Upload folder using huggingface_hub
Browse files- v0-20250526-142723/args.json +373 -0
- v0-20250526-142723/checkpoint-640/README.md +202 -0
- v0-20250526-142723/checkpoint-640/adapter_config.json +37 -0
- v0-20250526-142723/checkpoint-640/adapter_model.safetensors +3 -0
- v0-20250526-142723/checkpoint-640/additional_config.json +1 -0
- v0-20250526-142723/checkpoint-640/args.json +373 -0
- v0-20250526-142723/checkpoint-640/global_step638/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
- v0-20250526-142723/checkpoint-640/global_step638/zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- v0-20250526-142723/checkpoint-640/global_step638/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
- v0-20250526-142723/checkpoint-640/global_step638/zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- v0-20250526-142723/checkpoint-640/global_step638/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
- v0-20250526-142723/checkpoint-640/global_step638/zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
- v0-20250526-142723/checkpoint-640/global_step638/zero_pp_rank_3_mp_rank_00_model_states.pt +3 -0
- v0-20250526-142723/checkpoint-640/global_step638/zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
- v0-20250526-142723/checkpoint-640/latest +1 -0
- v0-20250526-142723/checkpoint-640/rng_state_0.pth +3 -0
- v0-20250526-142723/checkpoint-640/rng_state_1.pth +3 -0
- v0-20250526-142723/checkpoint-640/rng_state_2.pth +3 -0
- v0-20250526-142723/checkpoint-640/rng_state_3.pth +3 -0
- v0-20250526-142723/checkpoint-640/scheduler.pt +3 -0
- v0-20250526-142723/checkpoint-640/trainer_state.json +1195 -0
- v0-20250526-142723/checkpoint-640/training_args.bin +3 -0
- v0-20250526-142723/checkpoint-640/zero_to_fp32.py +760 -0
- v0-20250526-142723/logging.jsonl +130 -0
- v0-20250526-142723/runs/events.out.tfevents.1748269983.e0b00eb95078.491.0 +3 -0
v0-20250526-142723/args.json
ADDED
@@ -0,0 +1,373 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model": "/kaggle/input/qwen-3/transformers/32b-awq/1",
|
3 |
+
"model_type": "qwen3",
|
4 |
+
"model_revision": null,
|
5 |
+
"task_type": "causal_lm",
|
6 |
+
"torch_dtype": "float16",
|
7 |
+
"attn_impl": "flash_attn",
|
8 |
+
"num_labels": null,
|
9 |
+
"problem_type": null,
|
10 |
+
"rope_scaling": null,
|
11 |
+
"device_map": null,
|
12 |
+
"max_memory": {},
|
13 |
+
"local_repo_path": null,
|
14 |
+
"init_strategy": null,
|
15 |
+
"template": "qwen3",
|
16 |
+
"system": null,
|
17 |
+
"max_length": 512,
|
18 |
+
"truncation_strategy": "delete",
|
19 |
+
"max_pixels": null,
|
20 |
+
"agent_template": null,
|
21 |
+
"norm_bbox": null,
|
22 |
+
"use_chat_template": true,
|
23 |
+
"padding_free": false,
|
24 |
+
"padding_side": "right",
|
25 |
+
"loss_scale": "default",
|
26 |
+
"sequence_parallel_size": 1,
|
27 |
+
"response_prefix": null,
|
28 |
+
"template_backend": "swift",
|
29 |
+
"dataset": [
|
30 |
+
"combined_messages.jsonl"
|
31 |
+
],
|
32 |
+
"val_dataset": [],
|
33 |
+
"split_dataset_ratio": 0.0,
|
34 |
+
"data_seed": 42,
|
35 |
+
"dataset_num_proc": 8,
|
36 |
+
"load_from_cache_file": true,
|
37 |
+
"dataset_shuffle": true,
|
38 |
+
"val_dataset_shuffle": false,
|
39 |
+
"streaming": false,
|
40 |
+
"interleave_prob": null,
|
41 |
+
"stopping_strategy": "first_exhausted",
|
42 |
+
"shuffle_buffer_size": 1000,
|
43 |
+
"download_mode": "reuse_dataset_if_exists",
|
44 |
+
"columns": {},
|
45 |
+
"strict": false,
|
46 |
+
"remove_unused_columns": true,
|
47 |
+
"model_name": [
|
48 |
+
null,
|
49 |
+
null
|
50 |
+
],
|
51 |
+
"model_author": [
|
52 |
+
null,
|
53 |
+
null
|
54 |
+
],
|
55 |
+
"custom_dataset_info": [],
|
56 |
+
"quant_method": null,
|
57 |
+
"quant_bits": null,
|
58 |
+
"hqq_axis": null,
|
59 |
+
"bnb_4bit_compute_dtype": "float32",
|
60 |
+
"bnb_4bit_quant_type": "nf4",
|
61 |
+
"bnb_4bit_use_double_quant": true,
|
62 |
+
"bnb_4bit_quant_storage": null,
|
63 |
+
"max_new_tokens": 64,
|
64 |
+
"temperature": 0.0,
|
65 |
+
"top_k": null,
|
66 |
+
"top_p": null,
|
67 |
+
"repetition_penalty": null,
|
68 |
+
"num_beams": 1,
|
69 |
+
"stream": false,
|
70 |
+
"stop_words": [],
|
71 |
+
"logprobs": false,
|
72 |
+
"top_logprobs": null,
|
73 |
+
"ckpt_dir": null,
|
74 |
+
"lora_modules": [],
|
75 |
+
"tuner_backend": "peft",
|
76 |
+
"train_type": "lora",
|
77 |
+
"adapters": [],
|
78 |
+
"external_plugins": [],
|
79 |
+
"seed": 42,
|
80 |
+
"model_kwargs": {},
|
81 |
+
"load_args": false,
|
82 |
+
"load_data_args": false,
|
83 |
+
"use_hf": false,
|
84 |
+
"hub_token": null,
|
85 |
+
"custom_register_path": [],
|
86 |
+
"ddp_timeout": 1800,
|
87 |
+
"ddp_backend": null,
|
88 |
+
"ignore_args_error": false,
|
89 |
+
"use_swift_lora": false,
|
90 |
+
"output_dir": "/kaggle/tmp/save_checkpoint/v0-20250526-142723",
|
91 |
+
"overwrite_output_dir": false,
|
92 |
+
"do_train": false,
|
93 |
+
"do_eval": false,
|
94 |
+
"do_predict": false,
|
95 |
+
"eval_strategy": "steps",
|
96 |
+
"prediction_loss_only": false,
|
97 |
+
"per_device_train_batch_size": 1,
|
98 |
+
"per_device_eval_batch_size": 1,
|
99 |
+
"per_gpu_train_batch_size": null,
|
100 |
+
"per_gpu_eval_batch_size": null,
|
101 |
+
"gradient_accumulation_steps": 8,
|
102 |
+
"eval_accumulation_steps": null,
|
103 |
+
"eval_delay": 0,
|
104 |
+
"torch_empty_cache_steps": null,
|
105 |
+
"learning_rate": 3e-05,
|
106 |
+
"weight_decay": 0.1,
|
107 |
+
"adam_beta1": 0.9,
|
108 |
+
"adam_beta2": 0.95,
|
109 |
+
"adam_epsilon": 1e-08,
|
110 |
+
"max_grad_norm": 1.0,
|
111 |
+
"num_train_epochs": 3.0,
|
112 |
+
"max_steps": -1,
|
113 |
+
"lr_scheduler_type": "cosine",
|
114 |
+
"lr_scheduler_kwargs": null,
|
115 |
+
"warmup_ratio": 0.05,
|
116 |
+
"warmup_steps": 0,
|
117 |
+
"log_level": "passive",
|
118 |
+
"log_level_replica": "warning",
|
119 |
+
"log_on_each_node": true,
|
120 |
+
"logging_dir": "/kaggle/tmp/save_checkpoint/v0-20250526-142723/runs",
|
121 |
+
"logging_strategy": "steps",
|
122 |
+
"logging_first_step": true,
|
123 |
+
"logging_steps": 5,
|
124 |
+
"logging_nan_inf_filter": true,
|
125 |
+
"save_strategy": "steps",
|
126 |
+
"save_steps": 640.0,
|
127 |
+
"save_total_limit": 4,
|
128 |
+
"save_safetensors": true,
|
129 |
+
"save_on_each_node": false,
|
130 |
+
"save_only_model": false,
|
131 |
+
"restore_callback_states_from_checkpoint": false,
|
132 |
+
"no_cuda": false,
|
133 |
+
"use_cpu": false,
|
134 |
+
"use_mps_device": false,
|
135 |
+
"jit_mode_eval": false,
|
136 |
+
"use_ipex": false,
|
137 |
+
"bf16": false,
|
138 |
+
"fp16": true,
|
139 |
+
"fp16_opt_level": "O1",
|
140 |
+
"half_precision_backend": "auto",
|
141 |
+
"bf16_full_eval": false,
|
142 |
+
"fp16_full_eval": false,
|
143 |
+
"tf32": null,
|
144 |
+
"local_rank": 0,
|
145 |
+
"tpu_num_cores": null,
|
146 |
+
"tpu_metrics_debug": false,
|
147 |
+
"debug": null,
|
148 |
+
"dataloader_drop_last": false,
|
149 |
+
"eval_steps": 640.0,
|
150 |
+
"dataloader_num_workers": 8,
|
151 |
+
"dataloader_prefetch_factor": null,
|
152 |
+
"past_index": -1,
|
153 |
+
"run_name": "/kaggle/tmp/save_checkpoint/v0-20250526-142723",
|
154 |
+
"disable_tqdm": null,
|
155 |
+
"label_names": null,
|
156 |
+
"load_best_model_at_end": false,
|
157 |
+
"metric_for_best_model": "loss",
|
158 |
+
"greater_is_better": false,
|
159 |
+
"ignore_data_skip": false,
|
160 |
+
"fsdp": "",
|
161 |
+
"fsdp_min_num_params": 0,
|
162 |
+
"fsdp_config": null,
|
163 |
+
"tp_size": 0,
|
164 |
+
"fsdp_transformer_layer_cls_to_wrap": null,
|
165 |
+
"accelerator_config": {
|
166 |
+
"dispatch_batches": false
|
167 |
+
},
|
168 |
+
"deepspeed": {
|
169 |
+
"fp16": {
|
170 |
+
"enabled": "auto",
|
171 |
+
"loss_scale": 0,
|
172 |
+
"loss_scale_window": 1000,
|
173 |
+
"initial_scale_power": 16,
|
174 |
+
"hysteresis": 2,
|
175 |
+
"min_loss_scale": 1
|
176 |
+
},
|
177 |
+
"bf16": {
|
178 |
+
"enabled": "auto"
|
179 |
+
},
|
180 |
+
"zero_optimization": {
|
181 |
+
"stage": 3,
|
182 |
+
"offload_optimizer": {
|
183 |
+
"device": "none",
|
184 |
+
"pin_memory": true
|
185 |
+
},
|
186 |
+
"offload_param": {
|
187 |
+
"device": "none",
|
188 |
+
"pin_memory": true
|
189 |
+
},
|
190 |
+
"overlap_comm": false,
|
191 |
+
"contiguous_gradients": true,
|
192 |
+
"sub_group_size": 1000000000.0,
|
193 |
+
"reduce_bucket_size": "auto",
|
194 |
+
"zero_quantized_weights": false,
|
195 |
+
"zero_quantized_gradients": false,
|
196 |
+
"stage3_prefetch_bucket_size": "auto",
|
197 |
+
"stage3_param_persistence_threshold": "auto",
|
198 |
+
"stage3_max_live_parameters": 1000000000.0,
|
199 |
+
"stage3_max_reuse_distance": 1000000000.0,
|
200 |
+
"stage3_gather_16bit_weights_on_model_save": true
|
201 |
+
},
|
202 |
+
"gradient_accumulation_steps": "auto",
|
203 |
+
"gradient_clipping": "auto",
|
204 |
+
"steps_per_print": 2000,
|
205 |
+
"train_batch_size": "auto",
|
206 |
+
"train_micro_batch_size_per_gpu": "auto",
|
207 |
+
"wall_clock_breakdown": false
|
208 |
+
},
|
209 |
+
"label_smoothing_factor": 0.0,
|
210 |
+
"optim": "adamw_torch",
|
211 |
+
"optim_args": null,
|
212 |
+
"adafactor": false,
|
213 |
+
"group_by_length": false,
|
214 |
+
"length_column_name": "length",
|
215 |
+
"report_to": [
|
216 |
+
"tensorboard"
|
217 |
+
],
|
218 |
+
"ddp_find_unused_parameters": null,
|
219 |
+
"ddp_bucket_cap_mb": null,
|
220 |
+
"ddp_broadcast_buffers": null,
|
221 |
+
"dataloader_pin_memory": true,
|
222 |
+
"dataloader_persistent_workers": false,
|
223 |
+
"skip_memory_metrics": true,
|
224 |
+
"use_legacy_prediction_loop": false,
|
225 |
+
"push_to_hub": false,
|
226 |
+
"resume_from_checkpoint": null,
|
227 |
+
"hub_model_id": null,
|
228 |
+
"hub_strategy": "every_save",
|
229 |
+
"hub_private_repo": null,
|
230 |
+
"hub_always_push": false,
|
231 |
+
"gradient_checkpointing": true,
|
232 |
+
"gradient_checkpointing_kwargs": null,
|
233 |
+
"include_inputs_for_metrics": false,
|
234 |
+
"include_for_metrics": [],
|
235 |
+
"eval_do_concat_batches": true,
|
236 |
+
"fp16_backend": "auto",
|
237 |
+
"push_to_hub_model_id": null,
|
238 |
+
"push_to_hub_organization": null,
|
239 |
+
"push_to_hub_token": null,
|
240 |
+
"mp_parameters": "",
|
241 |
+
"auto_find_batch_size": false,
|
242 |
+
"full_determinism": false,
|
243 |
+
"torchdynamo": null,
|
244 |
+
"ray_scope": "last",
|
245 |
+
"torch_compile": false,
|
246 |
+
"torch_compile_backend": null,
|
247 |
+
"torch_compile_mode": null,
|
248 |
+
"include_tokens_per_second": false,
|
249 |
+
"include_num_input_tokens_seen": false,
|
250 |
+
"neftune_noise_alpha": null,
|
251 |
+
"optim_target_modules": null,
|
252 |
+
"batch_eval_metrics": false,
|
253 |
+
"eval_on_start": false,
|
254 |
+
"use_liger_kernel": true,
|
255 |
+
"eval_use_gather_object": false,
|
256 |
+
"average_tokens_across_devices": false,
|
257 |
+
"sortish_sampler": false,
|
258 |
+
"predict_with_generate": false,
|
259 |
+
"generation_max_length": null,
|
260 |
+
"generation_num_beams": null,
|
261 |
+
"generation_config": null,
|
262 |
+
"vit_gradient_checkpointing": null,
|
263 |
+
"check_model": true,
|
264 |
+
"acc_strategy": "token",
|
265 |
+
"train_dataloader_shuffle": true,
|
266 |
+
"max_epochs": null,
|
267 |
+
"aligner_lr": null,
|
268 |
+
"vit_lr": null,
|
269 |
+
"optimizer": null,
|
270 |
+
"metric_warmup_step": 0,
|
271 |
+
"fsdp_num": 1,
|
272 |
+
"acc_steps": 1,
|
273 |
+
"eval_use_evalscope": false,
|
274 |
+
"eval_datasets": [],
|
275 |
+
"eval_limit": null,
|
276 |
+
"eval_datasets_args": null,
|
277 |
+
"eval_generation_config": null,
|
278 |
+
"freeze_parameters": [],
|
279 |
+
"freeze_parameters_regex": null,
|
280 |
+
"freeze_parameters_ratio": 0.0,
|
281 |
+
"trainable_parameters": [],
|
282 |
+
"trainable_parameters_regex": null,
|
283 |
+
"freeze_llm": false,
|
284 |
+
"freeze_vit": true,
|
285 |
+
"freeze_aligner": true,
|
286 |
+
"target_modules": [
|
287 |
+
"all-linear"
|
288 |
+
],
|
289 |
+
"target_regex": null,
|
290 |
+
"modules_to_save": [],
|
291 |
+
"lora_rank": 32,
|
292 |
+
"lora_alpha": 128,
|
293 |
+
"lora_dropout": 0.05,
|
294 |
+
"lora_bias": "none",
|
295 |
+
"lora_dtype": null,
|
296 |
+
"lorap_lr_ratio": null,
|
297 |
+
"use_rslora": false,
|
298 |
+
"use_dora": false,
|
299 |
+
"lora_ga_batch_size": 2,
|
300 |
+
"lora_ga_iters": 2,
|
301 |
+
"lora_ga_max_length": 1024,
|
302 |
+
"lora_ga_direction": "ArB2r",
|
303 |
+
"lora_ga_scale": "stable",
|
304 |
+
"lora_ga_stable_gamma": 16,
|
305 |
+
"init_weights": true,
|
306 |
+
"fourier_n_frequency": 2000,
|
307 |
+
"fourier_scaling": 300.0,
|
308 |
+
"boft_block_size": 4,
|
309 |
+
"boft_block_num": 0,
|
310 |
+
"boft_n_butterfly_factor": 1,
|
311 |
+
"boft_dropout": 0.0,
|
312 |
+
"vera_rank": 256,
|
313 |
+
"vera_projection_prng_key": 0,
|
314 |
+
"vera_dropout": 0.0,
|
315 |
+
"vera_d_initial": 0.1,
|
316 |
+
"adapter_act": "gelu",
|
317 |
+
"adapter_length": 128,
|
318 |
+
"use_galore": false,
|
319 |
+
"galore_target_modules": null,
|
320 |
+
"galore_rank": 128,
|
321 |
+
"galore_update_proj_gap": 50,
|
322 |
+
"galore_scale": 1.0,
|
323 |
+
"galore_proj_type": "std",
|
324 |
+
"galore_optim_per_parameter": false,
|
325 |
+
"galore_with_embedding": false,
|
326 |
+
"galore_quantization": false,
|
327 |
+
"galore_proj_quant": false,
|
328 |
+
"galore_proj_bits": 4,
|
329 |
+
"galore_proj_group_size": 256,
|
330 |
+
"galore_cos_threshold": 0.4,
|
331 |
+
"galore_gamma_proj": 2,
|
332 |
+
"galore_queue_size": 5,
|
333 |
+
"adalora_target_r": 8,
|
334 |
+
"adalora_init_r": 12,
|
335 |
+
"adalora_tinit": 0,
|
336 |
+
"adalora_tfinal": 0,
|
337 |
+
"adalora_deltaT": 1,
|
338 |
+
"adalora_beta1": 0.85,
|
339 |
+
"adalora_beta2": 0.85,
|
340 |
+
"adalora_orth_reg_weight": 0.5,
|
341 |
+
"llamapro_num_new_blocks": 4,
|
342 |
+
"llamapro_num_groups": null,
|
343 |
+
"lisa_activated_layers": 0,
|
344 |
+
"lisa_step_interval": 20,
|
345 |
+
"reft_layer_key": null,
|
346 |
+
"reft_layers": null,
|
347 |
+
"reft_rank": 4,
|
348 |
+
"reft_intervention_type": "LoreftIntervention",
|
349 |
+
"reft_args": null,
|
350 |
+
"swanlab_token": null,
|
351 |
+
"swanlab_project": null,
|
352 |
+
"swanlab_workspace": null,
|
353 |
+
"swanlab_exp_name": null,
|
354 |
+
"swanlab_mode": "cloud",
|
355 |
+
"add_version": true,
|
356 |
+
"resume_only_model": false,
|
357 |
+
"create_checkpoint_symlink": false,
|
358 |
+
"packing": true,
|
359 |
+
"lazy_tokenize": false,
|
360 |
+
"loss_type": null,
|
361 |
+
"metric": null,
|
362 |
+
"zero_hpz_partition_size": null,
|
363 |
+
"rank": 0,
|
364 |
+
"global_world_size": 4,
|
365 |
+
"local_world_size": 4,
|
366 |
+
"model_suffix": "1",
|
367 |
+
"model_info": "ModelInfo(model_type='qwen3', model_dir='/kaggle/input/qwen-3/transformers/32b-awq/1', torch_dtype=torch.float16, max_model_len=40960, quant_method='awq', quant_bits=4, rope_scaling=None, config=None, task_type='causal_lm', num_labels=None)",
|
368 |
+
