloD0MIVKhuLj7YckCUhpRSlGgVS+poFkdAsdGHXJ5miHV9lChoBmgJaA9DCMpv0clSenBAlIaUUpRoFUviaBZHQLHRpvl2eQN1fZQoaAZoCWgPQwi9VkJ3SVFyQJSGlFKUaBVL42gWR0Cx0anWSU1RdX2UKGgGaAloD0MI3q6XpsjNcUCUhpRSlGgVS81oFkdAsdHEraufVnV9lChoBmgJaA9DCOxph78mTXFAlIaUUpRoFUvvaBZHQLHRypSrHVB1fZQoaAZoCWgPQwix22eV2TxxQJSGlFKUaBVLzGgWR0Cx0czvE0iydX2UKGgGaAloD0MIcTyfAXU3bkCUhpRSlGgVS9ZoFkdAsdHW3QUpNXV9lChoBmgJaA9DCFKY9zhTDnFAlIaUUpRoFUvtaBZHQLHR3UYKpkx1ZS4="
71
  },
72
  "ep_success_buffer": {
73
  ":type:": "<class 'collections.deque'>",
74
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
75
  },
76
+ "_n_updates": 1224,
77
  "n_steps": 1024,
78
  "gamma": 0.999,
79
  "gae_lambda": 0.98,
models/unit1/ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:416c614cd6d5620af7bf9af3675d0bfb3c0aaac679d010704732e18ab4a58672
3
- size 87929
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8d904ea50544c9aab4789bf0730cef7cef60ec8241db307c8abd56c48f5d6a32
3
+ size 88057
models/unit1/ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3853a44b95b04ae19d8a0ae8241ab97e23e4e27da247ef0603b8136c398a5318
3
  size 43393
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:49938575af66572f38572df4788bee9adf7ed76b55b4d7fc5a96062e510f872f
3
  size 43393
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 265.72969228164493, "std_reward": 17.515579231635954, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-15T21:35:13.774629"}
 
1
+ {"mean_reward": 256.46099550618294, "std_reward": 82.79155995118684, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-16T15:07:55.678681"}