Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,90 @@
|
|
1 |
---
|
|
|
2 |
license: cc-by-sa-4.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language: ja
|
3 |
license: cc-by-sa-4.0
|
4 |
+
library_name: transformers
|
5 |
+
tags:
|
6 |
+
- roberta
|
7 |
+
- fill-mask
|
8 |
+
datasets:
|
9 |
+
- wikipedia
|
10 |
+
- cc100
|
11 |
+
mask_token: "[MASK]"
|
12 |
+
widget:
|
13 |
+
- text: "京都 大学 で [MASK] を 専攻 する 。"
|
14 |
+
- text: "東京 は 日本 の [MASK] だ 。"
|
15 |
+
- text: "カフェ で [MASK] を 注文 する 。"
|
16 |
+
- text: "[MASK] 名人 が タイトル の 防衛 に 成功 する 。"
|
17 |
---
|
18 |
+
|
19 |
+
# ku-accms/roberta-base-japanese-ssuw
|
20 |
+
## Model description
|
21 |
+
This is a pre-trained Japanese RoBERTa base model for super short unit words (SSUW).
|
22 |
+
|
23 |
+
## Pre-processing
|
24 |
+
The input text should be converted to full-width (zenkaku) characters and segmented into super short unit words in advance (e.g., by KyTea).
|
25 |
+
|
26 |
+
## How to use
|
27 |
+
You can use this model directly with a pipeline for masked language modeling:
|
28 |
+
|
29 |
+
```python
|
30 |
+
>>> from transformers import pipeline
|
31 |
+
>>> unmasker = pipeline('fill-mask', model='ku-accms/roberta-base-japanese-ssuw')
|
32 |
+
>>> unmasker("京都 大学 で [MASK] を 専攻 する 。")
|
33 |
+
[{'sequence': '京都 大学 で 文学 を 専攻 する 。',
|
34 |
+
'score': '0.1479644924402237',
|
35 |
+
'token': '17907',
|
36 |
+
'token_str': '文学'}
|
37 |
+
{'sequence': '京都 大学 で 哲学 を 専攻 する 。',
|
38 |
+
'score': '0.07658644765615463',
|
39 |
+
'token': '19302',
|
40 |
+
'token_str': '哲学'}
|
41 |
+
{'sequence': '京都 大学 で デザイン を 専攻 する 。',
|
42 |
+
'score': '0.06302948296070099',
|
43 |
+
'token': '14411',
|
44 |
+
'token_str': 'デザイン'}
|
45 |
+
{'sequence': '京都 大学 で 建築 を 専攻 する 。',
|
46 |
+
'score': '0.060596249997615814',
|
47 |
+
'token': '15478',
|
48 |
+
'token_str': '建築'}
|
49 |
+
{'sequence': '京都 大学 で 工学 を 専攻 する 。',
|
50 |
+
'score': '0.0574776753783226',
|
51 |
+
'token': '18632',
|
52 |
+
'token_str': '工学'}
|
53 |
+
```
|
54 |
+
|
55 |
+
Here is how to use this model to get the features of a given text in PyTorch:
|
56 |
+
```python
|
57 |
+
import zenhan
|
58 |
+
import Mykytea
|
59 |
+
kytea_model_path = "somewhere"
|
60 |
+
kytea = Mykytea.Mykytea("-model {} -notags".format(kytea_model_path))
|
61 |
+
def preprocess(text):
|
62 |
+
return " ".join(kytea.getWS(zenhan.h2z(text)))
|
63 |
+
|
64 |
+
from transformers import BertTokenizer, RobertaModel
|
65 |
+
tokenizer = BertTokenizer.from_pretrained('ku-accms/roberta-base-japanese-ssuw')
|
66 |
+
model = BertModel.from_pretrained("ku-accms/roberta-base-japanese-ssuw")
|
67 |
+
text = "京都大学で自然言語処理を専攻する。"
|
68 |
+
encoded_input = tokenizer(preprocess(text), return_tensors='pt')
|
69 |
+
output = model(**encoded_input)
|
70 |
+
```
|
71 |
+
|
72 |
+
## Training data
|
73 |
+
We used a Japanese Wikipedia dump (as of 20230101, 3.3GB) and a Japanese portion of CC100 (70GB).
|
74 |
+
|
75 |
+
## Training procedure
|
76 |
+
We first segmented the texts into words by KyTea and then tokenized the words into subwords using WordPiece with a vocabulary size of 32,000. We pre-trained the BERT model using [transformers](https://github.com/huggingface/transformers) library. The training took about 7 days using 4 NVIDIA A100-SXM4-80GB GPUs.
|
77 |
+
|
78 |
+
The following hyperparameters were used for the pre-training.
|
79 |
+
|
80 |
+
- learning_rate: 1e-4
|
81 |
+
- weight decay: 1e-2
|
82 |
+
- per_device_train_batch_size: 80
|
83 |
+
- num_devices: 4
|
84 |
+
- gradient_accumulation_steps: 3
|
85 |
+
- total_train_batch_size: 960
|
86 |
+
- max_seq_length: 512
|
87 |
+
- optimizer: AdamW with betas=(0.9,0.999) and epsilon=1e-06
|
88 |
+
- lr_scheduler_type: linear schedule with warmup
|
89 |
+
- training_steps: 500,000
|
90 |
+
- warmup_steps: 10,000
|