"model_meta": "ModelMeta(model_type='qwen3', model_groups=[ModelGroup(models=[Model(ms_model_id='Qwen/Qwen3-0.6B-Base', hf_model_id='Qwen/Qwen3-0.6B-Base', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-1.7B-Base', hf_model_id='Qwen/Qwen3-1.7B-Base', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-4B-Base', hf_model_id='Qwen/Qwen3-4B-Base', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-8B-Base', hf_model_id='Qwen/Qwen3-8B-Base', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-14B-Base', hf_model_id='Qwen/Qwen3-14B-Base', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-32B-Base', hf_model_id='Qwen/Qwen3-32B-Base', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-0.6B', hf_model_id='Qwen/Qwen3-0.6B', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-1.7B', hf_model_id='Qwen/Qwen3-1.7B', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-4B', hf_model_id='Qwen/Qwen3-4B', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-8B', hf_model_id='Qwen/Qwen3-8B', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-14B', hf_model_id='Qwen/Qwen3-14B', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-32B', hf_model_id='Qwen/Qwen3-32B', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-0.6B-FP8', hf_model_id='Qwen/Qwen3-0.6B-FP8', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-1.7B-FP8', hf_model_id='Qwen/Qwen3-1.7B-FP8', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-4B-FP8', hf_model_id='Qwen/Qwen3-4B-FP8', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-8B-FP8', hf_model_id='Qwen/Qwen3-8B-FP8', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-14B-FP8', hf_model_id='Qwen/Qwen3-14B-FP8', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-32B-FP8', hf_model_id='Qwen/Qwen3-32B-FP8', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-4B-AWQ', hf_model_id='Qwen/Qwen3-4B-AWQ', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-8B-AWQ', hf_model_id='Qwen/Qwen3-8B-AWQ', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-14B-AWQ', hf_model_id='Qwen/Qwen3-14B-AWQ', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-32B-AWQ', hf_model_id='Qwen/Qwen3-32B-AWQ', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='swift/Qwen3-32B-AWQ', hf_model_id=None, model_path=None, ms_revision=None, hf_revision=None)], ignore_patterns=None, requires=None, tags=[])], template='qwen3', get_function=<function get_model_tokenizer_with_flash_attn at 0x7e1c95bd7880>, model_arch='llama', architectures=['Qwen3ForCausalLM'], additional_saved_files=[], torch_dtype=None, is_multimodal=False, is_reward=False, task_type=None, ignore_patterns=None, requires=['transformers>=4.51'], tags=[])",
|
369 |
+
"model_dir": "/kaggle/input/qwen-3/transformers/32b-awq/1",
|
370 |
+
"hub": "<class 'swift.hub.hub.MSHub'>",
|
371 |
+
"evaluation_strategy": "steps",
|
372 |
+
"training_args": "Seq2SeqTrainingArguments(output_dir='/kaggle/tmp/save_checkpoint/v0-20250526-142723', overwrite_output_dir=False, do_train=False, do_eval=True, do_predict=False, eval_strategy=<IntervalStrategy.STEPS: 'steps'>, prediction_loss_only=False, per_device_train_batch_size=1, per_device_eval_batch_size=1, per_gpu_train_batch_size=None, per_gpu_eval_batch_size=None, gradient_accumulation_steps=8, eval_accumulation_steps=None, eval_delay=0, torch_empty_cache_steps=None, learning_rate=3e-05, weight_decay=0.1, adam_beta1=0.9, adam_beta2=0.95, adam_epsilon=1e-08, max_grad_norm=1.0, num_train_epochs=3.0, max_steps=-1, lr_scheduler_type=<SchedulerType.COSINE: 'cosine'>, lr_scheduler_kwargs=None, warmup_ratio=0.05, warmup_steps=0, log_level='passive', log_level_replica='warning', log_on_each_node=True, logging_dir='/kaggle/tmp/save_checkpoint/v0-20250526-142723/runs', logging_strategy=<IntervalStrategy.STEPS: 'steps'>, logging_first_step=True, logging_steps=5, logging_nan_inf_filter=True, save_strategy=<SaveStrategy.STEPS: 'steps'>, save_steps=640, save_total_limit=4, save_safetensors=True, save_on_each_node=False, save_only_model=False, restore_callback_states_from_checkpoint=False, no_cuda=False, use_cpu=False, use_mps_device=False, seed=42, data_seed=42, jit_mode_eval=False, use_ipex=False, bf16=False, fp16=True, fp16_opt_level='O1', half_precision_backend='auto', bf16_full_eval=False, fp16_full_eval=False, tf32=None, local_rank=0, ddp_backend=None, tpu_num_cores=None, tpu_metrics_debug=False, debug=[], dataloader_drop_last=False, eval_steps=640, dataloader_num_workers=8, dataloader_prefetch_factor=10, past_index=-1, run_name='/kaggle/tmp/save_checkpoint/v0-20250526-142723', disable_tqdm=False, remove_unused_columns=False, label_names=None, load_best_model_at_end=False, metric_for_best_model='loss', greater_is_better=False, ignore_data_skip=False, fsdp=[], fsdp_min_num_params=0, fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, tp_size=0, fsdp_transformer_layer_cls_to_wrap=None, accelerator_config=AcceleratorConfig(split_batches=False, dispatch_batches=False, even_batches=True, use_seedable_sampler=True, non_blocking=False, gradient_accumulation_kwargs=None, use_configured_state=False), deepspeed={'fp16': {'enabled': 'auto', 'loss_scale': 0, 'loss_scale_window': 1000, 'initial_scale_power': 16, 'hysteresis': 2, 'min_loss_scale': 1}, 'bf16': {'enabled': 'auto'}, 'zero_optimization': {'stage': 3, 'offload_optimizer': {'device': 'none', 'pin_memory': True}, 'offload_param': {'device': 'none', 'pin_memory': True}, 'overlap_comm': False, 'contiguous_gradients': True, 'sub_group_size': 1000000000.0, 'reduce_bucket_size': 'auto', 'zero_quantized_weights': False, 'zero_quantized_gradients': False, 'stage3_prefetch_bucket_size': 'auto', 'stage3_param_persistence_threshold': 'auto', 'stage3_max_live_parameters': 1000000000.0, 'stage3_max_reuse_distance': 1000000000.0, 'stage3_gather_16bit_weights_on_model_save': True}, 'gradient_accumulation_steps': 'auto', 'gradient_clipping': 'auto', 'steps_per_print': 2000, 'train_batch_size': 'auto', 'train_micro_batch_size_per_gpu': 'auto', 'wall_clock_breakdown': False}, label_smoothing_factor=0.0, optim=<OptimizerNames.ADAMW_TORCH: 'adamw_torch'>, optim_args=None, adafactor=False, group_by_length=False, length_column_name='length', report_to=['tensorboard'], ddp_find_unused_parameters=None, ddp_bucket_cap_mb=None, ddp_broadcast_buffers=None, dataloader_pin_memory=True, dataloader_persistent_workers=False, skip_memory_metrics=True, use_legacy_prediction_loop=False, push_to_hub=False, resume_from_checkpoint=None, hub_model_id=None, hub_strategy=<HubStrategy.EVERY_SAVE: 'every_save'>, hub_token=None, hub_private_repo=None, hub_always_push=False, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, include_inputs_for_metrics=False, include_for_metrics=[], eval_do_concat_batches=True, fp16_backend='auto', push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=None, mp_parameters='', auto_find_batch_size=False, full_determinism=False, torchdynamo=None, ray_scope='last', ddp_timeout=1800, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, include_tokens_per_second=None, include_num_input_tokens_seen=None, neftune_noise_alpha=None, optim_target_modules=None, batch_eval_metrics=False, eval_on_start=False, use_liger_kernel=True, eval_use_gather_object=False, average_tokens_across_devices=None, sortish_sampler=False, predict_with_generate=False, generation_max_length=None, generation_num_beams=None, generation_config=None, vit_gradient_checkpointing=True, check_model=True, acc_strategy='token', train_dataloader_shuffle=True, max_epochs=None, aligner_lr=None, vit_lr=None, optimizer=None, metric_warmup_step=0, fsdp_num=1, acc_steps=1, eval_use_evalscope=False, eval_datasets=[], eval_limit=None, eval_datasets_args=None, eval_generation_config=None, train_type='lora', local_repo_path=None, galore_config=None)"
|
373 |
+
}
|
v0-20250526-142723/checkpoint-640/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /kaggle/input/qwen-3/transformers/32b-awq/1
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.14.0
|
v0-20250526-142723/checkpoint-640/adapter_config.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/kaggle/input/qwen-3/transformers/32b-awq/1",
|
5 |
+
"bias": "none",
|
6 |
+
"eva_config": null,
|
7 |
+
"exclude_modules": null,
|
8 |
+
"fan_in_fan_out": false,
|
9 |
+
"inference_mode": true,
|
10 |
+
"init_lora_weights": true,
|
11 |
+
"layer_replication": null,
|
12 |
+
"layers_pattern": null,
|
13 |
+
"layers_to_transform": null,
|
14 |
+
"loftq_config": {},
|
15 |
+
"lora_alpha": 128,
|
16 |
+
"lora_bias": false,
|
17 |
+
"lora_dropout": 0.05,
|
18 |
+
"megatron_config": null,
|
19 |
+
"megatron_core": "megatron.core",
|
20 |
+
"modules_to_save": [],
|
21 |
+
"peft_type": "LORA",
|
22 |
+
"r": 32,
|
23 |
+
"rank_pattern": {},
|
24 |
+
"revision": null,
|
25 |
+
"target_modules": [
|
26 |
+
"k_proj",
|
27 |
+
"q_proj",
|
28 |
+
"down_proj",
|
29 |
+
"up_proj",
|
30 |
+
"o_proj",
|
31 |
+
"gate_proj",
|
32 |
+
"v_proj"
|
33 |
+
],
|
34 |
+
"task_type": "CAUSAL_LM",
|
35 |
+
"use_dora": false,
|
36 |
+
"use_rslora": false
|
37 |
+
}
|
v0-20250526-142723/checkpoint-640/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:42d591d4dedc9f27ecafa9089762ccfec480789034e044a5c390f866c8c1f994
|
3 |
+
size 536991984
|
v0-20250526-142723/checkpoint-640/additional_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"lora_dtype": null, "lorap_lr_ratio": null, "lorap_emb_lr": 1e-06}
|
v0-20250526-142723/checkpoint-640/args.json
ADDED
@@ -0,0 +1,373 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model": "/kaggle/input/qwen-3/transformers/32b-awq/1",
|
3 |
+
"model_type": "qwen3",
|
4 |
+
"model_revision": null,
|
5 |
+
"task_type": "causal_lm",
|
6 |
+
"torch_dtype": "float16",
|
7 |
+
"attn_impl": "flash_attn",
|
8 |
+
"num_labels": null,
|
9 |
+
"problem_type": null,
|
10 |
+
"rope_scaling": null,
|
11 |
+
"device_map": null,
|
12 |
+
"max_memory": {},
|
13 |
+
"local_repo_path": null,
|
14 |
+
"init_strategy": null,
|
15 |
+
"template": "qwen3",
|
16 |
+
"system": null,
|
17 |
+
"max_length": 512,
|
18 |
+
"truncation_strategy": "delete",
|
19 |
+
"max_pixels": null,
|
20 |
+
"agent_template": null,
|
21 |
+
"norm_bbox": null,
|
22 |
+
"use_chat_template": true,
|
23 |
+
"padding_free": false,
|
24 |
+
"padding_side": "right",
|
25 |
+
"loss_scale": "default",
|
26 |
+
"sequence_parallel_size": 1,
|
27 |
+
"response_prefix": null,
|
28 |
+
"template_backend": "swift",
|
29 |
+
"dataset": [
|
30 |
+
"combined_messages.jsonl"
|
31 |
+
],
|
32 |
+
"val_dataset": [],
|
33 |
+
"split_dataset_ratio": 0.0,
|
34 |
+
"data_seed": 42,
|
35 |
+
"dataset_num_proc": 8,
|
36 |
+
"load_from_cache_file": true,
|
37 |
+
"dataset_shuffle": true,
|
38 |
+
"val_dataset_shuffle": false,
|
39 |
+
"streaming": false,
|
40 |
+
"interleave_prob": null,
|
41 |
+
"stopping_strategy": "first_exhausted",
|
42 |
+
"shuffle_buffer_size": 1000,
|
43 |
+
"download_mode": "reuse_dataset_if_exists",
|
44 |
+
"columns": {},
|
45 |
+
"strict": false,
|
46 |
+
"remove_unused_columns": true,
|
47 |
+
"model_name": [
|
48 |
+
null,
|
49 |
+
null
|
50 |
+
],
|
51 |
+
"model_author": [
|
52 |
+
null,
|
53 |
+
null
|
54 |
+
],
|
55 |
+
"custom_dataset_info": [],
|
56 |
+
"quant_method": null,
|
57 |
+
"quant_bits": null,
|
58 |
+
"hqq_axis": null,
|
59 |
+
"bnb_4bit_compute_dtype": "float32",
|
60 |
+
"bnb_4bit_quant_type": "nf4",
|
61 |
+
"bnb_4bit_use_double_quant": true,
|
62 |
+
"bnb_4bit_quant_storage": null,
|
63 |
+
"max_new_tokens": 64,
|
64 |
+
"temperature": 0.0,
|
65 |
+
"top_k": null,
|
66 |
+
"top_p": null,
|
67 |
+
"repetition_penalty": null,
|
68 |
+
"num_beams": 1,
|
69 |
+
"stream": false,
|
70 |
+
"stop_words": [],
|
71 |
+
"logprobs": false,
|
72 |
+
"top_logprobs": null,
|
73 |
+
"ckpt_dir": null,
|
74 |
+
"lora_modules": [],
|
75 |
+
"tuner_backend": "peft",
|
76 |
+
"train_type": "lora",
|
77 |
+
"adapters": [],
|
78 |
+
"external_plugins": [],
|
79 |
+
"seed": 42,
|
80 |
+
"model_kwargs": {},
|
81 |
+
"load_args": false,
|
82 |
+
"load_data_args": false,
|
83 |
+
"use_hf": false,
|
84 |
+
"hub_token": null,
|
85 |
+
"custom_register_path": [],
|
86 |
+
"ddp_timeout": 1800,
|
87 |
+
"ddp_backend": null,
|
88 |
+
"ignore_args_error": false,
|
89 |
+
"use_swift_lora": false,
|
90 |
+
"output_dir": "/kaggle/tmp/save_checkpoint/v0-20250526-142723",
|
91 |
+
"overwrite_output_dir": false,
|
92 |
+
"do_train": false,
|
93 |
+
"do_eval": false,
|
94 |
+
"do_predict": false,
|
95 |
+
"eval_strategy": "steps",
|
96 |
+
"prediction_loss_only": false,
|
97 |
+
"per_device_train_batch_size": 1,
|
98 |
+
"per_device_eval_batch_size": 1,
|
99 |
+
"per_gpu_train_batch_size": null,
|
100 |
+
"per_gpu_eval_batch_size": null,
|
101 |
+
"gradient_accumulation_steps": 8,
|
102 |
+
"eval_accumulation_steps": null,
|
103 |
+
"eval_delay": 0,
|
104 |
+
"torch_empty_cache_steps": null,
|
105 |
+
"learning_rate": 3e-05,
|
106 |
+
"weight_decay": 0.1,
|
107 |
+
"adam_beta1": 0.9,
|
108 |
+
"adam_beta2": 0.95,
|
109 |
+
"adam_epsilon": 1e-08,
|
110 |
+
"max_grad_norm": 1.0,
|
111 |
+
"num_train_epochs": 3.0,
|
112 |
+
"max_steps": -1,
|
113 |
+
"lr_scheduler_type": "cosine",
|
114 |
+
"lr_scheduler_kwargs": null,
|
115 |
+
"warmup_ratio": 0.05,
|
116 |
+
"warmup_steps": 0,
|
117 |
+
"log_level": "passive",
|
118 |
+
"log_level_replica": "warning",
|
119 |
+
"log_on_each_node": true,
|
120 |
+
"logging_dir": "/kaggle/tmp/save_checkpoint/v0-20250526-142723/runs",
|
121 |
+
"logging_strategy": "steps",
|
122 |
+
"logging_first_step": true,
|
123 |
+
"logging_steps": 5,
|
124 |
+
"logging_nan_inf_filter": true,
|
125 |
+
"save_strategy": "steps",
|
126 |
+
"save_steps": 640.0,
|
127 |
+
"save_total_limit": 4,
|
128 |
+
"save_safetensors": true,
|
129 |
+
"save_on_each_node": false,
|
130 |
+
"save_only_model": false,
|
131 |
+
"restore_callback_states_from_checkpoint": false,
|
132 |
+
"no_cuda": false,
|
133 |
+
"use_cpu": false,
|
134 |
+
"use_mps_device": false,
|
135 |
+
"jit_mode_eval": false,
|
136 |
+
"use_ipex": false,
|
137 |
+
"bf16": false,
|
138 |
+
"fp16": true,
|
139 |
+
"fp16_opt_level": "O1",
|
140 |
+
"half_precision_backend": "auto",
|
141 |
+
"bf16_full_eval": false,
|
142 |
+
"fp16_full_eval": false,
|
143 |
+
"tf32": null,
|
144 |
+
"local_rank": 0,
|
145 |
+
"tpu_num_cores": null,
|
146 |
+
"tpu_metrics_debug": false,
|
147 |
+
"debug": null,
|
148 |
+
"dataloader_drop_last": false,
|
149 |
+
"eval_steps": 640.0,
|
150 |
+
"dataloader_num_workers": 8,
|
151 |
+
"dataloader_prefetch_factor": null,
|
152 |
+
"past_index": -1,
|
153 |
+
"run_name": "/kaggle/tmp/save_checkpoint/v0-20250526-142723",
|
154 |
+
"disable_tqdm": null,
|
155 |
+
"label_names": null,
|
156 |
+
"load_best_model_at_end": false,
|
157 |
+
"metric_for_best_model": "loss",
|
158 |
+
"greater_is_better": false,
|
159 |
+
"ignore_data_skip": false,
|
160 |
+
"fsdp": "",
|
161 |
+
"fsdp_min_num_params": 0,
|
162 |
+
"fsdp_config": null,
|
163 |
+
"tp_size": 0,
|
164 |
+
"fsdp_transformer_layer_cls_to_wrap": null,
|
165 |
+
"accelerator_config": {
|
166 |
+
"dispatch_batches": false
|
167 |
+
},
|
168 |
+
"deepspeed": {
|
169 |
+
"fp16": {
|
170 |
+
"enabled": "auto",
|
171 |
+
"loss_scale": 0,
|
172 |
+
"loss_scale_window": 1000,
|
173 |
+
"initial_scale_power": 16,
|
174 |
+
"hysteresis": 2,
|
175 |
+
"min_loss_scale": 1
|
176 |
+
},
|
177 |
+
"bf16": {
|
178 |
+
"enabled": "auto"
|
179 |
+
},
|
180 |
+
"zero_optimization": {
|
181 |
+
"stage": 3,
|
182 |
+
"offload_optimizer": {
|
183 |
+
"device": "none",
|
184 |
+
"pin_memory": true
|
185 |
+
},
|
186 |
+
"offload_param": {
|
187 |
+
"device": "none",
|
188 |
+
"pin_memory": true
|
189 |
+
},
|
190 |
+
"overlap_comm": false,
|
191 |
+
"contiguous_gradients": true,
|
192 |
+
"sub_group_size": 1000000000.0,
|
193 |
+
"reduce_bucket_size": "auto",
|
194 |
+
"zero_quantized_weights": false,
|
195 |
+
"zero_quantized_gradients": false,
|
196 |
