hypaai commited on
Commit
dc6f6bd
·
verified ·
1 Parent(s): 93ac8a3

Update handler.py

Browse files
Files changed (1) hide show
  1. handler.py +161 -69
handler.py CHANGED
@@ -1,107 +1,199 @@
1
  import torch
2
- from transformers import AutoProcessor, AutoModelForTextToSpeech
3
  import soundfile as sf
4
  import io
5
- import numpy as np
6
  import os
 
 
 
 
 
 
 
 
7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  class EndpointHandler():
9
  def __init__(self, path=""):
10
  """
11
- Initializes the handler. Loads the model and processor.
12
- 'path' is the directory where the model files are located.
13
  """
14
  self.device = "cuda" if torch.cuda.is_available() else "cpu"
15
  print(f"Using device: {self.device}")
16
 
17
- # Define the model path explicitly if needed, or rely on 'path'
18
- model_path = path if path else os.getenv("HF_MODEL_DIR", ".") # HF Endpoints provide model dir via env var or path arg
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
20
- # --- Load Model Components ---
21
- # Adjust these lines based on the specific classes your Orpheus model needs
22
- # It might be AutoModelForSpeechSeq2Seq, VitsModel, BarkModel, etc.
23
- # Ensure you use the correct class names from the transformers library or
24
- # the library your model relies on.
25
  try:
26
- print(f"Loading processor from: {model_path}")
27
- self.processor = AutoProcessor.from_pretrained(model_path)
28
- print(f"Loading model from: {model_path}")
29
- self.model = AutoModelForTextToSpeech.from_pretrained(model_path)
 
 
 
 
30
  self.model.to(self.device)
31
- print("Model and processor loaded successfully.")
32
-
33
- # --- Get Sampling Rate ---
34
- # Try to get sampling rate from config, provide a default if not found
35
- # Common locations: model.config.sampling_rate or processor.feature_extractor.sampling_rate
36
- # Adjust this based on your specific model architecture!
37
- self.sampling_rate = getattr(self.model.config, 'sampling_rate', None)
38
- if self.sampling_rate is None and hasattr(self.processor, 'feature_extractor'):
39
- self.sampling_rate = getattr(self.processor.feature_extractor, 'sampling_rate', 16000) # Default fallback
40
- elif self.sampling_rate is None:
41
- self.sampling_rate = 16000 # Default fallback if no config found
42
- print(f"Using sampling rate: {self.sampling_rate}")
43
 
 
 
 
 
 
 
44
 
45
  except Exception as e:
46
- print(f"Error loading model or processor: {e}")
47
- raise RuntimeError(f"Failed to load model/processor from {model_path}", e)
48
-
49
 
50
  def __call__(self, data: dict) -> bytes:
51
  """
52
- Runs inference on the input data.
53
- 'data' is the dictionary parsed from the incoming JSON request payload.
54
- Should return raw audio bytes (e.g., WAV format).
55
  """
56
  try:
57
- # --- Get Inputs ---
58
- # Extract text input - adjust key 'inputs' if necessary
59
- inputs_text = data.pop("inputs", None)
60
- if inputs_text is None:
61
  raise ValueError("Missing 'inputs' key in request data")
62
 
63
- # Optional: handle other parameters passed in the request
64
  parameters = data.pop("parameters", {})
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65
 
66
  # --- Preprocess Text ---
67
- # Use the processor to prepare model inputs
68
- processed_inputs = self.processor(text=inputs_text, return_tensors="pt").to(self.device)
69
 
70
- # --- Generate Speech ---
71
- # Adjust generation parameters if needed (e.g., speaker embeddings)
72
- # The output key might vary ('waveform', 'audio', 'speech', etc.)
73
- with torch.no_grad():
74
- # If your model needs specific args like speaker_embeddings, handle them here
75
- # Example: speaker_embeddings = self.load_speaker_embedding(...)
76
- # output = self.model.generate(**processed_inputs, speaker_embeddings=speaker_embeddings, **parameters)
77
- output = self.model.generate(**processed_inputs, **parameters)
78
 
 
 
