|
import copy |
|
|
|
from tokenizers import NormalizedString, PreTokenizedString, normalizers, pre_tokenizers |
|
from transformers import DebertaV2TokenizerFast |
|
|
|
|
|
class DebertaV2JumanppTokenizerFast(DebertaV2TokenizerFast): |
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
self.juman_normalizer = normalizers.Sequence( |
|
[ |
|
|
|
normalizers.Replace("\r", ""), |
|
normalizers.Replace("\n", ""), |
|
|
|
normalizers.Replace("\t", "\\t"), |
|
normalizers.Replace(" ", " "), |
|
normalizers.Replace('"', "”"), |
|
normalizers.Replace("<", "<"), |
|
normalizers.Replace(">", ">"), |
|
] |
|
) |
|
self.juman_pre_tokenizer = pre_tokenizers.PreTokenizer.custom(JumanppPreTokenizer()) |
|
|
|
self.default_normalizer = copy.deepcopy(self.backend_tokenizer.normalizer) |
|
self.default_pre_tokenizer = copy.deepcopy(self.backend_tokenizer.pre_tokenizer) |
|
|
|
self.backend_tokenizer.normalizer = normalizers.Sequence( |
|
[self.juman_normalizer, self.backend_tokenizer.normalizer] |
|
) |
|
self.backend_tokenizer.pre_tokenizer = pre_tokenizers.Sequence( |
|
[self.juman_pre_tokenizer, self.backend_tokenizer.pre_tokenizer] |
|
) |
|
|
|
def save_pretrained(self, *args, **kwargs): |
|
self.backend_tokenizer.normalizer = self.default_normalizer |
|
self.backend_tokenizer.pre_tokenizer = self.default_pre_tokenizer |
|
super().save_pretrained(*args, **kwargs) |
|
|
|
self.backend_tokenizer.normalizer = normalizers.Sequence( |
|
[self.juman_normalizer, self.backend_tokenizer.normalizer] |
|
) |
|
self.backend_tokenizer.pre_tokenizer = pre_tokenizers.Sequence( |
|
[self.juman_pre_tokenizer, self.backend_tokenizer.pre_tokenizer] |
|
) |
|
|
|
|
|
class JumanppPreTokenizer: |
|
def __init__(self): |
|
try: |
|
import rhoknp |
|
except ImportError: |
|
raise ImportError( |
|
"You need to install rhoknp to use JumanppPreTokenizer. " |
|
"See https://github.com/ku-nlp/rhoknp for installation." |
|
) |
|
self.juman = rhoknp.Jumanpp() |
|
|
|
def pre_tokenize(self, pretok: PreTokenizedString): |
|
pretok.split(self.jumanpp_split) |
|
|
|
def jumanpp_split(self, i: int, normalized_string: NormalizedString) -> list[NormalizedString]: |
|
offsets = [morpheme.span for morpheme in self.juman.apply_to_sentence(str(normalized_string)).morphemes] |
|
return [normalized_string[offset[0]:offset[1]] for offset in offsets] |
|
|