+
"stage3_prefetch_bucket_size": "auto",
|
197 |
+
"stage3_param_persistence_threshold": "auto",
|
198 |
+
"stage3_max_live_parameters": 1000000000.0,
|
199 |
+
"stage3_max_reuse_distance": 1000000000.0,
|
200 |
+
"stage3_gather_16bit_weights_on_model_save": true
|
201 |
+
},
|
202 |
+
"gradient_accumulation_steps": "auto",
|
203 |
+
"gradient_clipping": "auto",
|
204 |
+
"steps_per_print": 2000,
|
205 |
+
"train_batch_size": "auto",
|
206 |
+
"train_micro_batch_size_per_gpu": "auto",
|
207 |
+
"wall_clock_breakdown": false
|
208 |
+
},
|
209 |
+
"label_smoothing_factor": 0.0,
|
210 |
+
"optim": "adamw_torch",
|
211 |
+
"optim_args": null,
|
212 |
+
"adafactor": false,
|
213 |
+
"group_by_length": false,
|
214 |
+
"length_column_name": "length",
|
215 |
+
"report_to": [
|
216 |
+
"tensorboard"
|
217 |
+
],
|
218 |
+
"ddp_find_unused_parameters": null,
|
219 |
+
"ddp_bucket_cap_mb": null,
|
220 |
+
"ddp_broadcast_buffers": null,
|
221 |
+
"dataloader_pin_memory": true,
|
222 |
+
"dataloader_persistent_workers": false,
|
223 |
+
"skip_memory_metrics": true,
|
224 |
+
"use_legacy_prediction_loop": false,
|
225 |
+
"push_to_hub": false,
|
226 |
+
"resume_from_checkpoint": null,
|
227 |
+
"hub_model_id": null,
|
228 |
+
"hub_strategy": "every_save",
|
229 |
+
"hub_private_repo": null,
|
230 |
+
"hub_always_push": false,
|
231 |
+
"gradient_checkpointing": true,
|
232 |
+
"gradient_checkpointing_kwargs": null,
|
233 |
+
"include_inputs_for_metrics": false,
|
234 |
+
"include_for_metrics": [],
|
235 |
+
"eval_do_concat_batches": true,
|
236 |
+
"fp16_backend": "auto",
|
237 |
+
"push_to_hub_model_id": null,
|
238 |
+
"push_to_hub_organization": null,
|
239 |
+
"push_to_hub_token": null,
|
240 |
+
"mp_parameters": "",
|
241 |
+
"auto_find_batch_size": false,
|
242 |
+
"full_determinism": false,
|
243 |
+
"torchdynamo": null,
|
244 |
+
"ray_scope": "last",
|
245 |
+
"torch_compile": false,
|
246 |
+
"torch_compile_backend": null,
|
247 |
+
"torch_compile_mode": null,
|
248 |
+
"include_tokens_per_second": false,
|
249 |
+
"include_num_input_tokens_seen": false,
|
250 |
+
"neftune_noise_alpha": null,
|
251 |
+
"optim_target_modules": null,
|
252 |
+
"batch_eval_metrics": false,
|
253 |
+
"eval_on_start": false,
|
254 |
+
"use_liger_kernel": true,
|
255 |
+
"eval_use_gather_object": false,
|
256 |
+
"average_tokens_across_devices": false,
|
257 |
+
"sortish_sampler": false,
|
258 |
+
"predict_with_generate": false,
|
259 |
+
"generation_max_length": null,
|
260 |
+
"generation_num_beams": null,
|
261 |
+
"generation_config": null,
|
262 |
+
"vit_gradient_checkpointing": null,
|
263 |
+
"check_model": true,
|
264 |
+
"acc_strategy": "token",
|
265 |
+
"train_dataloader_shuffle": true,
|
266 |
+
"max_epochs": null,
|
267 |
+
"aligner_lr": null,
|
268 |
+
"vit_lr": null,
|
269 |
+
"optimizer": null,
|
270 |
+
"metric_warmup_step": 0,
|
271 |
+
"fsdp_num": 1,
|
272 |
+
"acc_steps": 1,
|
273 |
+
"eval_use_evalscope": false,
|
274 |
+
"eval_datasets": [],
|
275 |
+
"eval_limit": null,
|
276 |
+
"eval_datasets_args": null,
|
277 |
+
"eval_generation_config": null,
|
278 |
+
"freeze_parameters": [],
|
279 |
+
"freeze_parameters_regex": null,
|
280 |
+
"freeze_parameters_ratio": 0.0,
|
281 |
+
"trainable_parameters": [],
|
282 |
+
"trainable_parameters_regex": null,
|
283 |
+
"freeze_llm": false,
|
284 |
+
"freeze_vit": true,
|
285 |
+
"freeze_aligner": true,
|
286 |
+
"target_modules": [
|
287 |
+
"all-linear"
|
288 |
+
],
|
289 |
+
"target_regex": null,
|
290 |
+
"modules_to_save": [],
|
291 |
+
"lora_rank": 32,
|
292 |
+
"lora_alpha": 128,
|
293 |
+
"lora_dropout": 0.05,
|
294 |
+
"lora_bias": "none",
|
295 |
+
"lora_dtype": null,
|
296 |
+
"lorap_lr_ratio": null,
|
297 |
+
"use_rslora": false,
|
298 |
+
"use_dora": false,
|
299 |
+
"lora_ga_batch_size": 2,
|
300 |
+
"lora_ga_iters": 2,
|
301 |
+
"lora_ga_max_length": 1024,
|
302 |
+
"lora_ga_direction": "ArB2r",
|
303 |
+
"lora_ga_scale": "stable",
|
304 |
+
"lora_ga_stable_gamma": 16,
|
305 |
+
"init_weights": true,
|
306 |
+
"fourier_n_frequency": 2000,
|
307 |
+
"fourier_scaling": 300.0,
|
308 |
+
"boft_block_size": 4,
|
309 |
+
"boft_block_num": 0,
|
310 |
+
"boft_n_butterfly_factor": 1,
|
311 |
+
"boft_dropout": 0.0,
|
312 |
+
"vera_rank": 256,
|
313 |
+
"vera_projection_prng_key": 0,
|
314 |
+
"vera_dropout": 0.0,
|
315 |
+
"vera_d_initial": 0.1,
|
316 |
+
"adapter_act": "gelu",
|
317 |
+
"adapter_length": 128,
|
318 |
+
"use_galore": false,
|
319 |
+
"galore_target_modules": null,
|
320 |
+
"galore_rank": 128,
|
321 |
+
"galore_update_proj_gap": 50,
|
322 |
+
"galore_scale": 1.0,
|
323 |
+
"galore_proj_type": "std",
|
324 |
+
"galore_optim_per_parameter": false,
|
325 |
+
"galore_with_embedding": false,
|
326 |
+
"galore_quantization": false,
|
327 |
+
"galore_proj_quant": false,
|
328 |
+
"galore_proj_bits": 4,
|
329 |
+
"galore_proj_group_size": 256,
|
330 |
+
"galore_cos_threshold": 0.4,
|
331 |
+
"galore_gamma_proj": 2,
|
332 |
+
"galore_queue_size": 5,
|
333 |
+
"adalora_target_r": 8,
|
334 |
+
"adalora_init_r": 12,
|
335 |
+
"adalora_tinit": 0,
|
336 |
+
"adalora_tfinal": 0,
|
337 |
+
"adalora_deltaT": 1,
|
338 |
+
"adalora_beta1": 0.85,
|
339 |
+
"adalora_beta2": 0.85,
|
340 |
+
"adalora_orth_reg_weight": 0.5,
|
341 |
+
"llamapro_num_new_blocks": 4,
|
342 |
+
"llamapro_num_groups": null,
|
343 |
+
"lisa_activated_layers": 0,
|
344 |
+
"lisa_step_interval": 20,
|
345 |
+
"reft_layer_key": null,
|
346 |
+
"reft_layers": null,
|
347 |
+
"reft_rank": 4,
|
348 |
+
"reft_intervention_type": "LoreftIntervention",
|
349 |
+
"reft_args": null,
|
350 |
+
"swanlab_token": null,
|
351 |
+
"swanlab_project": null,
|
352 |
+
"swanlab_workspace": null,
|
353 |
+
"swanlab_exp_name": null,
|
354 |
+
"swanlab_mode": "cloud",
|
355 |
+
"add_version": true,
|
356 |
+
"resume_only_model": false,
|
357 |
+
"create_checkpoint_symlink": false,
|
358 |
+
"packing": true,
|
359 |
+
"lazy_tokenize": false,
|
360 |
+
"loss_type": null,
|
361 |
+
"metric": null,
|
362 |
+
"zero_hpz_partition_size": null,
|
363 |
+
"rank": 0,
|
364 |
+
"global_world_size": 4,
|
365 |
+
"local_world_size": 4,
|
366 |
+
"model_suffix": "1",
|
367 |
+
"model_info": "ModelInfo(model_type='qwen3', model_dir='/kaggle/input/qwen-3/transformers/32b-awq/1', torch_dtype=torch.float16, max_model_len=40960, quant_method='awq', quant_bits=4, rope_scaling=None, config=None, task_type='causal_lm', num_labels=None)",
|
368 |
+
"model_meta": "ModelMeta(model_type='qwen3', model_groups=[ModelGroup(models=[Model(ms_model_id='Qwen/Qwen3-0.6B-Base', hf_model_id='Qwen/Qwen3-0.6B-Base', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-1.7B-Base', hf_model_id='Qwen/Qwen3-1.7B-Base', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-4B-Base', hf_model_id='Qwen/Qwen3-4B-Base', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-8B-Base', hf_model_id='Qwen/Qwen3-8B-Base', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-14B-Base', hf_model_id='Qwen/Qwen3-14B-Base', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-32B-Base', hf_model_id='Qwen/Qwen3-32B-Base', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-0.6B', hf_model_id='Qwen/Qwen3-0.6B', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-1.7B', hf_model_id='Qwen/Qwen3-1.7B', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-4B', hf_model_id='Qwen/Qwen3-4B', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-8B', hf_model_id='Qwen/Qwen3-8B', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-14B', hf_model_id='Qwen/Qwen3-14B', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-32B', hf_model_id='Qwen/Qwen3-32B', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-0.6B-FP8', hf_model_id='Qwen/Qwen3-0.6B-FP8', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-1.7B-FP8', hf_model_id='Qwen/Qwen3-1.7B-FP8', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-4B-FP8', hf_model_id='Qwen/Qwen3-4B-FP8', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-8B-FP8', hf_model_id='Qwen/Qwen3-8B-FP8', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-14B-FP8', hf_model_id='Qwen/Qwen3-14B-FP8', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-32B-FP8', hf_model_id='Qwen/Qwen3-32B-FP8', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-4B-AWQ', hf_model_id='Qwen/Qwen3-4B-AWQ', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-8B-AWQ', hf_model_id='Qwen/Qwen3-8B-AWQ', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-14B-AWQ', hf_model_id='Qwen/Qwen3-14B-AWQ', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-32B-AWQ', hf_model_id='Qwen/Qwen3-32B-AWQ', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='swift/Qwen3-32B-AWQ', hf_model_id=None, model_path=None, ms_revision=None, hf_revision=None)], ignore_patterns=None, requires=None, tags=[])], template='qwen3', get_function=<function get_model_tokenizer_with_flash_attn at 0x7e1c95bd7880>, model_arch='llama', architectures=['Qwen3ForCausalLM'], additional_saved_files=[], torch_dtype=None, is_multimodal=False, is_reward=False, task_type=None, ignore_patterns=None, requires=['transformers>=4.51'], tags=[])",
|
369 |
+
"model_dir": "/kaggle/input/qwen-3/transformers/32b-awq/1",
|
370 |
+
"hub": "<class 'swift.hub.hub.MSHub'>",
|
371 |
+
"evaluation_strategy": "steps",
|
372 |
+
"training_args": "Seq2SeqTrainingArguments(output_dir='/kaggle/tmp/save_checkpoint/v0-20250526-142723', overwrite_output_dir=False, do_train=False, do_eval=True, do_predict=False, eval_strategy=<IntervalStrategy.STEPS: 'steps'>, prediction_loss_only=False, per_device_train_batch_size=1, per_device_eval_batch_size=1, per_gpu_train_batch_size=None, per_gpu_eval_batch_size=None, gradient_accumulation_steps=8, eval_accumulation_steps=None, eval_delay=0, torch_empty_cache_steps=None, learning_rate=3e-05, weight_decay=0.1, adam_beta1=0.9, adam_beta2=0.95, adam_epsilon=1e-08, max_grad_norm=1.0, num_train_epochs=3.0, max_steps=-1, lr_scheduler_type=<SchedulerType.COSINE: 'cosine'>, lr_scheduler_kwargs=None, warmup_ratio=0.05, warmup_steps=0, log_level='passive', log_level_replica='warning', log_on_each_node=True, logging_dir='/kaggle/tmp/save_checkpoint/v0-20250526-142723/runs', logging_strategy=<IntervalStrategy.STEPS: 'steps'>, logging_first_step=True, logging_steps=5, logging_nan_inf_filter=True, save_strategy=<SaveStrategy.STEPS: 'steps'>, save_steps=640, save_total_limit=4, save_safetensors=True, save_on_each_node=False, save_only_model=False, restore_callback_states_from_checkpoint=False, no_cuda=False, use_cpu=False, use_mps_device=False, seed=42, data_seed=42, jit_mode_eval=False, use_ipex=False, bf16=False, fp16=True, fp16_opt_level='O1', half_precision_backend='auto', bf16_full_eval=False, fp16_full_eval=False, tf32=None, local_rank=0, ddp_backend=None, tpu_num_cores=None, tpu_metrics_debug=False, debug=[], dataloader_drop_last=False, eval_steps=640, dataloader_num_workers=8, dataloader_prefetch_factor=10, past_index=-1, run_name='/kaggle/tmp/save_checkpoint/v0-20250526-142723', disable_tqdm=False, remove_unused_columns=False, label_names=None, load_best_model_at_end=False, metric_for_best_model='loss', greater_is_better=False, ignore_data_skip=False, fsdp=[], fsdp_min_num_params=0, fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, tp_size=0, fsdp_transformer_layer_cls_to_wrap=None, accelerator_config=AcceleratorConfig(split_batches=False, dispatch_batches=False, even_batches=True, use_seedable_sampler=True, non_blocking=False, gradient_accumulation_kwargs=None, use_configured_state=False), deepspeed={'fp16': {'enabled': 'auto', 'loss_scale': 0, 'loss_scale_window': 1000, 'initial_scale_power': 16, 'hysteresis': 2, 'min_loss_scale': 1}, 'bf16': {'enabled': 'auto'}, 'zero_optimization': {'stage': 3, 'offload_optimizer': {'device': 'none', 'pin_memory': True}, 'offload_param': {'device': 'none', 'pin_memory': True}, 'overlap_comm': False, 'contiguous_gradients': True, 'sub_group_size': 1000000000.0, 'reduce_bucket_size': 'auto', 'zero_quantized_weights': False, 'zero_quantized_gradients': False, 'stage3_prefetch_bucket_size': 'auto', 'stage3_param_persistence_threshold': 'auto', 'stage3_max_live_parameters': 1000000000.0, 'stage3_max_reuse_distance': 1000000000.0, 'stage3_gather_16bit_weights_on_model_save': True}, 'gradient_accumulation_steps': 'auto', 'gradient_clipping': 'auto', 'steps_per_print': 2000, 'train_batch_size': 'auto', 'train_micro_batch_size_per_gpu': 'auto', 'wall_clock_breakdown': False}, label_smoothing_factor=0.0, optim=<OptimizerNames.ADAMW_TORCH: 'adamw_torch'>, optim_args=None, adafactor=False, group_by_length=False, length_column_name='length', report_to=['tensorboard'], ddp_find_unused_parameters=None, ddp_bucket_cap_mb=None, ddp_broadcast_buffers=None, dataloader_pin_memory=True, dataloader_persistent_workers=False, skip_memory_metrics=True, use_legacy_prediction_loop=False, push_to_hub=False, resume_from_checkpoint=None, hub_model_id=None, hub_strategy=<HubStrategy.EVERY_SAVE: 'every_save'>, hub_token=None, hub_private_repo=None, hub_always_push=False, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, include_inputs_for_metrics=False, include_for_metrics=[], eval_do_concat_batches=True, fp16_backend='auto', push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=None, mp_parameters='', auto_find_batch_size=False, full_determinism=False, torchdynamo=None, ray_scope='last', ddp_timeout=1800, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, include_tokens_per_second=None, include_num_input_tokens_seen=None, neftune_noise_alpha=None, optim_target_modules=None, batch_eval_metrics=False, eval_on_start=False, use_liger_kernel=True, eval_use_gather_object=False, average_tokens_across_devices=None, sortish_sampler=False, predict_with_generate=False, generation_max_length=None, generation_num_beams=None, generation_config=None, vit_gradient_checkpointing=True, check_model=True, acc_strategy='token', train_dataloader_shuffle=True, max_epochs=None, aligner_lr=None, vit_lr=None, optimizer=None, metric_warmup_step=0, fsdp_num=1, acc_steps=1, eval_use_evalscope=False, eval_datasets=[], eval_limit=None, eval_datasets_args=None, eval_generation_config=None, train_type='lora', local_repo_path=None, galore_config=None)"
|
373 |
+
}
|
v0-20250526-142723/checkpoint-640/global_step638/zero_pp_rank_0_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ff1af3289ba9d861c4fcd687408f06d22ae67e1600a0d6266ef56e4bc5dc0837
|
3 |
+
size 16214111450
|
v0-20250526-142723/checkpoint-640/global_step638/zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:076a40be547cb18e4e0b0df2b44bc7c05f69bb84520ef356b63bf60fb8d9c9b7
|
3 |
+
size 805310600
|
v0-20250526-142723/checkpoint-640/global_step638/zero_pp_rank_1_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1001252c25a75572fb298792ea4dd520a5809e1c01c749fb7f57364a2aa3d726
|
3 |
+
size 16214111450
|
v0-20250526-142723/checkpoint-640/global_step638/zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:22846cbae9231f77dfe9407a53fd274976d13145cc2cdd04240aa8a94bd00445
|
3 |
+
size 805310600
|
v0-20250526-142723/checkpoint-640/global_step638/zero_pp_rank_2_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c3e92ce9765953dcbee3f63b855fd247676df9cd68f1ef905ede2ec9280c7247
|
3 |
+
size 16214111450
|