79
 
80
- # --- Postprocess Audio ---
81
- # Ensure output is on CPU and convert to numpy array
82
- # The exact processing depends on the model output format
83
- # Assuming output tensor contains the waveform
84
- if isinstance(output, torch.Tensor):
85
- speech_waveform = output.cpu().numpy().squeeze()
86
- # Handle cases where output might be in a dictionary (common with pipelines)
87
- elif isinstance(output, dict) and 'audio' in output:
88
- speech_waveform = output['audio'].cpu().numpy().squeeze()
89
- elif isinstance(output, dict) and 'waveform' in output:
90
- speech_waveform = output['waveform'].cpu().numpy().squeeze()
 
 
 
 
 
 
 
 
91
  else:
92
- # Add handling for other potential output types if needed
93
- raise TypeError(f"Unexpected model output type: {type(output)}")
 
 
 
 
 
 
 
 
 
94
 
 
 
 
95
 
96
- # Normalize if necessary (some models output in range [-1, 1], others don't)
97
- # If the waveform isn't in [-1, 1], soundfile might require normalization
98
- # Example check: if np.max(np.abs(speech_waveform)) > 1.0:
99
- # speech_waveform = speech_waveform / np.max(np.abs(speech_waveform))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
100
 
101
  # --- Convert to WAV Bytes ---
102
- # Use an in-memory buffer to store the WAV file
103
  buffer = io.BytesIO()
104
- sf.write(buffer, speech_waveform, self.sampling_rate, format='WAV')
105
  buffer.seek(0)
106
  wav_bytes = buffer.read()
107
 
@@ -109,6 +201,6 @@ class EndpointHandler():
109
  return wav_bytes
110
 
111
  except Exception as e:
112
- print(f"Error during inference: {e}")
113
- # Re-raise the exception so the endpoint framework knows it failed
114
  raise RuntimeError(f"Inference failed: {e}")
 
1
  import torch
2
+ import numpy as np
3
  import soundfile as sf
4
  import io
 
5
  import os
6
+ from transformers import AutoModelForCausalLM, AutoTokenizer
7
+ from snac import SNAC # Assuming SNAC is installed via requirements.txt
8
+
9
+ # --- Helper Function (can be outside or inside the class) ---
10
+ def redistribute_codes_static(code_list):
11
+ """ Reorganizes the flattened token list into three separate layers for SNAC. """
12
+ layer_1, layer_2, layer_3 = [], [], []
13
+ num_groups = len(code_list) // 7 # Use floor division
14
 
15
+ for i in range(num_groups):
16
+ idx = 7 * i
17
+ try:
18
+ layer_1.append(code_list[idx])
19
+ layer_2.append(code_list[idx + 1] - 4096)
20
+ layer_3.append(code_list[idx + 2] - (2 * 4096))
21
+ layer_3.append(code_list[idx + 3] - (3 * 4096))
22
+ layer_2.append(code_list[idx + 4] - (4 * 4096))
23
+ layer_3.append(code_list[idx + 5] - (5 * 4096))
24
+ layer_3.append(code_list[idx + 6] - (6 * 4096))
25
+ except IndexError:
26
+ print(f"Warning: Index out of range during code redistribution at group {i}. Code list length: {len(code_list)}")
27
+ break # Stop processing if indices go out of bounds
28
+
29
+ # Ensure tensors are created even if empty
30
+ codes = [
31
+ torch.tensor(layer_1 or [0]).unsqueeze(0).long(), # Use long dtype, provide default if empty
32
+ torch.tensor(layer_2 or [0]).unsqueeze(0).long(),
33
+ torch.tensor(layer_3 or [0]).unsqueeze(0).long()
34
+ ]
35
+ # Remove the default [0] if lists were actually populated
36
+ if layer_1: codes[0] = torch.tensor(layer_1).unsqueeze(0).long()
37
+ if layer_2: codes[1] = torch.tensor(layer_2).unsqueeze(0).long()
38
+ if layer_3: codes[2] = torch.tensor(layer_3).unsqueeze(0).long()
39
+
40
+ return codes
41
+
42
+ # --- Endpoint Handler Class ---
43
  class EndpointHandler():
44
  def __init__(self, path=""):
45
  """
46
+ Initializes the handler. Loads both Orpheus LLM and SNAC Vocoder.
47
+ 'path' points to the directory containing the Orpheus model files specified in the endpoint config.
48
  """
49
  self.device = "cuda" if torch.cuda.is_available() else "cpu"
50
  print(f"Using device: {self.device}")
51
 
