|
#!/usr/bin/env bash |
|
export PYTHONPATH="" |
|
source /esat/spchtemp/scratch/jponcele/anaconda3/bin/activate whisper |
|
python --version |
|
|
|
|
|
|
|
|
|
python run_speech_recognition_seq2seq_streaming.py \ |
|
--model_name_or_path="openai/whisper-large-v2" \ |
|
--dataset_name="kul-speech-lab/CGN" \ |
|
--train_split_name="train+validation" \ |
|
--eval_split_name="test" \ |
|
--language="dutch" \ |
|
--task="transcribe" \ |
|
--model_index_name="Whisper Large (v2) CGN" \ |
|
--max_steps="15000" \ |
|
--output_dir="/esat/audioslave/jponcele/whisper/finetuning_event/CGN/large" \ |
|
--per_device_train_batch_size="32" \ |
|
--per_device_eval_batch_size="16" \ |
|
--gradient_accumulation_steps="2" \ |
|
--logging_steps="100" \ |
|
--learning_rate="1e-5" \ |
|
--warmup_steps="500" \ |
|
--evaluation_strategy="steps" \ |
|
--eval_steps="1000" \ |
|
--save_strategy="steps" \ |
|
--save_steps="1000" \ |
|
--generation_max_length="225" \ |
|
--length_column_name="input_length" \ |
|
--max_duration_in_seconds="30" \ |
|
--text_column_name="transcription" \ |
|
--freeze_feature_encoder="False" \ |
|
--report_to="tensorboard" \ |
|
--metric_for_best_model="wer" \ |
|
--greater_is_better="False" \ |
|
--load_best_model_at_end \ |
|
--gradient_checkpointing \ |
|
--fp16 \ |
|
--do_train \ |
|
--do_eval \ |
|
--predict_with_generate \ |
|
--do_normalize_eval \ |
|
--streaming \ |
|
--use_auth_token |
|
|
|
|
|
|