v0-20250526-142723/checkpoint-640/global_step638/zero_pp_rank_2_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:087691cbc41e92060c624a117bd188a47333da659fe3937429d4b446d51a36a7
|
3 |
+
size 805310600
|
v0-20250526-142723/checkpoint-640/global_step638/zero_pp_rank_3_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:be8ba1c740f05aa6f553f0f33c7f952a88aa742ff0cc515240eb53d5d45da857
|
3 |
+
size 16214111450
|
v0-20250526-142723/checkpoint-640/global_step638/zero_pp_rank_3_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e7122b1acdfd418777310e08127e439192845c276acc07bb25b3f129e6ba431c
|
3 |
+
size 805310600
|
v0-20250526-142723/checkpoint-640/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step638
|
v0-20250526-142723/checkpoint-640/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ece6b6cdc3888475d045810d85bd19f71338a8dc932c4a9cacba07c4664dd43e
|
3 |
+
size 15024
|
v0-20250526-142723/checkpoint-640/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d1b1886e5fae9ba9ac0a7730b8b73207b1f2be2a766e6deeffe8466504eb3518
|
3 |
+
size 15024
|
v0-20250526-142723/checkpoint-640/rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a9b839f13070e39523c6ed87eba7a2598369f822d84fe8422a7a342b1ed854de
|
3 |
+
size 15024
|
v0-20250526-142723/checkpoint-640/rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cacbccf4ecf328a22a2e7528c676c5bd89abb44df99ab9197794c87061ade90a
|
3 |
+
size 15024
|
v0-20250526-142723/checkpoint-640/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2f6ac32993f35ca226989dd29f003ef5e8da7dec327c86fb0bf46b0ae034064f
|
3 |
+
size 1064
|
v0-20250526-142723/checkpoint-640/trainer_state.json
ADDED
@@ -0,0 +1,1195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_global_step": null,
|
3 |
+
"best_metric": null,
|
4 |
+
"best_model_checkpoint": null,
|
5 |
+
"epoch": 2.044835868694956,
|
6 |
+
"eval_steps": 640,
|
7 |
+
"global_step": 640,
|
8 |
+
"is_hyper_param_search": false,
|
9 |
+
"is_local_process_zero": true,
|
10 |
+
"is_world_process_zero": true,
|
11 |
+
"log_history": [
|
12 |
+
{
|
13 |
+
"epoch": 0.0032025620496397116,
|
14 |
+
"grad_norm": 1.113493326174143,
|
15 |
+
"learning_rate": 6.382978723404255e-07,
|
16 |
+
"loss": 1.4235601425170898,
|
17 |
+
"memory(GiB)": 21.89,
|
18 |
+
"step": 1,
|
19 |
+
"train_speed(iter/s)": 0.001478
|
20 |
+
},
|
21 |
+
{
|
22 |
+
"epoch": 0.016012810248198558,
|
23 |
+
"grad_norm": 1.2512449636957643,
|
24 |
+
"learning_rate": 3.1914893617021277e-06,
|
25 |
+
"loss": 1.4059971570968628,
|
26 |
+
"memory(GiB)": 21.89,
|
27 |
+
"step": 5,
|
28 |
+
"train_speed(iter/s)": 0.0054
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"epoch": 0.032025620496397116,
|
32 |
+
"grad_norm": 1.1685257009513943,
|
33 |
+
"learning_rate": 6.3829787234042555e-06,
|
34 |
+
"loss": 1.4040182113647461,
|
35 |
+
"memory(GiB)": 21.89,
|
36 |
+
"step": 10,
|
37 |
+
"train_speed(iter/s)": 0.008109
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.04803843074459568,
|
41 |
+
"grad_norm": 1.0347892126573268,
|
42 |
+
"learning_rate": 9.574468085106385e-06,
|
43 |
+
"loss": 1.2724601745605468,
|
44 |
+
"memory(GiB)": 21.89,
|
45 |
+
"step": 15,
|
46 |
+
"train_speed(iter/s)": 0.009701
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.06405124099279423,
|
50 |
+
"grad_norm": 0.7170611254380553,
|
51 |
+
"learning_rate": 1.2765957446808511e-05,
|
52 |
+
"loss": 1.1707847595214844,
|
53 |
+
"memory(GiB)": 21.89,
|
54 |
+
"step": 20,
|
55 |
+
"train_speed(iter/s)": 0.010796
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"epoch": 0.08006405124099279,
|
59 |
+
"grad_norm": 0.6048649522124168,
|
60 |
+
"learning_rate": 1.5957446808510637e-05,
|
61 |
+
"loss": 1.0797317504882813,
|
62 |
+
"memory(GiB)": 21.89,
|
63 |
+
"step": 25,
|
64 |
+
"train_speed(iter/s)": 0.011557
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"epoch": 0.09607686148919135,
|
68 |
+
"grad_norm": 0.6938325308343493,
|
69 |
+
"learning_rate": 1.914893617021277e-05,
|
70 |
+
"loss": 0.9897993087768555,
|
71 |
+
"memory(GiB)": 21.89,
|
72 |
+
"step": 30,
|
73 |
+
"train_speed(iter/s)": 0.012125
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"epoch": 0.11208967173738991,
|
77 |
+
"grad_norm": 0.609530150936291,
|
78 |
+
"learning_rate": 2.2340425531914894e-05,
|
79 |
+
"loss": 0.8915694236755372,
|
80 |
+
"memory(GiB)": 21.89,
|
81 |
+
"step": 35,
|
82 |
+
"train_speed(iter/s)": 0.012567
|
83 |
+
},
|
84 |
+
{
|
85 |
+
"epoch": 0.12810248198558846,
|
86 |
+
"grad_norm": 0.6060866850380204,
|
87 |
+
"learning_rate": 2.5531914893617022e-05,
|
88 |
+
"loss": 0.8486058235168457,
|
89 |
+
"memory(GiB)": 21.89,
|
90 |
+
"step": 40,
|
91 |
+
"train_speed(iter/s)": 0.012912
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.14411529223378702,
|
95 |
+
"grad_norm": 0.5542471477131478,
|
96 |
+
"learning_rate": 2.872340425531915e-05,
|
97 |
+
"loss": 0.7968315124511719,
|
98 |
+
"memory(GiB)": 21.89,
|
99 |
+
"step": 45,
|
100 |
+
"train_speed(iter/s)": 0.013196
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.16012810248198558,
|
104 |
+
"grad_norm": 0.5328098621829698,
|
105 |
+
"learning_rate": 2.9999157061425123e-05,
|
106 |
+
"loss": 0.7713782310485839,
|
107 |
+
"memory(GiB)": 21.89,
|
108 |
+
"step": 50,
|
109 |
+
"train_speed(iter/s)": 0.013423
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"epoch": 0.17614091273018415,
|
113 |
+
"grad_norm": 0.5124254128934531,
|
114 |
+
"learning_rate": 2.9994006113219365e-05,
|
115 |
+
"loss": 0.7756826400756835,
|
116 |
+
"memory(GiB)": 21.89,
|
117 |
+
"step": 55,
|
118 |
+
"train_speed(iter/s)": 0.013636
|
119 |
+
},
|
120 |
+
{
|
121 |
+
"epoch": 0.1921537229783827,
|
122 |
+
"grad_norm": 0.45894560927350003,
|
123 |
+
"learning_rate": 2.9984174122163244e-05,
|
124 |
+
"loss": 0.7531558990478515,
|
125 |
+
"memory(GiB)": 21.89,
|
126 |
+
"step": 60,
|
127 |
+
"train_speed(iter/s)": 0.013815
|
128 |
+
},
|
129 |
+
{
|
130 |
+
"epoch": 0.20816653322658127,
|
131 |
+
"grad_norm": 0.42532071725821213,
|
132 |
+
"learning_rate": 2.9969664157748082e-05,
|
133 |
+
"loss": 0.720164680480957,
|
134 |
+
"memory(GiB)": 21.89,
|
135 |
+
"step": 65,
|
136 |
+
"train_speed(iter/s)": 0.013962
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 0.22417934347477983,
|
140 |
+
"grad_norm": 0.4661145482327595,
|
141 |
+
"learning_rate": 2.995048074990167e-05,
|
142 |
+
"loss": 0.7291761875152588,
|
143 |
+
"memory(GiB)": 21.89,
|
144 |
+
"step": 70,
|
145 |
+
"train_speed(iter/s)": 0.014104
|
146 |
+
},
|
147 |
+
{
|
148 |
+
"epoch": 0.2401921537229784,
|
149 |
+
"grad_norm": 0.5105236274459655,
|
150 |
+
"learning_rate": 2.99266298875741e-05,
|
151 |
+
"loss": 0.7409891128540039,
|
152 |
+
"memory(GiB)": 21.89,
|
153 |
+
"step": 75,
|
154 |
+
"train_speed(iter/s)": 0.014203
|
155 |
+
},
|
156 |
+
{
|
157 |
+
"epoch": 0.2562049639711769,
|
158 |
+
"grad_norm": 0.5866969087739654,
|
159 |
+
"learning_rate": 2.989811901686801e-05,
|
160 |
+
"loss": 0.7214169502258301,
|
161 |
+
"memory(GiB)": 21.89,
|
162 |
+
"step": 80,
|
163 |
+
"train_speed(iter/s)": 0.01431
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.2722177742193755,
|
167 |
+
"grad_norm": 0.4549841107961782,
|
168 |
+
"learning_rate": 2.986495703871398e-05,
|
169 |
+
"loss": 0.7045151233673096,
|
170 |
+
"memory(GiB)": 21.89,
|
171 |
+
"step": 85,
|
172 |
+
"train_speed(iter/s)": 0.014401
|
173 |
+
},
|
174 |
+
{
|
175 |
+
"epoch": 0.28823058446757405,
|
176 |
+
"grad_norm": 0.4514625540852967,
|
177 |
+
"learning_rate": 2.98271543060917e-05,
|
178 |
+
"loss": 0.6741261005401611,
|
179 |
+
"memory(GiB)": 21.89,
|
180 |
+
"step": 90,
|
181 |
+
"train_speed(iter/s)": 0.014476
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 0.3042433947157726,
|
185 |
+
"grad_norm": 0.43958566816038286,
|
186 |
+
"learning_rate": 2.978472262079782e-05,
|
187 |
+
"loss": 0.7089397430419921,
|
188 |
+
"memory(GiB)": 21.89,
|
189 |
+
"step": 95,
|
190 |
+
"train_speed(iter/s)": 0.014542
|
191 |
+
},
|
192 |
+
{
|
193 |
+
"epoch": 0.32025620496397117,
|
194 |
+
"grad_norm": 0.4652252500687268,
|
195 |
+
"learning_rate": 2.973767522976153e-05,
|
196 |
+
"loss": 0.6852937698364258,
|
197 |
+
"memory(GiB)": 21.89,
|
198 |
+
"step": 100,
|
199 |
+
"train_speed(iter/s)": 0.014601
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"epoch": 0.33626901521216973,
|
203 |
+
"grad_norm": 0.4569144232265872,
|
204 |
+
"learning_rate": 2.9686026820908904e-05,
|
205 |
+
"loss": 0.6984831809997558,
|
206 |
+
"memory(GiB)": 21.89,
|
207 |
+
"step": 105,
|
208 |
+
"train_speed(iter/s)": 0.014666
|
209 |
+
},
|
210 |
+
{
|
211 |
+
"epoch": 0.3522818254603683,
|
212 |
+
"grad_norm": 0.49062268332997805,
|
213 |
+
"learning_rate": 2.964140614841668e-05,
|
214 |
+
"loss": 0.6909584522247314,
|
215 |
+
"memory(GiB)": 21.89,
|
216 |
+
"step": 110,
|
217 |
+
"train_speed(iter/s)": 0.014717
|
218 |
+
},
|
219 |
+
{
|
220 |
+
"epoch": 0.36829463570856685,
|
221 |
+
"grad_norm": 0.4599131682455051,
|
222 |
+
"learning_rate": 2.9581517502891373e-05,
|
223 |
+
"loss": 0.7058491706848145,
|
224 |
+
"memory(GiB)": 21.89,
|
225 |
+
"step": 115,
|
226 |
+
"train_speed(iter/s)": 0.014779
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.3843074459567654,
|
230 |
+
"grad_norm": 0.46586840624727305,
|
231 |
+
"learning_rate": 2.9517076591097877e-05,
|
232 |
+
"loss": 0.6904548645019531,
|
233 |
+
"memory(GiB)": 21.89,
|
234 |
+
"step": 120,
|
235 |
+
"train_speed(iter/s)": 0.014825
|
236 |
+
},
|
237 |
+
{
|
238 |
+
"epoch": 0.400320256204964,
|
239 |
+
"grad_norm": 0.4790148747464638,
|
240 |
+
"learning_rate": 2.9448103531119858e-05,
|
241 |
+
"loss": 0.6842238903045654,
|
242 |
+
"memory(GiB)": 21.89,
|
243 |
+
"step": 125,
|
244 |
+
"train_speed(iter/s)": 0.014876
|
245 |
+
},
|
246 |
+
{
|
247 |
+
"epoch": 0.41633306645316254,
|
248 |
+
"grad_norm": 0.48414224671346245,
|
249 |
+
"learning_rate": 2.9374619855951676e-05,
|
250 |
+
"loss": 0.6715976238250733,
|
251 |
+
"memory(GiB)": 21.89,
|
252 |
+
"step": 130,
|
253 |
+
"train_speed(iter/s)": 0.014914
|
254 |
+
},
|
255 |
+
{
|
256 |
+
"epoch": 0.4323458767013611,
|
257 |
+
"grad_norm": 0.44756883959355714,
|
258 |
+
"learning_rate": 2.929664850677595e-05,
|
259 |
+
"loss": 0.6528284072875976,
|
260 |
+
"memory(GiB)": 21.89,
|
261 |
+
"step": 135,
|
262 |
+
"train_speed(iter/s)": 0.014956
|
263 |
+
},
|
264 |
+
{
|
265 |
+
"epoch": 0.44835868694955966,
|
266 |
+
"grad_norm": 0.4614445331228631,
|
267 |
+
"learning_rate": 2.921421382580142e-05,
|
268 |
+
"loss": 0.6604287624359131,
|
269 |
+
"memory(GiB)": 21.89,
|
270 |
+
"step": 140,
|
271 |
+
"train_speed(iter/s)": 0.014993
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 0.4643714971977582,
|
275 |
+
"grad_norm": 0.4552618648718467,
|
276 |
+
"learning_rate": 2.9127341548663437e-05,
|
277 |
+
"loss": 0.663853931427002,
|
278 |
+
"memory(GiB)": 21.89,
|
279 |
+
"step": 145,
|
280 |
+
"train_speed(iter/s)": 0.015021
|
281 |
+
},
|
282 |
+
{
|
283 |
+
"epoch": 0.4803843074459568,
|
284 |
+
"grad_norm": 0.48893303880924177,
|
285 |
+
"learning_rate": 2.9036058796389484e-05,
|
286 |
+
"loss": 0.6526768684387207,
|
287 |
+
"memory(GiB)": 21.89,
|
288 |
+
"step": 150,
|
289 |
+
"train_speed(iter/s)": 0.01506
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.49639711769415534,
|
293 |
+
"grad_norm": 0.5294944478705774,
|
294 |
+
"learning_rate": 2.8940394066932122e-05,
|
295 |
+
"loss": 0.6768057346343994,
|
296 |
+
"memory(GiB)": 21.89,
|
297 |
+
"step": 155,
|
298 |
+
"train_speed(iter/s)": 0.015082
|
299 |
+
},
|
300 |
+
{
|
301 |
+
"epoch": 0.5124099279423538,
|
302 |
+
"grad_norm": 0.4779511788683914,
|
303 |
+
"learning_rate": 2.8840377226272102e-05,
|
304 |
+
"loss": 0.6269515991210938,
|
305 |
+
"memory(GiB)": 21.89,
|
306 |
+
"step": 160,
|
307 |
+
"train_speed(iter/s)": 0.015104
|
308 |
+
},
|
309 |
+
{
|
310 |
+
"epoch": 0.5284227381905524,
|
311 |
+
"grad_norm": 0.4492505317976044,
|
312 |
+
"learning_rate": 2.873603949909435e-05,
|
313 |
+
"loss": 0.6443400382995605,
|
314 |
+
"memory(GiB)": 21.89,
|
315 |
+
"step": 165,
|
316 |
+
"train_speed(iter/s)": 0.015127
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 0.544435548438751,
|
320 |
+
"grad_norm": 0.4997181805996068,
|
321 |
+
"learning_rate": 2.862741345903985e-05,
|
322 |
+
"loss": 0.6411213874816895,
|
323 |
+
"memory(GiB)": 21.89,
|
324 |
+
"step": 170,
|
325 |
+
"train_speed(iter/s)": 0.015159
|
326 |
+
},
|
327 |
+
{
|
328 |
+
"epoch": 0.5604483586869495,
|
329 |
+
"grad_norm": 0.4529198350769972,
|
330 |
+
"learning_rate": 2.8514533018536286e-05,
|
331 |
+
"loss": 0.6319211006164551,
|
332 |
+
"memory(GiB)": 21.89,
|
333 |
+
"step": 175,
|
334 |
+
"train_speed(iter/s)": 0.015177
|
335 |
+
},
|
336 |
+
{
|
337 |
+
"epoch": 0.5764611689351481,
|
338 |
+
"grad_norm": 0.4439771339111341,
|
339 |
+
"learning_rate": 2.839743341821082e-05,
|
340 |
+
"loss": 0.6533251762390136,
|
341 |
+
"memory(GiB)": 21.89,
|
342 |
+
"step": 180,
|
343 |
+
"train_speed(iter/s)": 0.015196
|
344 |
+
},
|
345 |
+
{
|
346 |
+
"epoch": 0.5924739791833467,
|
347 |
+
"grad_norm": 0.4482439997043441,
|
348 |
+
"learning_rate": 2.8276151215888127e-05,
|
349 |
+
"loss": 0.6418941974639892,
|
350 |
+
"memory(GiB)": 21.89,
|
351 |
+
"step": 185,
|
352 |
+
"train_speed(iter/s)": 0.015212
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 0.6084867894315452,
|
356 |
+
"grad_norm": 0.4878967638917357,
|
357 |
+
"learning_rate": 2.8150724275177312e-05,
|
358 |
+
"loss": 0.6312544822692872,
|
359 |
+
"memory(GiB)": 21.89,
|
360 |
+
"step": 190,
|
361 |
+
"train_speed(iter/s)": 0.015235
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 0.6244995996797438,
|
365 |
+
"grad_norm": 0.48121964708849274,
|
366 |
+
"learning_rate": 2.8021191753651025e-05,
|
367 |
+
"loss": 0.6673158168792724,
|
368 |
+
"memory(GiB)": 21.89,
|
369 |
+
"step": 195,
|
370 |
+
"train_speed(iter/s)": 0.015256
|
371 |
+
},
|
372 |
+
{
|
373 |
+
"epoch": 0.6405124099279423,
|
374 |
+
"grad_norm": 0.46466509624654573,
|
375 |
+
"learning_rate": 2.788759409062078e-05,
|
376 |
+
"loss": 0.6434747695922851,
|
377 |
+
"memory(GiB)": 21.89,
|
378 |
+
"step": 200,
|
379 |
+
"train_speed(iter/s)": 0.015269
|
380 |
+
},
|
381 |
+
{
|
382 |
+
"epoch": 0.6565252201761409,
|
383 |
+
"grad_norm": 0.4673641697899948,
|
384 |
+
"learning_rate": 2.774997299451196e-05,
|
385 |
+
"loss": 0.6431779384613037,
|
386 |
+
"memory(GiB)": 21.89,
|
387 |
+
"step": 205,
|
388 |
+
"train_speed(iter/s)": 0.015292
|
389 |
+
},
|
390 |
+
{
|
391 |
+
"epoch": 0.6725380304243395,
|
392 |
+
"grad_norm": 0.45779788532747007,
|
393 |
+
"learning_rate": 2.760837142984274e-05,
|
394 |
+
"loss": 0.6721176624298095,
|
395 |
+
"memory(GiB)": 21.89,
|
396 |
+
"step": 210,
|
397 |
+
"train_speed(iter/s)": 0.015313
|
398 |
+
},
|
399 |
+
{
|
400 |
+
"epoch": 0.688550840672538,
|
401 |
+
"grad_norm": 0.4618914038595962,
|
402 |
+
"learning_rate": 2.7462833603810768e-05,
|
403 |
+
"loss": 0.6672334671020508,
|
404 |
+
"memory(GiB)": 21.89,
|
405 |
+
"step": 215,
|
406 |
+
"train_speed(iter/s)": 0.015327
|
407 |
+
},
|
408 |
+
{
|
409 |
+
"epoch": 0.7045636509207366,
|
410 |
+
"grad_norm": 0.4764969973944645,
|
411 |
+
"learning_rate": 2.731340495249196e-05,
|
412 |
+
"loss": 0.6564915657043457,
|
413 |
+
"memory(GiB)": 21.89,
|
414 |
+
"step": 220,
|
415 |
+
"train_speed(iter/s)": 0.015342
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 0.7205764611689351,