52
+ # Define Model Names/Paths
53
+ # Orpheus LLM path is determined by the endpoint configuration ('path' variable)
54
+ orpheus_model_path = path if path else "hypaai/Hypa_Orpheus-3b-0.1-ft-unsloth-merged_16bit"
55
+ snac_model_name = "hubertsiuzdak/snac_24khz"
56
+
57
+ # Define Special Token IDs (matching your script)
58
+ self.start_human_token_id = 128259
59
+ self.end_text_token_id = 128009
60
+ self.end_human_token_id = 128260
61
+ # self.padding_token_id = 128263 # Not needed for single sequence generation
62
+ self.start_audio_token_id = 128257
63
+ self.end_audio_token_id = 128258
64
+ self.audio_code_offset = 128266
65
+
66
+ # Define sampling rate
67
+ self.sampling_rate = 24000
68
 
 
 
 
 
 
69
  try:
70
+ # Load Orpheus LLM and Tokenizer
71
+ print(f"Loading Orpheus tokenizer from: {orpheus_model_path}")
72
+ self.tokenizer = AutoTokenizer.from_pretrained(orpheus_model_path)
73
+ print(f"Loading Orpheus model from: {orpheus_model_path}")
74
+ self.model = AutoModelForCausalLM.from_pretrained(
75
+ orpheus_model_path,
76
+ torch_dtype=torch.bfloat16 # Use bfloat16 as in your script
77
+ )
78
  self.model.to(self.device)
79
+ self.model.eval() # Set model to evaluation mode
80
+ print("Orpheus model and tokenizer loaded successfully.")
 
 
 
 
 
 
 
 
 
 
81
 
82
+ # Load SNAC Vocoder
83
+ print(f"Loading SNAC model from: {snac_model_name}")
84
+ self.snac_model = SNAC.from_pretrained(snac_model_name)
85
+ self.snac_model.to(self.device) # Move SNAC to the same device
86
+ self.snac_model.eval() # Set model to evaluation mode
87
+ print("SNAC model loaded successfully.")
88
 
89
  except Exception as e:
90
+ print(f"Error during model loading: {e}")
91
+ raise RuntimeError(f"Failed to load models.", e)
 
92
 
93
  def __call__(self, data: dict) -> bytes:
94
  """
95
+ Handles incoming API requests for TTS inference.
96
+ Expects data['inputs'] (text) and optionally data['parameters']
 
97
  """
98
  try:
99
+ # --- Get Inputs & Parameters ---
100
+ text = data.pop("inputs", None)
101
+ if text is None:
 
102
  raise ValueError("Missing 'inputs' key in request data")
103
 
 
104
  parameters = data.pop("parameters", {})
105
+ # Default voice if not provided
106
+ voice = parameters.get("voice", "Eniola")
107
+ # Default generation parameters (merge with provided ones)
108
+ gen_params = {
109
+ "max_new_tokens": 1200,
110
+ "do_sample": True,
111
+ "temperature": 0.6,
112
+ "top_p": 0.95,
113
+ "repetition_penalty": 1.1,
114
+ "num_return_sequences": 1,
115
+ "eos_token_id": self.end_audio_token_id,
116
+ **parameters # Overwrite defaults with user params
117
+ }
118
+ # Remove non-generate params if they were passed
119
+ gen_params.pop("voice", None)
120
+
121
+ print(f"Received request: text='{text[:50]}...', voice='{voice}', params={gen_params}")
122
 
123
  # --- Preprocess Text ---
124
+ prompt = f"{voice}: {text}"
125
+ input_ids = self.tokenizer(prompt, return_tensors="pt").input_ids
126
 