|
419 |
+
"grad_norm": 0.4660822969884439,
|
420 |
+
"learning_rate": 2.7160132126655602e-05,
|
421 |
+
"loss": 0.6348361968994141,
|
422 |
+
"memory(GiB)": 21.89,
|
423 |
+
"step": 225,
|
424 |
+
"train_speed(iter/s)": 0.015365
|
425 |
+
},
|
426 |
+
{
|
427 |
+
"epoch": 0.7365892714171337,
|
428 |
+
"grad_norm": 0.4889253530342789,
|
429 |
+
"learning_rate": 2.700306297720026e-05,
|
430 |
+
"loss": 0.6062727928161621,
|
431 |
+
"memory(GiB)": 21.89,
|
432 |
+
"step": 230,
|
433 |
+
"train_speed(iter/s)": 0.015384
|
434 |
+
},
|
435 |
+
{
|
436 |
+
"epoch": 0.7526020816653323,
|
437 |
+
"grad_norm": 0.5838631024249971,
|
438 |
+
"learning_rate": 2.684224654021498e-05,
|
439 |
+
"loss": 0.6389497756958008,
|
440 |
+
"memory(GiB)": 21.89,
|
441 |
+
"step": 235,
|
442 |
+
"train_speed(iter/s)": 0.0154
|
443 |
+
},
|
444 |
+
{
|
445 |
+
"epoch": 0.7686148919135308,
|
446 |
+
"grad_norm": 0.4607421617033317,
|
447 |
+
"learning_rate": 2.667773302167053e-05,
|
448 |
+
"loss": 0.6525444984436035,
|
449 |
+
"memory(GiB)": 21.89,
|
450 |
+
"step": 240,
|
451 |
+
"train_speed(iter/s)": 0.015413
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 0.7846277021617294,
|
455 |
+
"grad_norm": 0.45477587237162076,
|
456 |
+
"learning_rate": 2.6509573781745376e-05,
|
457 |
+
"loss": 0.605835247039795,
|
458 |
+
"memory(GiB)": 21.89,
|
459 |
+
"step": 245,
|
460 |
+
"train_speed(iter/s)": 0.015424
|
461 |
+
},
|
462 |
+
{
|
463 |
+
"epoch": 0.800640512409928,
|
464 |
+
"grad_norm": 0.4730567311540799,
|
465 |
+
"learning_rate": 2.6337821318791303e-05,
|
466 |
+
"loss": 0.6313736438751221,
|
467 |
+
"memory(GiB)": 21.89,
|
468 |
+
"step": 250,
|
469 |
+
"train_speed(iter/s)": 0.015433
|
470 |
+
},
|
471 |
+
{
|
472 |
+
"epoch": 0.8166533226581265,
|
473 |
+
"grad_norm": 0.485561541193875,
|
474 |
+
"learning_rate": 2.6162529252943772e-05,
|
475 |
+
"loss": 0.6605137825012207,
|
476 |
+
"memory(GiB)": 21.89,
|
477 |
+
"step": 255,
|
478 |
+
"train_speed(iter/s)": 0.01545
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 0.8326661329063251,
|
482 |
+
"grad_norm": 0.459278946124628,
|
483 |
+
"learning_rate": 2.598375230938198e-05,
|
484 |
+
"loss": 0.6483343124389649,
|
485 |
+
"memory(GiB)": 21.89,
|
486 |
+
"step": 260,
|
487 |
+
"train_speed(iter/s)": 0.015463
|
488 |
+
},
|
489 |
+
{
|
490 |
+
"epoch": 0.8486789431545236,
|
491 |
+
"grad_norm": 0.45947637817712067,
|
492 |
+
"learning_rate": 2.5801546301244004e-05,
|
493 |
+
"loss": 0.6174493789672851,
|
494 |
+
"memory(GiB)": 21.89,
|
495 |
+
"step": 265,
|
496 |
+
"train_speed(iter/s)": 0.015476
|
497 |
+
},
|
498 |
+
{
|
499 |
+
"epoch": 0.8646917534027222,
|
500 |
+
"grad_norm": 0.48423584850188345,
|
501 |
+
"learning_rate": 2.561596811220225e-05,
|
502 |
+
"loss": 0.634972095489502,
|
503 |
+
"memory(GiB)": 21.89,
|
504 |
+
"step": 270,
|
505 |
+
"train_speed(iter/s)": 0.015483
|
506 |
+
},
|
507 |
+
{
|
508 |
+
"epoch": 0.8807045636509208,
|
509 |
+
"grad_norm": 0.48548008083825134,
|
510 |
+
"learning_rate": 2.5427075678704676e-05,
|
511 |
+
"loss": 0.6042546272277832,
|
512 |
+
"memory(GiB)": 21.89,
|
513 |
+
"step": 275,
|
514 |
+
"train_speed(iter/s)": 0.015495
|
515 |
+
},
|
516 |
+
{
|
517 |
+
"epoch": 0.8967173738991193,
|
518 |
+
"grad_norm": 0.45844672211039833,
|
519 |
+
"learning_rate": 2.5234927971887388e-05,
|
520 |
+
"loss": 0.6437081813812255,
|
521 |
+
"memory(GiB)": 21.89,
|
522 |
+
"step": 280,
|
523 |
+
"train_speed(iter/s)": 0.015505
|
524 |
+
},
|
525 |
+
{
|
526 |
+
"epoch": 0.9127301841473179,
|
527 |
+
"grad_norm": 0.49926899360643134,
|
528 |
+
"learning_rate": 2.503958497916419e-05,
|
529 |
+
"loss": 0.6593117713928223,
|
530 |
+
"memory(GiB)": 21.89,
|
531 |
+
"step": 285,
|
532 |
+
"train_speed(iter/s)": 0.015514
|
533 |
+
},
|
534 |
+
{
|
535 |
+
"epoch": 0.9287429943955164,
|
536 |
+
"grad_norm": 0.4768232218990846,
|
537 |
+
"learning_rate": 2.484110768549885e-05,
|
538 |
+
"loss": 0.6409697532653809,
|
539 |
+
"memory(GiB)": 21.89,
|
540 |
+
"step": 290,
|
541 |
+
"train_speed(iter/s)": 0.015526
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 0.944755804643715,
|
545 |
+
"grad_norm": 0.5281620311391436,
|
546 |
+
"learning_rate": 2.4639558054365917e-05,
|
547 |
+
"loss": 0.6230706214904785,
|
548 |
+
"memory(GiB)": 21.89,
|
549 |
+
"step": 295,
|
550 |
+
"train_speed(iter/s)": 0.015534
|
551 |
+
},
|
552 |
+
{
|
553 |
+
"epoch": 0.9607686148919136,
|
554 |
+
"grad_norm": 0.60387991785874,
|
555 |
+
"learning_rate": 2.443499900840614e-05,
|
556 |
+
"loss": 0.6483660221099854,
|
557 |
+
"memory(GiB)": 21.89,
|
558 |
+
"step": 300,
|
559 |
+
"train_speed(iter/s)": 0.015545
|
560 |
+
},
|
561 |
+
{
|
562 |
+
"epoch": 0.9767814251401121,
|
563 |
+
"grad_norm": 0.5084362292098538,
|
564 |
+
"learning_rate": 2.422749440978232e-05,
|
565 |
+
"loss": 0.6511590480804443,
|
566 |
+
"memory(GiB)": 21.89,
|
567 |
+
"step": 305,
|
568 |
+
"train_speed(iter/s)": 0.015551
|
569 |
+
},
|
570 |
+
{
|
571 |
+
"epoch": 0.9927942353883107,
|
572 |
+
"grad_norm": 0.497645628004113,
|
573 |
+
"learning_rate": 2.4017109040241948e-05,
|
574 |
+
"loss": 0.6253134727478027,
|
575 |
+
"memory(GiB)": 21.89,
|
576 |
+
"step": 310,
|
577 |
+
"train_speed(iter/s)": 0.01556
|
578 |
+
},
|
579 |
+
{
|
580 |
+
"epoch": 1.0064051240992795,
|
581 |
+
"grad_norm": 0.4950469311671422,
|
582 |
+
"learning_rate": 2.3803908580892694e-05,
|
583 |
+
"loss": 0.6339423179626464,
|
584 |
+
"memory(GiB)": 21.89,
|
585 |
+
"step": 315,
|
586 |
+
"train_speed(iter/s)": 0.015602
|
587 |
+
},
|
588 |
+
{
|
589 |
+
"epoch": 1.022417934347478,
|
590 |
+
"grad_norm": 0.4698835893629837,
|
591 |
+
"learning_rate": 2.358795959169713e-05,
|
592 |
+
"loss": 0.5884588241577149,
|
593 |
+
"memory(GiB)": 21.89,
|
594 |
+
"step": 320,
|
595 |
+
"train_speed(iter/s)": 0.015606
|
596 |
+
},
|
597 |
+
{
|
598 |
+
"epoch": 1.0384307445956766,
|
599 |
+
"grad_norm": 0.5152602884010152,
|
600 |
+
"learning_rate": 2.336932949069314e-05,
|
601 |
+
"loss": 0.594908618927002,
|
602 |
+
"memory(GiB)": 21.89,
|
603 |
+
"step": 325,
|
604 |
+
"train_speed(iter/s)": 0.015611
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"epoch": 1.054443554843875,
|
608 |
+
"grad_norm": 0.498139219735909,
|
609 |
+
"learning_rate": 2.314808653294634e-05,
|
610 |
+
"loss": 0.5890667915344239,
|
611 |
+
"memory(GiB)": 21.89,
|
612 |
+
"step": 330,
|
613 |
+
"train_speed(iter/s)": 0.015616
|
614 |
+
},
|
615 |
+
{
|
616 |
+
"epoch": 1.0704563650920738,
|
617 |
+
"grad_norm": 0.5394223909434638,
|
618 |
+
"learning_rate": 2.2924299789241255e-05,
|
619 |
+
"loss": 0.5816782951354981,
|
620 |
+
"memory(GiB)": 21.89,
|
621 |
+
"step": 335,
|
622 |
+
"train_speed(iter/s)": 0.01562
|
623 |
+
},
|
624 |
+
{
|
625 |
+
"epoch": 1.0864691753402722,
|
626 |
+
"grad_norm": 0.5050953771476231,
|
627 |
+
"learning_rate": 2.2698039124517843e-05,
|
628 |
+
"loss": 0.549614429473877,
|
629 |
+
"memory(GiB)": 21.89,
|
630 |
+
"step": 340,
|
631 |
+
"train_speed(iter/s)": 0.01563
|
632 |
+
},
|
633 |
+
{
|
634 |
+
"epoch": 1.1024819855884709,
|
635 |
+
"grad_norm": 0.5126249224138567,
|
636 |
+
"learning_rate": 2.2469375176060017e-05,
|
637 |
+
"loss": 0.5438549041748046,
|
638 |
+
"memory(GiB)": 21.89,
|
639 |
+
"step": 345,
|
640 |
+
"train_speed(iter/s)": 0.015636
|
641 |
+
},
|
642 |
+
{
|
643 |
+
"epoch": 1.1184947958366693,
|
644 |
+
"grad_norm": 0.5398621051568007,
|
645 |
+
"learning_rate": 2.2238379331443118e-05,
|
646 |
+
"loss": 0.5632871627807617,
|
647 |
+
"memory(GiB)": 21.89,
|
648 |
+
"step": 350,
|
649 |
+
"train_speed(iter/s)": 0.015641
|
650 |
+
},
|
651 |
+
{
|
652 |
+
"epoch": 1.1345076060848678,
|
653 |
+
"grad_norm": 0.5036409732278169,
|
654 |
+
"learning_rate": 2.2005123706247113e-05,
|
655 |
+
"loss": 0.6045978546142579,
|
656 |
+
"memory(GiB)": 21.89,
|
657 |
+
"step": 355,
|
658 |
+
"train_speed(iter/s)": 0.015646
|
659 |
+
},
|
660 |
+
{
|
661 |
+
"epoch": 1.1505204163330665,
|
662 |
+
"grad_norm": 0.5689759899872553,
|
663 |
+
"learning_rate": 2.1769681121542527e-05,
|
664 |
+
"loss": 0.5987513542175293,
|
665 |
+
"memory(GiB)": 21.89,
|
666 |
+
"step": 360,
|
667 |
+
"train_speed(iter/s)": 0.015648
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 1.1665332265812651,
|
671 |
+
"grad_norm": 0.531069555558785,
|
672 |
+
"learning_rate": 2.153212508115613e-05,
|
673 |
+
"loss": 0.5959650039672851,
|
674 |
+
"memory(GiB)": 21.89,
|
675 |
+
"step": 365,
|
676 |
+
"train_speed(iter/s)": 0.015657
|
677 |
+
},
|
678 |
+
{
|
679 |
+
"epoch": 1.1825460368294636,
|
680 |
+
"grad_norm": 0.5226537183617093,
|
681 |
+
"learning_rate": 2.1292529748723436e-05,
|
682 |
+
"loss": 0.5860534191131592,
|
683 |
+
"memory(GiB)": 21.89,
|
684 |
+
"step": 370,
|
685 |
+
"train_speed(iter/s)": 0.01566
|
686 |
+
},
|
687 |
+
{
|
688 |
+
"epoch": 1.198558847077662,
|
689 |
+
"grad_norm": 0.5342824123143468,
|
690 |
+
"learning_rate": 2.1050969924535267e-05,
|
691 |
+
"loss": 0.5731143951416016,
|
692 |
+
"memory(GiB)": 21.89,
|
693 |
+
"step": 375,
|
694 |
+
"train_speed(iter/s)": 0.015665
|
695 |
+
},
|
696 |
+
{
|
697 |
+
"epoch": 1.2145716573258607,
|
698 |
+
"grad_norm": 0.5676516907493653,
|
699 |
+
"learning_rate": 2.080752102218553e-05,
|
700 |
+
"loss": 0.5592511177062989,
|
701 |
+
"memory(GiB)": 21.89,
|
702 |
+
"step": 380,
|
703 |
+
"train_speed(iter/s)": 0.015674
|
704 |
+
},
|
705 |
+
{
|
706 |
+
"epoch": 1.2305844675740594,
|
707 |
+
"grad_norm": 0.5615182761459606,
|
708 |
+
"learning_rate": 2.05622590450275e-05,
|
709 |
+
"loss": 0.5661966800689697,
|
710 |
+
"memory(GiB)": 21.89,
|
711 |
+
"step": 385,
|
712 |
+
"train_speed(iter/s)": 0.015681
|
713 |
+
},
|
714 |
+
{
|
715 |
+
"epoch": 1.2465972778222578,
|
716 |
+
"grad_norm": 0.5422157473688541,
|
717 |
+
"learning_rate": 2.0315260562446048e-05,
|
718 |
+
"loss": 0.5789735317230225,
|
719 |
+
"memory(GiB)": 21.89,
|
720 |
+
"step": 390,
|
721 |
+
"train_speed(iter/s)": 0.015684
|
722 |
+
},
|
723 |
+
{
|
724 |
+
"epoch": 1.2626100880704563,
|
725 |
+
"grad_norm": 0.6030245537246277,
|
726 |
+
"learning_rate": 2.0066602685953065e-05,
|
727 |
+
"loss": 0.5753808975219726,
|
728 |
+
"memory(GiB)": 21.89,
|
729 |
+
"step": 395,
|
730 |
+
"train_speed(iter/s)": 0.01569
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"epoch": 1.278622898318655,
|
734 |
+
"grad_norm": 0.6143418775145588,
|
735 |
+
"learning_rate": 1.9816363045113748e-05,
|
736 |
+
"loss": 0.5792715549468994,
|
737 |
+
"memory(GiB)": 21.89,
|
738 |
+
"step": 400,
|
739 |
+
"train_speed(iter/s)": 0.015693
|
740 |
+
},
|
741 |
+
{
|
742 |
+
"epoch": 1.2946357085668536,
|
743 |
+
"grad_norm": 0.5586151801773422,
|
744 |
+
"learning_rate": 1.9564619763311043e-05,
|
745 |
+
"loss": 0.584225845336914,
|
746 |
+
"memory(GiB)": 21.89,
|
747 |
+
"step": 405,
|
748 |
+
"train_speed(iter/s)": 0.015698
|
749 |
+
},
|
750 |
+
{
|
751 |
+
"epoch": 1.310648518815052,
|
752 |
+
"grad_norm": 0.584144416801851,
|
753 |
+
"learning_rate": 1.931145143335601e-05,
|
754 |
+
"loss": 0.5908011436462403,
|
755 |
+
"memory(GiB)": 21.89,
|
756 |
+
"step": 410,
|
757 |
+
"train_speed(iter/s)": 0.015701
|
758 |
+
},
|
759 |
+
{
|
760 |
+
"epoch": 1.3266613290632505,
|
761 |
+
"grad_norm": 0.5965303572137761,
|
762 |
+
"learning_rate": 1.905693709295158e-05,
|
763 |
+
"loss": 0.5673429489135742,
|
764 |
+
"memory(GiB)": 21.89,
|
765 |
+
"step": 415,
|
766 |
+
"train_speed(iter/s)": 0.015705
|
767 |
+
},
|
768 |
+
{
|
769 |
+
"epoch": 1.3426741393114492,
|
770 |
+
"grad_norm": 0.5722923860659136,
|
771 |
+
"learning_rate": 1.880115620001743e-05,
|
772 |
+
"loss": 0.5747467517852783,
|
773 |
+
"memory(GiB)": 21.89,
|
774 |
+
"step": 420,
|
775 |
+
"train_speed(iter/s)": 0.015707
|
776 |
+
},
|
777 |
+
{
|
778 |
+
"epoch": 1.3586869495596476,
|
779 |
+
"grad_norm": 0.5647139487279343,
|
780 |
+
"learning_rate": 1.854418860788369e-05,
|
781 |
+
"loss": 0.5886659622192383,
|
782 |
+
"memory(GiB)": 21.89,
|
783 |
+
"step": 425,
|
784 |
+
"train_speed(iter/s)": 0.015712
|
785 |
+
},
|
786 |
+
{
|
787 |
+
"epoch": 1.3746997598078463,
|
788 |
+
"grad_norm": 0.6032243756929382,
|
789 |
+
"learning_rate": 1.8286114540361192e-05,
|
790 |
+
"loss": 0.5596484184265137,
|
791 |
+
"memory(GiB)": 21.89,
|
792 |
+
"step": 430,
|
793 |
+
"train_speed(iter/s)": 0.015713
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"epoch": 1.3907125700560448,
|
797 |
+
"grad_norm": 0.5798367707195509,
|
798 |
+
"learning_rate": 1.802701456669603e-05,
|
799 |
+
"loss": 0.5662962913513183,
|
800 |
+
"memory(GiB)": 21.89,
|
801 |
+
"step": 435,
|
802 |
+
"train_speed(iter/s)": 0.01572
|
803 |
+
},
|
804 |
+
{
|
805 |
+
"epoch": 1.4067253803042434,
|
806 |
+
"grad_norm": 0.5899381390433364,
|
807 |
+
"learning_rate": 1.776696957641634e-05,
|
808 |
+
"loss": 0.5782527923583984,
|
809 |
+
"memory(GiB)": 21.89,
|
810 |
+
"step": 440,
|
811 |
+
"train_speed(iter/s)": 0.015723
|
812 |
+
},
|
813 |
+
{
|
814 |
+
"epoch": 1.4227381905524419,
|
815 |
+
"grad_norm": 0.5591301892423585,
|
816 |
+
"learning_rate": 1.7506060754079025e-05,
|
817 |
+
"loss": 0.5774744987487793,
|
818 |
+
"memory(GiB)": 21.89,
|
819 |
+
"step": 445,
|
820 |
+
"train_speed(iter/s)": 0.015728
|
821 |
+
},
|
822 |
+
{
|
823 |
+
"epoch": 1.4387510008006406,
|
824 |
+
"grad_norm": 0.5548307822015812,
|
825 |
+
"learning_rate": 1.7244369553924408e-05,
|
826 |
+
"loss": 0.5746015071868896,
|
827 |
+
"memory(GiB)": 21.89,
|
828 |
+
"step": 450,
|
829 |
+
"train_speed(iter/s)": 0.015734
|
830 |
+
},
|
831 |
+
{
|
832 |
+
"epoch": 1.454763811048839,
|
833 |
+
"grad_norm": 0.6162986484237953,
|
834 |
+
"learning_rate": 1.6981977674446692e-05,
|
835 |
+
"loss": 0.5718656063079834,
|
836 |
+
"memory(GiB)": 21.89,
|
837 |
+
"step": 455,
|
838 |
+
"train_speed(iter/s)": 0.015738
|
839 |
+
},
|
840 |
+
{
|
841 |
+
"epoch": 1.4707766212970377,
|
842 |
+
"grad_norm": 0.5999632035162504,
|
843 |
+
"learning_rate": 1.671896703288815e-05,
|
844 |
+
"loss": 0.5838316917419434,
|
845 |
+
"memory(GiB)": 21.89,
|
846 |
+
"step": 460,
|
847 |
+
"train_speed(iter/s)": 0.01574
|
848 |
+
},
|
849 |
+
{
|
850 |
+
"epoch": 1.4867894315452361,
|
851 |
+
"grad_norm": 0.5751934375698643,
|
852 |
+
"learning_rate": 1.6455419739665037e-05,
|
853 |
+
"loss": 0.5416177272796631,
|
854 |
+
"memory(GiB)": 21.89,
|
855 |
+
"step": 465,
|
856 |
+
"train_speed(iter/s)": 0.015742
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 1.5028022417934348,
|
860 |
+
"grad_norm": 0.6352358425841226,
|
861 |
+
"learning_rate": 1.6191418072733176e-05,
|
862 |
+
"loss": 0.5688335418701171,
|
863 |
+
"memory(GiB)": 21.89,
|
864 |
+
"step": 470,
|
865 |
+
"train_speed(iter/s)": 0.015747
|
866 |
+
},
|
867 |
+
{
|
868 |
+
"epoch": 1.5188150520416333,
|
869 |
+
"grad_norm": 0.632371720864356,
|
870 |
+
"learning_rate": 1.5927044451901265e-05,
|
871 |
+
"loss": 0.5808904647827149,
|
872 |
+
"memory(GiB)": 21.89,
|
873 |
+
"step": 475,
|
874 |
+
"train_speed(iter/s)": 0.015751
|
875 |
+
},
|
876 |
+
{
|
877 |
+
"epoch": 1.534827862289832,
|
878 |
+
"grad_norm": 0.6298236805463155,
|
879 |
+
"learning_rate": 1.5662381413099885e-05,
|
880 |
+
"loss": 0.5448812007904053,
|
881 |
+
"memory(GiB)": 21.89,
|
882 |
+
"step": 480,
|
883 |
+
"train_speed(iter/s)": 0.015752
|
884 |
+
},
|
885 |
+
{
|
886 |
+
"epoch": 1.5508406725380304,
|
887 |
+
"grad_norm": 0.5876950666906403,
|
888 |
+
"learning_rate": 1.5397511582614238e-05,
|
889 |
+
"loss": 0.5905604839324952,
|
890 |
+
"memory(GiB)": 21.89,
|
891 |
+
"step": 485,
|
892 |
+
"train_speed(iter/s)": 0.015754
|
893 |
+
},
|
894 |
+
{
|
895 |
+
"epoch": 1.5668534827862288,
|
896 |
+
"grad_norm": 0.6384696335208135,
|
897 |
+
"learning_rate": 1.5132517651288716e-05,
|
898 |
+
"loss": 0.5981444835662841,
|
899 |
+
"memory(GiB)": 21.89,
|
900 |
+
"step": 490,
|
901 |
+
"train_speed(iter/s)": 0.015756
|
902 |
+
},
|
903 |
+
{
|
904 |
+
"epoch": 1.5828662930344275,
|
905 |
+
"grad_norm": 0.5982709352921093,
|
906 |
+
"learning_rate": 1.4867482348711284e-05,
|
907 |
+
"loss": 0.5448336124420166,
|
908 |
+
"memory(GiB)": 21.89,
|
909 |
+
"step": 495,
|
910 |
+
"train_speed(iter/s)": 0.015757
|
911 |
+
},
|
912 |
+
{
|
913 |
+
"epoch": 1.5988791032826262,
|
914 |
+
"grad_norm": 0.6299909354063818,
|
915 |
+
"learning_rate": 1.4602488417385766e-05,
|
916 |
+
"loss": 0.5985595703125,
|
917 |
+
"memory(GiB)": 21.89,
|
918 |
+
"step": 500,
|
919 |
+
"train_speed(iter/s)": 0.01576
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"epoch": 1.6148919135308246,
|
923 |
+
"grad_norm": 0.6279367310875671,
|
924 |
+
"learning_rate": 1.4337618586900119e-05,
|
925 |
+
"loss": 0.5594313621520997,
|
926 |
+
"memory(GiB)": 21.89,
|
927 |
+
"step": 505,
|
928 |
+
"train_speed(iter/s)": 0.015763
|
929 |
+
},
|
930 |
+
{
|
931 |
+
"epoch": 1.630904723779023,
|
932 |
+
"grad_norm": 0.6414407834261869,
|
933 |
+
"learning_rate": 1.4072955548098741e-05,
|
934 |
+
"loss": 0.5500194549560546,
|
935 |
+
"memory(GiB)": 21.89,
|
936 |
+
"step": 510,
|
937 |
+
"train_speed(iter/s)": 0.015768
|
938 |
+
},
|
939 |
+
{
|
940 |
+
"epoch": 1.6469175340272217,
|
941 |
+
"grad_norm": 0.6597776832435496,
|
942 |
+
"learning_rate": 1.3808581927266827e-05,
|
943 |
+
"loss": 0.574251365661621,
|
944 |
+
"memory(GiB)": 21.89,
|
945 |
+
"step": 515,
|
946 |
+
"train_speed(iter/s)": 0.01577
|
947 |
+
},
|
948 |
+
{
|
949 |
+
"epoch": 1.6629303442754204,
|
950 |
+
"grad_norm": 0.5981444255387114,
|
951 |
+
"learning_rate": 1.354458026033497e-05,
|
952 |
+
"loss": 0.5687233924865722,
|
953 |
+
"memory(GiB)": 21.89,
|
954 |
+
"step": 520,
|
955 |
+
"train_speed(iter/s)": 0.015773
|
956 |
+
},
|
957 |
+
{
|
958 |
+
"epoch": 1.6789431545236189,
|
959 |
+
"grad_norm": 0.6626788950409892,
|
960 |
+
"learning_rate": 1.3281032967111851e-05,
|
961 |
+
"loss": 0.5612329006195068,
|
962 |
+
"memory(GiB)": 21.89,
|
963 |
+
"step": 525,
|
964 |
+
"train_speed(iter/s)": 0.015776
|
965 |
+
},
|
966 |
+
{
|
967 |
+
"epoch": 1.6949559647718173,
|
968 |
+
"grad_norm": 0.6165757016552958,
|
969 |
+
"learning_rate": 1.3018022325553313e-05,
|
970 |
+
"loss": 0.5564169406890869,
|
971 |
+
"memory(GiB)": 21.89,
|
972 |
+
"step": 530,
|
973 |
+
"train_speed(iter/s)": 0.015778
|
974 |
+
},
|
975 |
+
{
|
976 |
+
"epoch": 1.710968775020016,
|
977 |
+
"grad_norm": 0.6557631786725961,
|
978 |
+
"learning_rate": 1.2755630446075594e-05,
|
979 |
+
"loss": 0.5940975189208985,
|
980 |
+
"memory(GiB)": 21.89,
|
981 |
+
"step": 535,
|
982 |
+
"train_speed(iter/s)": 0.015782
|
983 |
+
},
|
984 |
+
{
|
985 |
+
"epoch": 1.7269815852682147,
|
986 |
+
"grad_norm": 0.6246530913265699,
|
987 |
+
"learning_rate": 1.2493939245920982e-05,
|
988 |
+
"loss": 0.5587568759918213,
|
989 |
+
"memory(GiB)": 21.89,
|
990 |
+
"step": 540,
|
991 |
+
"train_speed(iter/s)": 0.015784
|
992 |
+
},
|
993 |
+
{
|
994 |
+
"epoch": 1.742994395516413,
|
995 |
+
"grad_norm": 0.5688706338790032,
|
996 |
+
"learning_rate": 1.2233030423583662e-05,
|
997 |
+
"loss": 0.52943115234375,
|
998 |
+
"memory(GiB)": 21.89,
|
999 |
+
"step": 545,
|
1000 |
+
"train_speed(iter/s)": 0.015785
|
1001 |
+
},
|
1002 |
+
{
|
1003 |
+
"epoch": 1.7590072057646116,
|
1004 |
+
"grad_norm": 0.669504073907202,
|
1005 |
+
"learning_rate": 1.1972985433303976e-05,
|
1006 |
+
"loss": 0.5580001831054687,
|
1007 |
+
"memory(GiB)": 21.89,
|
1008 |
+
"step": 550,
|
1009 |
+
"train_speed(iter/s)": 0.015787
|
1010 |
+
},
|
1011 |
+
{
|
1012 |
+
"epoch": 1.7750200160128102,
|
1013 |
+
"grad_norm": 0.6235300104081916,
|
1014 |
+
"learning_rate": 1.1713885459638814e-05,
|
1015 |
+
"loss": 0.5758135795593262,
|
1016 |
+
"memory(GiB)": 21.89,
|
1017 |
+
"step": 555,
|
1018 |
+
"train_speed(iter/s)": 0.015788
|
1019 |
+
},
|
1020 |
+
{
|
1021 |
+
"epoch": 1.791032826261009,
|
1022 |
+
"grad_norm": 0.6352611781580906,
|
1023 |
+
"learning_rate": 1.1455811392116308e-05,
|
1024 |
+
"loss": 0.5714420795440673,
|
1025 |
+
"memory(GiB)": 21.89,
|
1026 |
+
"step": 560,
|
1027 |
+
"train_speed(iter/s)": 0.015791
|
1028 |
+
},
|
1029 |
+
{
|
1030 |
+
"epoch": 1.8070456365092074,
|
1031 |
+
"grad_norm": 0.6806986898527,
|
1032 |
+
"learning_rate": 1.1198843799982572e-05,
|
1033 |
+
"loss": 0.5534315586090088,
|
1034 |
+
"memory(GiB)": 21.89,
|
1035 |
+
"step": 565,
|
1036 |
+
"train_speed(iter/s)": 0.015793
|
1037 |
+
},
|
1038 |
+
{
|
1039 |
+
"epoch": 1.8230584467574058,
|
1040 |
+
"grad_norm": 0.5993577207262759,
|
1041 |
+
"learning_rate": 1.0943062907048421e-05,
|
1042 |
+
"loss": 0.5411487102508545,
|
1043 |
+
"memory(GiB)": 21.89,
|
1044 |
+
"step": 570,
|
1045 |
+
"train_speed(iter/s)": 0.015794
|
1046 |
+
},
|
1047 |
+
{
|
1048 |
+
"epoch": 1.8390712570056045,
|
1049 |
+
"grad_norm": 0.6680590526449376,
|
1050 |
+
"learning_rate": 1.0688548566643992e-05,
|
1051 |
+
"loss": 0.5467194080352783,
|
1052 |
+
"memory(GiB)": 21.89,
|
1053 |
+
"step": 575,
|
1054 |
+
"train_speed(iter/s)": 0.015797
|
1055 |
+
},
|
1056 |
+
{
|
1057 |
+
"epoch": 1.8550840672538031,
|
1058 |
+
"grad_norm": 0.6649716095610546,
|
1059 |
+
"learning_rate": 1.0485902421783774e-05,
|
1060 |
+
"loss": 0.578249454498291,
|
1061 |
+
"memory(GiB)": 21.89,
|
1062 |
+
"step": 580,
|
1063 |
+
"train_speed(iter/s)": 0.0158
|
1064 |
+
},
|
1065 |
+
{
|
1066 |
+
"epoch": 1.8710968775020016,
|
1067 |
+
"grad_norm": 0.6103854609707349,
|
1068 |
+
"learning_rate": 1.0233867828334953e-05,
|
1069 |
+
"loss": 0.5735835552215576,
|
1070 |
+
"memory(GiB)": 21.89,
|
1071 |
+
"step": 585,
|
1072 |
+
"train_speed(iter/s)": 0.015801
|
1073 |
+
},
|
1074 |
+
{
|
1075 |
+
"epoch": 1.8871096877502,
|
1076 |
+
"grad_norm": 0.753072105008473,
|
1077 |
+
"learning_rate": 9.98332119405846e-06,
|
1078 |
+
"loss": 0.5487753868103027,
|
1079 |
+
"memory(GiB)": 21.89,
|
1080 |
+
"step": 590,
|
1081 |
+
"train_speed(iter/s)": 0.015805
|
1082 |
+
},
|
1083 |
+
{
|
1084 |
+
"epoch": 1.9031224979983987,
|
1085 |
+
"grad_norm": 0.6170844249926819,
|
1086 |
+
"learning_rate": 9.734340738178836e-06,
|
1087 |
+
"loss": 0.5737974166870117,
|
1088 |
+
"memory(GiB)": 21.89,
|
1089 |
+
"step": 595,
|
1090 |
+
"train_speed(iter/s)": 0.015808
|
1091 |
+
},
|
1092 |
+
{
|
1093 |
+
"epoch": 1.9191353082465974,
|
1094 |
+
"grad_norm": 0.6451794374019962,
|
1095 |
+
"learning_rate": 9.487004190968708e-06,
|
1096 |
+
"loss": 0.552049970626831,
|
1097 |
+
"memory(GiB)": 21.89,
|
1098 |
+
"step": 600,
|
1099 |
+
"train_speed(iter/s)": 0.015809
|
1100 |
+
},
|
1101 |
+
{
|
1102 |
+
"epoch": 1.9351481184947958,
|
1103 |
+
"grad_norm": 0.6251942278157026,
|
1104 |
+
"learning_rate": 9.241388769481819e-06,
|
1105 |
+
"loss": 0.5469517707824707,
|
1106 |
+
"memory(GiB)": 21.89,
|
1107 |
+
"step": 605,
|
1108 |
+
"train_speed(iter/s)": 0.015812
|
1109 |
+
},
|
1110 |
+
{
|
1111 |
+
"epoch": 1.9511609287429943,
|
1112 |
+
"grad_norm": 0.6198204771719735,
|
1113 |
+
"learning_rate": 8.99757115344633e-06,
|
1114 |
+
"loss": 0.5650198936462403,
|
1115 |
+
"memory(GiB)": 21.89,
|
1116 |
+
"step": 610,
|
1117 |
+
"train_speed(iter/s)": 0.015812
|
1118 |
+
},
|
1119 |
+
{
|
1120 |
+
"epoch": 1.967173738991193,
|
1121 |
+
"grad_norm": 0.6356161184262821,
|
1122 |
+
"learning_rate": 8.755627461325817e-06,
|
1123 |
+
"loss": 0.5307876586914062,
|
1124 |
+
"memory(GiB)": 21.89,
|
1125 |
+
"step": 615,
|
1126 |
+
"train_speed(iter/s)": 0.015813
|
1127 |
+
},
|
1128 |
+
{
|
1129 |
+
"epoch": 1.9831865492393916,
|
1130 |
+
"grad_norm": 0.6601174519481827,
|
1131 |
+
"learning_rate": 8.515633226555564e-06,
|
1132 |
+
"loss": 0.5552098274230957,
|
1133 |
+
"memory(GiB)": 21.89,
|
1134 |
+
"step": 620,
|
1135 |
+
"train_speed(iter/s)": 0.015815
|
1136 |
+
},
|
1137 |
+
{
|
1138 |
+
"epoch": 1.99919935948759,
|
1139 |
+
"grad_norm": 0.6493635460743743,
|
1140 |
+
"learning_rate": 8.277663373961396e-06,
|
1141 |
+
"loss": 0.5575791358947754,
|
1142 |
+
"memory(GiB)": 21.89,
|
1143 |
+
"step": 625,
|
1144 |
+
"train_speed(iter/s)": 0.015818
|
1145 |
+
},
|
1146 |
+
{
|
1147 |
+
"epoch": 2.012810248198559,
|
1148 |
+
"grad_norm": 0.6130205867475395,
|
1149 |
+
"learning_rate": 8.04179219636866e-06,
|
1150 |
+
"loss": 0.5210562705993652,
|
1151 |
+
"memory(GiB)": 21.89,
|
1152 |
+
"step": 630,
|
1153 |
+
"train_speed(iter/s)": 0.015839
|
1154 |
+
},
|
1155 |
+
{
|
1156 |
+
"epoch": 2.0288230584467573,
|
1157 |
+
"grad_norm": 0.6169564813848567,
|
1158 |
+
"learning_rate": 7.808093331408354e-06,
|
1159 |
+
"loss": 0.5348440647125244,
|
1160 |
+
"memory(GiB)": 21.89,
|
1161 |
+
"step": 635,
|
1162 |
+
"train_speed(iter/s)": 0.015839
|
1163 |
+
},
|
1164 |
+
{
|
1165 |
+
"epoch": 2.044835868694956,
|
1166 |
+
"grad_norm": 0.6502484575021102,
|
1167 |
+
"learning_rate": 7.5766397385279204e-06,
|
1168 |
+
"loss": 0.4850314140319824,
|
1169 |
+
"memory(GiB)": 21.89,
|
1170 |
+
"step": 640,
|
1171 |
+
"train_speed(iter/s)": 0.015839
|
1172 |
+
}
|
1173 |
+
],
|
1174 |
+
"logging_steps": 5,
|
1175 |
+
"max_steps": 936,
|
1176 |
+
"num_input_tokens_seen": 0,
|
1177 |
+
"num_train_epochs": 3,
|
1178 |
+
"save_steps": 640,
|
1179 |
+
"stateful_callbacks": {
|
1180 |
+
"TrainerControl": {
|
1181 |
+
"args": {
|
1182 |
+
"should_epoch_stop": false,
|
1183 |
+
"should_evaluate": false,
|
1184 |
+
"should_log": false,
|
1185 |
+
"should_save": true,
|
1186 |
+
"should_training_stop": false
|
1187 |
+
},
|
1188 |
+
"attributes": {}
|
1189 |
+
}
|
1190 |
+
},
|
1191 |
+
"total_flos": 240166800818176.0,
|
1192 |
+
"train_batch_size": 1,
|
1193 |
+
"trial_name": null,
|
1194 |
+
"trial_params": null
|
1195 |
+
}
|
v0-20250526-142723/checkpoint-640/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:858c61ca7c16487e1f1d03f40e0f57220ac2d4a688d05729201fe8a4acd1052b
|
3 |
+
size 8312
|
v0-20250526-142723/checkpoint-640/zero_to_fp32.py
ADDED
@@ -0,0 +1,760 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example:
|
14 |
+
# python zero_to_fp32.py . output_dir/
|
15 |
+
# or
|
16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
import glob
|
21 |
+
import math
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import gc
|
25 |
+
import json
|
26 |
+
import numpy as np
|
27 |
+
from tqdm import tqdm
|
28 |
+
from collections import OrderedDict
|
29 |
+
from dataclasses import dataclass
|
30 |
+
|
31 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
32 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
33 |
+
from deepspeed.utils import logger
|
34 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
35 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
36 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
37 |
+
|
38 |
+
|
39 |
+
@dataclass
|
40 |
+
class zero_model_state:
|
41 |
+
buffers: dict()
|
42 |
+
param_shapes: dict()
|
43 |
+
shared_params: list
|
44 |
+
ds_version: int
|
45 |
+
frozen_param_shapes: dict()
|
46 |
+
frozen_param_fragments: dict()
|
47 |
+
|
48 |
+
|
49 |
+
debug = 0
|
50 |
+
|
51 |
+
# load to cpu
|
52 |
+
device = torch.device('cpu')
|
53 |
+
|
54 |
+
|
55 |
+
def atoi(text):
|
56 |
+
return int(text) if text.isdigit() else text
|
57 |
+
|
58 |
+
|
59 |
+
def natural_keys(text):
|
60 |
+
'''
|
61 |
+
alist.sort(key=natural_keys) sorts in human order
|
62 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
63 |
+
(See Toothy's implementation in the comments)
|
64 |
+
'''
|
65 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
66 |
+
|
67 |
+
|
68 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
69 |
+
if not os.path.isdir(checkpoint_dir):
|
70 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
71 |
+
|
72 |
+
# there should be only one file
|
73 |
+
if zero_stage <= 2:
|
74 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
75 |
+
elif zero_stage == 3:
|
76 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
77 |
+
|
78 |
+
if not os.path.exists(file):
|
79 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
80 |
+
|
81 |
+
return file
|
82 |
+
|
83 |
+
|
84 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
85 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
86 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
87 |
+
|
88 |
+
if len(ckpt_files) == 0:
|
89 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
90 |
+
|
91 |
+
return ckpt_files
|
92 |
+
|
93 |
+
|
94 |
+
def get_optim_files(checkpoint_dir):
|
95 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
96 |
+
|
97 |
+
|
98 |
+
def get_model_state_files(checkpoint_dir):
|
99 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
100 |
+
|
101 |
+
|
102 |
+
def parse_model_states(files):
|
103 |
+
zero_model_states = []
|
104 |
+
for file in files:
|
105 |
+
state_dict = torch.load(file, map_location=device, weights_only=False)
|
106 |
+
|
107 |
+
if BUFFER_NAMES not in state_dict:
|
108 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
109 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
110 |
+
if debug:
|
111 |
+
print("Found buffers:", buffer_names)
|
112 |
+
|
113 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
114 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
115 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
116 |
+
|
117 |
+
# collect parameters that are included in param_shapes
|
118 |
+
param_names = []
|
119 |
+
for s in param_shapes:
|
120 |
+
for name in s.keys():
|
121 |
+
param_names.append(name)
|
122 |
+
|
123 |
+
# update with frozen parameters
|
124 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
125 |
+
if frozen_param_shapes is not None:
|
126 |
+
if debug:
|
127 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
128 |
+
param_names += list(frozen_param_shapes.keys())
|
129 |
+
|
130 |
+
# handle shared params
|
131 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
132 |
+
|
133 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
134 |
+
|
135 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
136 |
+
|
137 |
+
z_model_state = zero_model_state(buffers=buffers,
|
138 |
+
param_shapes=param_shapes,
|
139 |
+
shared_params=shared_params,
|
140 |
+
ds_version=ds_version,
|
141 |
+
frozen_param_shapes=frozen_param_shapes,
|
142 |
+
frozen_param_fragments=frozen_param_fragments)
|
143 |
+
zero_model_states.append(z_model_state)
|
144 |
+
|
145 |
+
return zero_model_states
|
146 |
+
|
147 |
+
|
148 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
149 |
+
total_files = len(files)
|
150 |
+
state_dicts = []
|
151 |
+
for f in tqdm(files, desc='Loading checkpoint shards'):
|
152 |
+
state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
|
153 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
154 |
+
# and also handle the case where it was already removed by another helper script
|
155 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
156 |
+
state_dicts.append(state_dict)