127
+ # Add special tokens: SOH + Input Tokens + EOT + EOH
128
+ start_token_tensor = torch.tensor([[self.start_human_token_id]], dtype=torch.int64)
129
+ end_tokens_tensor = torch.tensor([[self.end_text_token_id, self.end_human_token_id]], dtype=torch.int64)
130
+ processed_input_ids = torch.cat([start_token_tensor, input_ids, end_tokens_tensor], dim=1).to(self.device)
 
 
 
 
131
 
132
+ # Create attention mask (all ones for single, unpadded sequence)
133
+ attention_mask = torch.ones_like(processed_input_ids).to(self.device)
134
 
135
+ print(f"Processed input shape: {processed_input_ids.shape}")
136
+
137
+ # --- Generate Audio Codes (LLM Inference) ---
138
+ with torch.no_grad():
139
+ generated_ids = self.model.generate(
140
+ input_ids=processed_input_ids,
141
+ attention_mask=attention_mask,
142
+ **gen_params
143
+ )
144
+ print(f"Generated IDs shape: {generated_ids.shape}")
145
+
146
+ # --- Process Generated Tokens (Extract Audio Codes) ---
147
+ # Find the last Start of Audio token
148
+ soa_indices = (generated_ids[0] == self.start_audio_token_id).nonzero(as_tuple=True)[0]
149
+ if len(soa_indices) == 0:
150
+ print("Warning: Start of Audio token (128257) not found in generated sequence!")
151
+ # Handle this case: maybe return error, or try processing from start?
152
+ # For now, let's assume it might still contain codes and try processing all generated *new* tokens
153
+ start_idx = processed_input_ids.shape[1] # Start after the input prompt
154
  else:
155
+ start_idx = soa_indices[-1].item() + 1 # Start after the last SOA token
156
+
157
+ # Extract potential audio codes (after last SOA or after input)
158
+ cropped_tokens = generated_ids[0, start_idx:]
159
+
160
+ # Remove End of Audio tokens
161
+ audio_codes_raw = cropped_tokens[cropped_tokens != self.end_audio_token_id]
162
+ print(f"Extracted raw audio codes count: {len(audio_codes_raw)}")
163
+
164
+ if len(audio_codes_raw) == 0:
165
+ raise ValueError("No audio codes generated or extracted after processing.")
166
 
167
+ # --- Prepare Codes for SNAC Vocoder ---
168
+ # Adjust token values
169
+ adjusted_codes = [t.item() - self.audio_code_offset for t in audio_codes_raw]
170
 
171
+ # Trim to multiple of 7
172
+ num_codes = len(adjusted_codes)
173
+ valid_length = (num_codes // 7) * 7
174
+ if valid_length == 0:
175
+ raise ValueError(f"Not enough audio codes ({num_codes}) to form a multiple of 7 after processing.")
176
+ trimmed_codes = adjusted_codes[:valid_length]
177
+ print(f"Trimmed adjusted audio codes count: {len(trimmed_codes)}")
178
+
179
+ # --- Redistribute Codes ---
180
+ # Use static method or instance method, ensure tensors are on correct device
181
+ snac_input_codes = redistribute_codes_static(trimmed_codes)
182
+ snac_input_codes = [layer.to(self.device) for layer in snac_input_codes]
183
+
184
+ # --- Decode Audio (SNAC Inference) ---
185
+ print("Decoding audio with SNAC...")
186
+ with torch.no_grad():
187
+ audio_hat = self.snac_model.decode(snac_input_codes)
188
+ print(f"Decoded audio tensor shape: {audio_hat.shape}") # Should be [1, 1, num_samples]
189
+
190
+ # --- Postprocess Audio ---
191
+ # Move to CPU, remove batch/channel dims, convert to numpy
192
+ audio_waveform = audio_hat.detach().squeeze().cpu().numpy()
193
 
194
  # --- Convert to WAV Bytes ---
 
195
  buffer = io.BytesIO()
196
+ sf.write(buffer, audio_waveform, self.sampling_rate, format='WAV')
197
  buffer.seek(0)
198
  wav_bytes = buffer.read()
199
 
 
201
  return wav_bytes
202
 
203
  except Exception as e:
204
+ print(f"Error during inference call: {e}")
205
+ # Re-raise for endpoint framework
206
  raise RuntimeError(f"Inference failed: {e}")