|
157 |
+
|
158 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
159 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
160 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
161 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
162 |
+
|
163 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
164 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
165 |
+
# use the max of the partition_count to get the dp world_size.
|
166 |
+
|
167 |
+
if type(world_size) is list:
|
168 |
+
world_size = max(world_size)
|
169 |
+
|
170 |
+
if world_size != total_files:
|
171 |
+
raise ValueError(
|
172 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
173 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
174 |
+
)
|
175 |
+
|
176 |
+
# the groups are named differently in each stage
|
177 |
+
if zero_stage <= 2:
|
178 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
179 |
+
elif zero_stage == 3:
|
180 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
181 |
+
else:
|
182 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
183 |
+
|
184 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
185 |
+
return zero_stage, world_size, fp32_flat_groups
|
186 |
+
|
187 |
+
|
188 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
189 |
+
"""
|
190 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
191 |
+
|
192 |
+
Args:
|
193 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
194 |
+
|
195 |
+
"""
|
196 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
197 |
+
|
198 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
199 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
200 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
201 |
+
|
202 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
203 |
+
|
204 |
+
zero_model_states = parse_model_states(model_files)
|
205 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
206 |
+
|
207 |
+
if zero_stage <= 2:
|
208 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
209 |
+
exclude_frozen_parameters)
|
210 |
+
elif zero_stage == 3:
|
211 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
212 |
+
exclude_frozen_parameters)
|
213 |
+
|
214 |
+
|
215 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
216 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
217 |
+
return
|
218 |
+
|
219 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
220 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
221 |
+
|
222 |
+
if debug:
|
223 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
224 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
225 |
+
|
226 |
+
wanted_params = len(frozen_param_shapes)
|
227 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
229 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
230 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
231 |
+
|
232 |
+
total_params = 0
|
233 |
+
total_numel = 0
|
234 |
+
for name, shape in frozen_param_shapes.items():
|
235 |
+
total_params += 1
|
236 |
+
unpartitioned_numel = shape.numel()
|
237 |
+
total_numel += unpartitioned_numel
|
238 |
+
|
239 |
+
state_dict[name] = frozen_param_fragments[name]
|
240 |
+
|
241 |
+
if debug:
|
242 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
243 |
+
|
244 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
245 |
+
|
246 |
+
|
247 |
+
def _has_callable(obj, fn):
|
248 |
+
attr = getattr(obj, fn, None)
|
249 |
+
return callable(attr)
|
250 |
+
|
251 |
+
|
252 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
253 |
+
param_shapes = zero_model_states[0].param_shapes
|
254 |
+
|
255 |
+
# Reconstruction protocol:
|
256 |
+
#
|
257 |
+
# XXX: document this
|
258 |
+
|
259 |
+
if debug:
|
260 |
+
for i in range(world_size):
|
261 |
+
for j in range(len(fp32_flat_groups[0])):
|
262 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
263 |
+
|
264 |
+
# XXX: memory usage doubles here (zero2)
|
265 |
+
num_param_groups = len(fp32_flat_groups[0])
|
266 |
+
merged_single_partition_of_fp32_groups = []
|
267 |
+
for i in range(num_param_groups):
|
268 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
269 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
270 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
271 |
+
avail_numel = sum(
|
272 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
273 |
+
|
274 |
+
if debug:
|
275 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
276 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
277 |
+
# not asserting if there is a mismatch due to possible padding
|
278 |
+
print(f"Have {avail_numel} numels to process.")
|
279 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
280 |
+
|
281 |
+
# params
|
282 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
283 |
+
# out-of-core computing solution
|
284 |
+
total_numel = 0
|
285 |
+
total_params = 0
|
286 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
287 |
+
offset = 0
|
288 |
+
avail_numel = full_single_fp32_vector.numel()
|
289 |
+
for name, shape in shapes.items():
|
290 |
+
|
291 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
292 |
+
total_numel += unpartitioned_numel
|
293 |
+
total_params += 1
|
294 |
+
|
295 |
+
if debug:
|
296 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
297 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
298 |
+
offset += unpartitioned_numel
|
299 |
+
|
300 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
301 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
302 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
303 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
304 |
+
align_to = 2 * world_size
|
305 |
+
|
306 |
+
def zero2_align(x):
|
307 |
+
return align_to * math.ceil(x / align_to)
|
308 |
+
|
309 |
+
if debug:
|
310 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
311 |
+
|
312 |
+
offset = zero2_align(offset)
|
313 |
+
avail_numel = zero2_align(avail_numel)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
# Sanity check
|
319 |
+
if offset != avail_numel:
|
320 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
321 |
+
|
322 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
323 |
+
|
324 |
+
|
325 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
326 |
+
exclude_frozen_parameters):
|
327 |
+
state_dict = OrderedDict()
|
328 |
+
|
329 |
+
# buffers
|
330 |
+
buffers = zero_model_states[0].buffers
|
331 |
+
state_dict.update(buffers)
|
332 |
+
if debug:
|
333 |
+
print(f"added {len(buffers)} buffers")
|
334 |
+
|
335 |
+
if not exclude_frozen_parameters:
|
336 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
337 |
+
|
338 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
339 |
+
|
340 |
+
# recover shared parameters
|
341 |
+
for pair in zero_model_states[0].shared_params:
|
342 |
+
if pair[1] in state_dict:
|
343 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
344 |
+
|
345 |
+
return state_dict
|
346 |
+
|
347 |
+
|
348 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
349 |
+
remainder = unpartitioned_numel % world_size
|
350 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
351 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
352 |
+
return partitioned_numel, padding_numel
|
353 |
+
|
354 |
+
|
355 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
356 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
357 |
+
return
|
358 |
+
|
359 |
+
if debug:
|
360 |
+
for i in range(world_size):
|
361 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
362 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
363 |
+
|
364 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
365 |
+
wanted_params = len(frozen_param_shapes)
|
366 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
367 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
368 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
369 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
370 |
+
|
371 |
+
total_params = 0
|
372 |
+
total_numel = 0
|
373 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
374 |
+
total_params += 1
|
375 |
+
unpartitioned_numel = shape.numel()
|
376 |
+
total_numel += unpartitioned_numel
|
377 |
+
|
378 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
379 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
380 |
+
|
381 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
382 |
+
|
383 |
+
if debug:
|
384 |
+
print(
|
385 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
386 |
+
)
|
387 |
+
|
388 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
389 |
+
|
390 |
+
|
391 |
+
class GatheredTensor:
|
392 |
+
"""
|
393 |
+
A pseudo tensor that collects partitioned weights.
|
394 |
+
It is more memory efficient when there are multiple groups.
|
395 |
+
"""
|
396 |
+
|
397 |
+
def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
|
398 |
+
self.flat_groups = flat_groups
|
399 |
+
self.flat_groups_offset = flat_groups_offset
|
400 |
+
self.offset = offset
|
401 |
+
self.partitioned_numel = partitioned_numel
|
402 |
+
self.shape = shape
|
403 |
+
self.dtype = self.flat_groups[0][0].dtype
|
404 |
+
|
405 |
+
def contiguous(self):
|
406 |
+
"""
|
407 |
+
Merge partitioned weights from flat_groups into a single tensor.
|
408 |
+
"""
|
409 |
+
end_idx = self.offset + self.partitioned_numel
|
410 |
+
world_size = len(self.flat_groups)
|
411 |
+
pad_flat_param_chunks = []
|
412 |
+
|
413 |
+
for rank_i in range(world_size):
|
414 |
+
# for each rank, we need to collect weights from related group/groups
|
415 |
+
flat_groups_at_rank_i = self.flat_groups[rank_i]
|
416 |
+
start_group_id = None
|
417 |
+
end_group_id = None
|
418 |
+
for group_id in range(len(self.flat_groups_offset)):
|
419 |
+
if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
|
420 |
+
start_group_id = group_id
|
421 |
+
if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
|
422 |
+
end_group_id = group_id
|
423 |
+
break
|
424 |
+
# collect weights from related group/groups
|
425 |
+
for group_id in range(start_group_id, end_group_id + 1):
|
426 |
+
flat_tensor = flat_groups_at_rank_i[group_id]
|
427 |
+
start_offset = self.offset - self.flat_groups_offset[group_id]
|
428 |
+
end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
|
429 |
+
pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
|
430 |
+
|
431 |
+
# collect weights from all ranks
|
432 |
+
pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
|
433 |
+
param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
|
434 |
+
return param
|
435 |
+
|
436 |
+
|
437 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
438 |
+
param_shapes = zero_model_states[0].param_shapes
|
439 |
+
avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
|
440 |
+
|
441 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
442 |
+
# param, re-consolidating each param, while dealing with padding if any
|
443 |
+
|
444 |
+
# merge list of dicts, preserving order
|
445 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
446 |
+
|
447 |
+
if debug:
|
448 |
+
for i in range(world_size):
|
449 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
450 |
+
|
451 |
+
wanted_params = len(param_shapes)
|
452 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
453 |
+
# not asserting if there is a mismatch due to possible padding
|
454 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
455 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
456 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
457 |
+
|
458 |
+
# params
|
459 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
460 |
+
# out-of-core computing solution
|
461 |
+
offset = 0
|
462 |
+
total_numel = 0
|
463 |
+
total_params = 0
|
464 |
+
flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
|
465 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
|
466 |
+
unpartitioned_numel = shape.numel()
|
467 |
+
total_numel += unpartitioned_numel
|
468 |
+
total_params += 1
|
469 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
470 |
+
|
471 |
+
if debug:
|
472 |
+
print(
|
473 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
474 |
+
)
|
475 |
+
|
476 |
+
# memory efficient tensor
|
477 |
+
tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
|
478 |
+
state_dict[name] = tensor
|
479 |
+
offset += partitioned_numel
|
480 |
+
|
481 |
+
offset *= world_size
|
482 |
+
|
483 |
+
# Sanity check
|
484 |
+
if offset != avail_numel:
|
485 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
486 |
+
|
487 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
488 |
+
|
489 |
+
|
490 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
491 |
+
exclude_frozen_parameters):
|
492 |
+
state_dict = OrderedDict()
|
493 |
+
|
494 |
+
# buffers
|
495 |
+
buffers = zero_model_states[0].buffers
|
496 |
+
state_dict.update(buffers)
|
497 |
+
if debug:
|
498 |
+
print(f"added {len(buffers)} buffers")
|
499 |
+
|
500 |
+
if not exclude_frozen_parameters:
|
501 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
502 |
+
|
503 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
504 |
+
|
505 |
+
# recover shared parameters
|
506 |
+
for pair in zero_model_states[0].shared_params:
|
507 |
+
if pair[1] in state_dict:
|
508 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
509 |
+
|
510 |
+
return state_dict
|
511 |
+
|
512 |
+
|
513 |
+
def to_torch_tensor(state_dict, return_empty_tensor=False):
|
514 |
+
"""
|
515 |
+
Convert state_dict of GatheredTensor to torch tensor
|
516 |
+
"""
|
517 |
+
torch_state_dict = {}
|
518 |
+
converted_tensors = {}
|
519 |
+
for name, tensor in state_dict.items():
|
520 |
+
tensor_id = id(tensor)
|
521 |
+
if tensor_id in converted_tensors: # shared tensors
|
522 |
+
shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
|
523 |
+
torch_state_dict[name] = shared_tensor
|
524 |
+
else:
|
525 |
+
converted_tensors[tensor_id] = name
|
526 |
+
if return_empty_tensor:
|
527 |
+
torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
|
528 |
+
else:
|
529 |
+
torch_state_dict[name] = tensor.contiguous()
|
530 |
+
return torch_state_dict
|
531 |
+
|
532 |
+
|
533 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
534 |
+
tag=None,
|
535 |
+
exclude_frozen_parameters=False,
|
536 |
+
lazy_mode=False):
|
537 |
+
"""
|
538 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
539 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
540 |
+
via a model hub.
|
541 |
+
|
542 |
+
Args:
|
543 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
544 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
545 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
546 |
+
- ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
|
547 |
+
Convert the pesduo tensor to torch tensor by ``.contiguous()``
|
548 |
+
|
549 |
+
Returns:
|
550 |
+
- pytorch ``state_dict``
|
551 |
+
|
552 |
+
A typical usage might be ::
|
553 |
+
|
554 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
555 |
+
# do the training and checkpoint saving
|
556 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
557 |
+
model = model.cpu() # move to cpu
|
558 |
+
model.load_state_dict(state_dict)
|
559 |
+
# submit to model hub or save the model to share with others
|
560 |
+
|
561 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
562 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
563 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
564 |
+
|
565 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
566 |
+
|
567 |
+
Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
|
568 |
+
You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
569 |
+
the checkpoint. Or you can load state_dict in lazy mode ::
|
570 |
+
|
571 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
572 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
|
573 |
+
for name, lazy_tensor in state_dict.item():
|
574 |
+
tensor = lazy_tensor.contiguous() # to cpu
|
575 |
+
print(name, tensor)
|
576 |
+
# del tensor to release memory if it no longer in use
|
577 |
+
"""
|
578 |
+
if tag is None:
|
579 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
580 |
+
if os.path.isfile(latest_path):
|
581 |
+
with open(latest_path, 'r') as fd:
|
582 |
+
tag = fd.read().strip()
|
583 |
+
else:
|
584 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
585 |
+
|
586 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
587 |
+
|
588 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
589 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
590 |
+
|
591 |
+
state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
592 |
+
if lazy_mode:
|
593 |
+
return state_dict
|
594 |
+
else:
|
595 |
+
return to_torch_tensor(state_dict)
|
596 |
+
|
597 |
+
|
598 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
599 |
+
output_dir,
|
600 |
+
max_shard_size="5GB",
|
601 |
+
safe_serialization=False,
|
602 |
+
tag=None,
|
603 |
+
exclude_frozen_parameters=False):
|
604 |
+
"""
|
605 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
606 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
607 |
+
|
608 |
+
Args:
|
609 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
610 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
611 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
612 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
613 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
614 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
615 |
+
"""
|
616 |
+
|
617 |
+
# Dependency pre-check
|
618 |
+
if safe_serialization:
|
619 |
+
try:
|
620 |
+
from safetensors.torch import save_file
|
621 |
+
except ImportError:
|
622 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
623 |
+
raise
|
624 |
+
if max_shard_size is not None:
|
625 |
+
try:
|
626 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
627 |
+
except ImportError:
|
628 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
629 |
+
raise
|
630 |
+
|
631 |
+
# Convert zero checkpoint to state_dict
|
632 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
633 |
+
tag,
|
634 |
+
exclude_frozen_parameters,
|
635 |
+
lazy_mode=True)
|
636 |
+
|
637 |
+
# Shard the model if it is too big.
|
638 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
639 |
+
if max_shard_size is not None:
|
640 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
641 |
+
# an memory-efficient approach for sharding
|
642 |
+
empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
|
643 |
+
state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
|
644 |
+
filename_pattern=filename_pattern,
|
645 |
+
max_shard_size=max_shard_size)
|
646 |
+
else:
|
647 |
+
from collections import namedtuple
|
648 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
649 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
650 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
651 |
+
|
652 |
+
# Save the model by shard
|
653 |
+
os.makedirs(output_dir, exist_ok=True)
|
654 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
655 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
656 |
+
shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
|
657 |
+
shard_state_dict = to_torch_tensor(shard_state_dict)
|
658 |
+
output_path = os.path.join(output_dir, shard_file)
|
659 |
+
if safe_serialization:
|
660 |
+
save_file(shard_state_dict, output_path, metadata={"format": "pt"})
|
661 |
+
else:
|
662 |
+
torch.save(shard_state_dict, output_path)
|
663 |
+
# release the memory of current shard
|
664 |
+
for tensor_name in list(shard_state_dict.keys()):
|
665 |
+
del state_dict[tensor_name]
|
666 |
+
del shard_state_dict[tensor_name]
|
667 |
+
del shard_state_dict
|
668 |
+
gc.collect()
|
669 |
+
|
670 |
+
# Save index if sharded
|
671 |
+
if state_dict_split.is_sharded:
|
672 |
+
index = {
|
673 |
+
"metadata": state_dict_split.metadata,
|
674 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
675 |
+
}
|
676 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
677 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
678 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
679 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
680 |
+
f.write(content)
|
681 |
+
|
682 |
+
|
683 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
684 |
+
"""
|
685 |
+
1. Put the provided model to cpu
|
686 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
687 |
+
3. Load it into the provided model
|
688 |
+
|
689 |
+
Args:
|
690 |
+
- ``model``: the model object to update
|
691 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
692 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
693 |
+
|
694 |
+
Returns:
|
695 |
+
- ``model`: modified model
|
696 |
+
|
697 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
698 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
699 |
+
conveniently placed for you in the checkpoint folder.
|
700 |
+
|
701 |
+
A typical usage might be ::
|
702 |
+
|
703 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
704 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
705 |
+
# submit to model hub or save the model to share with others
|
706 |
+
|
707 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
708 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
709 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
710 |
+
|
711 |
+
"""
|
712 |
+
logger.info(f"Extracting fp32 weights")
|
713 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
714 |
+
|
715 |
+
logger.info(f"Overwriting model with fp32 weights")
|
716 |
+
model = model.cpu()
|
717 |
+
model.load_state_dict(state_dict, strict=False)
|
718 |
+
|
719 |
+
return model
|
720 |
+
|
721 |
+
|
722 |
+
if __name__ == "__main__":
|
723 |
+
parser = argparse.ArgumentParser()
|
724 |
+
parser.add_argument("checkpoint_dir",
|
725 |
+
type=str,
|
726 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
727 |
+
parser.add_argument("output_dir",
|
728 |
+
type=str,
|
729 |
+
help="directory to the pytorch fp32 state_dict output files"
|
730 |
+
"(e.g. path/checkpoint-12-output/)")
|
731 |
+
parser.add_argument(
|
732 |
+
"--max_shard_size",
|
733 |
+
type=str,
|
734 |
+
default="5GB",
|
735 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
736 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
737 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
738 |
+
"without CPU OOM issues.")
|
739 |
+
parser.add_argument(
|
740 |
+
"--safe_serialization",
|
741 |
+
default=False,
|
742 |
+
action='store_true',
|
743 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
744 |
+
parser.add_argument("-t",
|
745 |
+
"--tag",
|
746 |
+
type=str,
|
747 |
+
default=None,
|
748 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
749 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
750 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
751 |
+
args = parser.parse_args()
|
752 |
+
|
753 |
+
debug = args.debug
|
754 |
+
|
755 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
756 |
+
args.output_dir,
|
757 |
+
max_shard_size=args.max_shard_size,
|
758 |
+
safe_serialization=args.safe_serialization,
|
759 |
+
tag=args.tag,
|
760 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
v0-20250526-142723/logging.jsonl
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{"loss": 1.42356014, "grad_norm": 1.11349333, "learning_rate": 6.4e-07, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.001478, "epoch": 0.00320256, "global_step/max_steps": "1/936", "percentage": "0.11%", "elapsed_time": "6m 51s", "remaining_time": "4d 10h 56m 8s"}
|
2 |
+
{"loss": 1.40599716, "grad_norm": 1.25124496, "learning_rate": 3.19e-06, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.0054, "epoch": 0.01601281, "global_step/max_steps": "5/936", "percentage": "0.53%", "elapsed_time": "11m 1s", "remaining_time": "1d 10h 11m 30s"}
|
3 |
+
{"loss": 1.40401821, "grad_norm": 1.1685257, "learning_rate": 6.38e-06, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.008109, "epoch": 0.03202562, "global_step/max_steps": "10/936", "percentage": "1.07%", "elapsed_time": "16m 8s", "remaining_time": "1d 0h 54m 23s"}
|
4 |
+
{"loss": 1.27246017, "grad_norm": 1.03478921, "learning_rate": 9.57e-06, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.009701, "epoch": 0.04803843, "global_step/max_steps": "15/936", "percentage": "1.60%", "elapsed_time": "21m 21s", "remaining_time": "21h 51m 19s"}
|
5 |
+
{"loss": 1.17078476, "grad_norm": 0.71706113, "learning_rate": 1.277e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.010796, "epoch": 0.06405124, "global_step/max_steps": "20/936", "percentage": "2.14%", "elapsed_time": "26m 27s", "remaining_time": "20h 11m 57s"}
|
6 |
+
{"loss": 1.07973175, "grad_norm": 0.60486495, "learning_rate": 1.596e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.011557, "epoch": 0.08006405, "global_step/max_steps": "25/936", "percentage": "2.67%", "elapsed_time": "31m 38s", "remaining_time": "19h 12m 53s"}
|
7 |
+
{"loss": 0.98979931, "grad_norm": 0.69383253, "learning_rate": 1.915e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.012125, "epoch": 0.09607686, "global_step/max_steps": "30/936", "percentage": "3.21%", "elapsed_time": "36m 49s", "remaining_time": "18h 32m 0s"}
|
8 |
+
{"loss": 0.89156942, "grad_norm": 0.60953015, "learning_rate": 2.234e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.012567, "epoch": 0.11208967, "global_step/max_steps": "35/936", "percentage": "3.74%", "elapsed_time": "42m 0s", "remaining_time": "18h 1m 15s"}
|
9 |
+
{"loss": 0.84860582, "grad_norm": 0.60608669, "learning_rate": 2.553e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.012912, "epoch": 0.12810248, "global_step/max_steps": "40/936", "percentage": "4.27%", "elapsed_time": "47m 12s", "remaining_time": "17h 37m 38s"}
|
10 |
+
{"loss": 0.79683151, "grad_norm": 0.55424715, "learning_rate": 2.872e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.013196, "epoch": 0.14411529, "global_step/max_steps": "45/936", "percentage": "4.81%", "elapsed_time": "52m 25s", "remaining_time": "17h 17m 58s"}
|
11 |
+
{"loss": 0.77137823, "grad_norm": 0.53280986, "learning_rate": 3e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.013423, "epoch": 0.1601281, "global_step/max_steps": "50/936", "percentage": "5.34%", "elapsed_time": "57m 39s", "remaining_time": "17h 1m 50s"}
|
12 |
+
{"loss": 0.77568264, "grad_norm": 0.51242541, "learning_rate": 2.999e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.013636, "epoch": 0.17614091, "global_step/max_steps": "55/936", "percentage": "5.88%", "elapsed_time": "1h 2m 48s", "remaining_time": "16h 46m 5s"}
|
13 |
+
{"loss": 0.7531559, "grad_norm": 0.45894561, "learning_rate": 2.998e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.013815, "epoch": 0.19215372, "global_step/max_steps": "60/936", "percentage": "6.41%", "elapsed_time": "1h 7m 58s", "remaining_time": "16h 32m 23s"}
|
14 |
+
{"loss": 0.72016468, "grad_norm": 0.42532072, "learning_rate": 2.997e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.013962, "epoch": 0.20816653, "global_step/max_steps": "65/936", "percentage": "6.94%", "elapsed_time": "1h 13m 10s", "remaining_time": "16h 20m 32s"}
|
15 |
+
{"loss": 0.72917619, "grad_norm": 0.46611455, "learning_rate": 2.995e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.014104, "epoch": 0.22417934, "global_step/max_steps": "70/936", "percentage": "7.48%", "elapsed_time": "1h 18m 18s", "remaining_time": "16h 8m 44s"}
|
16 |
+
{"loss": 0.74098911, "grad_norm": 0.51052363, "learning_rate": 2.993e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.014203, "epoch": 0.24019215, "global_step/max_steps": "75/936", "percentage": "8.01%", "elapsed_time": "1h 23m 35s", "remaining_time": "15h 59m 40s"}
|
17 |
+
{"loss": 0.72141695, "grad_norm": 0.58669691, "learning_rate": 2.99e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.01431, "epoch": 0.25620496, "global_step/max_steps": "80/936", "percentage": "8.55%", "elapsed_time": "1h 28m 45s", "remaining_time": "15h 49m 45s"}
|
18 |
+
{"loss": 0.70451512, "grad_norm": 0.45498411, "learning_rate": 2.986e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.014401, "epoch": 0.27221777, "global_step/max_steps": "85/936", "percentage": "9.08%", "elapsed_time": "1h 33m 57s", "remaining_time": "15h 40m 40s"}
|
19 |
+
{"loss": 0.6741261, "grad_norm": 0.45146255, "learning_rate": 2.983e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.014476, "epoch": 0.28823058, "global_step/max_steps": "90/936", "percentage": "9.62%", "elapsed_time": "1h 39m 12s", "remaining_time": "15h 32m 31s"}
|
20 |
+
{"loss": 0.70893974, "grad_norm": 0.43958567, "learning_rate": 2.978e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.014542, "epoch": 0.30424339, "global_step/max_steps": "95/936", "percentage": "10.15%", "elapsed_time": "1h 44m 27s", "remaining_time": "15h 24m 46s"}
|
21 |
+
{"loss": 0.68529377, "grad_norm": 0.46522525, "learning_rate": 2.974e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.014601, "epoch": 0.3202562, "global_step/max_steps": "100/936", "percentage": "10.68%", "elapsed_time": "1h 49m 43s", "remaining_time": "15h 17m 22s"}
|
22 |
+
{"loss": 0.69848318, "grad_norm": 0.45691442, "learning_rate": 2.969e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.014666, "epoch": 0.33626902, "global_step/max_steps": "105/936", "percentage": "11.22%", "elapsed_time": "1h 54m 54s", "remaining_time": "15h 9m 24s"}
|
23 |
+
{"loss": 0.69095845, "grad_norm": 0.49062268, "learning_rate": 2.964e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.014717, "epoch": 0.35228183, "global_step/max_steps": "110/936", "percentage": "11.75%", "elapsed_time": "2h 0m 9s", "remaining_time": "15h 2m 15s"}
|
24 |
+
{"loss": 0.70584917, "grad_norm": 0.45991317, "learning_rate": 2.958e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.014779, "epoch": 0.36829464, "global_step/max_steps": "115/936", "percentage": "12.29%", "elapsed_time": "2h 5m 16s", "remaining_time": "14h 54m 21s"}
|
25 |
+
{"loss": 0.69045486, "grad_norm": 0.46586841, "learning_rate": 2.952e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.014825, "epoch": 0.38430745, "global_step/max_steps": "120/936", "percentage": "12.82%", "elapsed_time": "2h 10m 29s", "remaining_time": "14h 47m 20s"}
|
26 |
+
{"loss": 0.68422389, "grad_norm": 0.47901487, "learning_rate": 2.945e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.014876, "epoch": 0.40032026, "global_step/max_steps": "125/936", "percentage": "13.35%", "elapsed_time": "2h 15m 38s", "remaining_time": "14h 40m 0s"}
|
27 |
+
{"loss": 0.67159762, "grad_norm": 0.48414225, "learning_rate": 2.937e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.014914, "epoch": 0.41633307, "global_step/max_steps": "130/936", "percentage": "13.89%", "elapsed_time": "2h 20m 51s", "remaining_time": "14h 33m 19s"}
|
28 |
+
{"loss": 0.65282841, "grad_norm": 0.44756884, "learning_rate": 2.93e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.014956, "epoch": 0.43234588, "global_step/max_steps": "135/936", "percentage": "14.42%", "elapsed_time": "2h 26m 1s", "remaining_time": "14h 26m 25s"}
|
29 |
+
{"loss": 0.66042876, "grad_norm": 0.46144453, "learning_rate": 2.921e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.014993, "epoch": 0.44835869, "global_step/max_steps": "140/936", "percentage": "14.96%", "elapsed_time": "2h 31m 12s", "remaining_time": "14h 19m 45s"}
|
30 |
+
{"loss": 0.66385393, "grad_norm": 0.45526186, "learning_rate": 2.913e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015021, "epoch": 0.4643715, "global_step/max_steps": "145/936", "percentage": "15.49%", "elapsed_time": "2h 36m 28s", "remaining_time": "14h 13m 35s"}
|
31 |
+
{"loss": 0.65267687, "grad_norm": 0.48893304, "learning_rate": 2.904e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.01506, "epoch": 0.48038431, "global_step/max_steps": "150/936", "percentage": "16.03%", "elapsed_time": "2h 41m 35s", "remaining_time": "14h 6m 42s"}
|
32 |
+
{"loss": 0.67680573, "grad_norm": 0.52949445, "learning_rate": 2.894e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015082, "epoch": 0.49639712, "global_step/max_steps": "155/936", "percentage": "16.56%", "elapsed_time": "2h 46m 52s", "remaining_time": "14h 0m 47s"}
|
33 |
+
{"loss": 0.6269516, "grad_norm": 0.47795118, "learning_rate": 2.884e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015104, "epoch": 0.51240993, "global_step/max_steps": "160/936", "percentage": "17.09%", "elapsed_time": "2h 52m 8s", "remaining_time": "13h 54m 52s"}
|
34 |
+
{"loss": 0.64434004, "grad_norm": 0.44925053, "learning_rate": 2.874e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015127, "epoch": 0.52842274, "global_step/max_steps": "165/936", "percentage": "17.63%", "elapsed_time": "2h 57m 22s", "remaining_time": "13h 48m 49s"}
|
35 |
+
{"loss": 0.64112139, "grad_norm": 0.49971818, "learning_rate": 2.863e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015159, "epoch": 0.54443555, "global_step/max_steps": "170/936", "percentage": "18.16%", "elapsed_time": "3h 2m 29s", "remaining_time": "13h 42m 17s"}
|
36 |
+
{"loss": 0.6319211, "grad_norm": 0.45291984, "learning_rate": 2.851e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015177, "epoch": 0.56044836, "global_step/max_steps": "175/936", "percentage": "18.70%", "elapsed_time": "3h 7m 45s", "remaining_time": "13h 36m 30s"}
|
37 |
+
{"loss": 0.65332518, "grad_norm": 0.44397713, "learning_rate": 2.84e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015196, "epoch": 0.57646117, "global_step/max_steps": "180/936", "percentage": "19.23%", "elapsed_time": "3h 13m 0s", "remaining_time": "13h 30m 38s"}
|
38 |
+
{"loss": 0.6418942, "grad_norm": 0.448244, "learning_rate": 2.828e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015212, "epoch": 0.59247398, "global_step/max_steps": "185/936", "percentage": "19.76%", "elapsed_time": "3h 18m 16s", "remaining_time": "13h 24m 54s"}
|
39 |
+
{"loss": 0.63125448, "grad_norm": 0.48789676, "learning_rate": 2.815e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015235, "epoch": 0.60848679, "global_step/max_steps": "190/936", "percentage": "20.30%", "elapsed_time": "3h 23m 26s", "remaining_time": "13h 18m 46s"}
|
40 |
+
{"loss": 0.66731582, "grad_norm": 0.48121965, "learning_rate": 2.802e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015256, "epoch": 0.6244996, "global_step/max_steps": "195/936", "percentage": "20.83%", "elapsed_time": "3h 28m 36s", "remaining_time": "13h 12m 43s"}
|
41 |
+
{"loss": 0.64347477, "grad_norm": 0.4646651, "learning_rate": 2.789e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015269, "epoch": 0.64051241, "global_step/max_steps": "200/936", "percentage": "21.37%", "elapsed_time": "3h 33m 53s", "remaining_time": "13h 7m 7s"}
|
42 |
+
{"loss": 0.64317794, "grad_norm": 0.46736417, "learning_rate": 2.775e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015292, "epoch": 0.65652522, "global_step/max_steps": "205/936", "percentage": "21.90%", "elapsed_time": "3h 39m 0s", "remaining_time": "13h 0m 58s"}
|
43 |
+
{"loss": 0.67211766, "grad_norm": 0.45779789, "learning_rate": 2.761e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015313, "epoch": 0.67253803, "global_step/max_steps": "210/936", "percentage": "22.44%", "elapsed_time": "3h 44m 8s", "remaining_time": "12h 54m 54s"}
|
44 |
+
{"loss": 0.66723347, "grad_norm": 0.4618914, "learning_rate": 2.746e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015327, "epoch": 0.68855084, "global_step/max_steps": "215/936", "percentage": "22.97%", "elapsed_time": "3h 49m 23s", "remaining_time": "12h 49m 14s"}
|
45 |
+
{"loss": 0.65649157, "grad_norm": 0.476497, "learning_rate": 2.731e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015342, "epoch": 0.70456365, "global_step/max_steps": "220/936", "percentage": "23.50%", "elapsed_time": "3h 54m 34s", "remaining_time": "12h 43m 26s"}
|
46 |
+
{"loss": 0.6348362, "grad_norm": 0.4660823, "learning_rate": 2.716e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015365, "epoch": 0.72057646, "global_step/max_steps": "225/936", "percentage": "24.04%", "elapsed_time": "3h 59m 38s", "remaining_time": "12h 37m 17s"}
|
47 |
+
{"loss": 0.60627279, "grad_norm": 0.48892535, "learning_rate": 2.7e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015384, "epoch": 0.73658927, "global_step/max_steps": "230/936", "percentage": "24.57%", "elapsed_time": "4h 4m 45s", "remaining_time": "12h 31m 18s"}
|
48 |
+
{"loss": 0.63894978, "grad_norm": 0.5838631, "learning_rate": 2.684e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.0154, "epoch": 0.75260208, "global_step/max_steps": "235/936", "percentage": "25.11%", "elapsed_time": "4h 9m 55s", "remaining_time": "12h 25m 29s"}
|
49 |
+
{"loss": 0.6525445, "grad_norm": 0.46074216, "learning_rate": 2.668e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015413, "epoch": 0.76861489, "global_step/max_steps": "240/936", "percentage": "25.64%", "elapsed_time": "4h 15m 6s", "remaining_time": "12h 19m 49s"}
|
50 |
+
{"loss": 0.60583525, "grad_norm": 0.45477587, "learning_rate": 2.651e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015424, "epoch": 0.7846277, "global_step/max_steps": "245/936", "percentage": "26.18%", "elapsed_time": "4h 20m 19s", "remaining_time": "12h 14m 14s"}
|
51 |
+
{"loss": 0.63137364, "grad_norm": 0.47305673, "learning_rate": 2.634e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015433, "epoch": 0.80064051, "global_step/max_steps": "250/936", "percentage": "26.71%", "elapsed_time": "4h 25m 34s", "remaining_time": "12h 8m 44s"}
|
52 |
+
{"loss": 0.66051378, "grad_norm": 0.48556154, "learning_rate": 2.616e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.01545, "epoch": 0.81665332, "global_step/max_steps": "255/936", "percentage": "27.24%", "elapsed_time": "4h 30m 39s", "remaining_time": "12h 2m 49s"}
|
53 |
+
{"loss": 0.64833431, "grad_norm": 0.45927895, "learning_rate": 2.598e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015463, "epoch": 0.83266613, "global_step/max_steps": "260/936", "percentage": "27.78%", "elapsed_time": "4h 35m 49s", "remaining_time": "11h 57m 7s"}
|
54 |
+
{"loss": 0.61744938, "grad_norm": 0.45947638, "learning_rate": 2.58e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015476, "epoch": 0.84867894, "global_step/max_steps": "265/936", "percentage": "28.31%", "elapsed_time": "4h 40m 58s", "remaining_time": "11h 51m 27s"}
|
55 |
+
{"loss": 0.6349721, "grad_norm": 0.48423585, "learning_rate": 2.562e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015483, "epoch": 0.86469175, "global_step/max_steps": "270/936", "percentage": "28.85%", "elapsed_time": "4h 46m 13s", "remaining_time": "11h 46m 1s"}
|
56 |
+
{"loss": 0.60425463, "grad_norm": 0.48548008, "learning_rate": 2.543e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015495, "epoch": 0.88070456, "global_step/max_steps": "275/936", "percentage": "29.38%", "elapsed_time": "4h 51m 23s", "remaining_time": "11h 40m 23s"}
|
57 |
+
{"loss": 0.64370818, "grad_norm": 0.45844672, "learning_rate": 2.523e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015505, "epoch": 0.89671737, "global_step/max_steps": "280/936", "percentage": "29.91%", "elapsed_time": "4h 56m 34s", "remaining_time": "11h 34m 49s"}
|
58 |
+
{"loss": 0.65931177, "grad_norm": 0.49926899, "learning_rate": 2.504e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015514, "epoch": 0.91273018, "global_step/max_steps": "285/936", "percentage": "30.45%", "elapsed_time": "5h 1m 45s", "remaining_time": "11h 29m 16s"}
|
59 |
+
{"loss": 0.64096975, "grad_norm": 0.47682322, "learning_rate": 2.484e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015526, "epoch": 0.92874299, "global_step/max_steps": "290/936", "percentage": "30.98%", "elapsed_time": "5h 6m 53s", "remaining_time": "11h 23m 38s"}
|
60 |
+
{"loss": 0.62307062, "grad_norm": 0.52816203, "learning_rate": 2.464e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015534, "epoch": 0.9447558, "global_step/max_steps": "295/936", "percentage": "31.52%", "elapsed_time": "5h 12m 6s", "remaining_time": "11h 18m 9s"}
|
61 |
+
{"loss": 0.64836602, "grad_norm": 0.60387992, "learning_rate": 2.443e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015545, "epoch": 0.96076861, "global_step/max_steps": "300/936", "percentage": "32.05%", "elapsed_time": "5h 17m 14s", "remaining_time": "11h 12m 32s"}
|
62 |
+
{"loss": 0.65115905, "grad_norm": 0.50843623, "learning_rate": 2.423e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015551, "epoch": 0.97678143, "global_step/max_steps": "305/936", "percentage": "32.59%", "elapsed_time": "5h 22m 28s", "remaining_time": "11h 7m 8s"}
|
63 |
+
{"loss": 0.62531347, "grad_norm": 0.49764563, "learning_rate": 2.402e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.01556, "epoch": 0.99279424, "global_step/max_steps": "310/936", "percentage": "33.12%", "elapsed_time": "5h 27m 38s", "remaining_time": "11h 1m 37s"}
|
64 |
+
{"loss": 0.63394232, "grad_norm": 0.49504693, "learning_rate": 2.38e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015602, "epoch": 1.00640512, "global_step/max_steps": "315/936", "percentage": "33.65%", "elapsed_time": "5h 32m 4s", "remaining_time": "10h 54m 40s"}
|
65 |
+
{"loss": 0.58845882, "grad_norm": 0.46988359, "learning_rate": 2.359e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015606, "epoch": 1.02241793, "global_step/max_steps": "320/936", "percentage": "34.19%", "elapsed_time": "5h 37m 19s", "remaining_time": "10h 49m 21s"}
|
66 |
+
{"loss": 0.59490862, "grad_norm": 0.51526029, "learning_rate": 2.337e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015611, "epoch": 1.03843074, "global_step/max_steps": "325/936", "percentage": "34.72%", "elapsed_time": "5h 42m 33s", "remaining_time": "10h 44m 0s"}
|
67 |
+
{"loss": 0.58906679, "grad_norm": 0.49813922, "learning_rate": 2.315e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015616, "epoch": 1.05444355, "global_step/max_steps": "330/936", "percentage": "35.26%", "elapsed_time": "5h 47m 47s", "remaining_time": "10h 38m 40s"}
|
68 |
+
{"loss": 0.5816783, "grad_norm": 0.53942239, "learning_rate": 2.292e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.01562, "epoch": 1.07045637, "global_step/max_steps": "335/936", "percentage": "35.79%", "elapsed_time": "5h 53m 2s", "remaining_time": "10h 33m 21s"}
|
69 |
+
{"loss": 0.54961443, "grad_norm": 0.50509538, "learning_rate": 2.27e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.01563, "epoch": 1.08646918, "global_step/max_steps": "340/936", "percentage": "36.32%", "elapsed_time": "5h 58m 8s", "remaining_time": "10h 27m 48s"}
|
70 |
+
{"loss": 0.5438549, "grad_norm": 0.51262492, "learning_rate": 2.247e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015636, "epoch": 1.10248199, "global_step/max_steps": "345/936", "percentage": "36.86%", "elapsed_time": "6h 3m 19s", "remaining_time": "10h 22m 23s"}
|
71 |
+
{"loss": 0.56328716, "grad_norm": 0.53986211, "learning_rate": 2.224e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015641, "epoch": 1.1184948, "global_step/max_steps": "350/936", "percentage": "37.39%", "elapsed_time": "6h 8m 32s", "remaining_time": "10h 17m 3s"}
|
72 |
+
{"loss": 0.60459785, "grad_norm": 0.50364097, "learning_rate": 2.201e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015646, "epoch": 1.13450761, "global_step/max_steps": "355/936", "percentage": "37.93%", "elapsed_time": "6h 13m 44s", "remaining_time": "10h 11m 39s"}
|
73 |
+
{"loss": 0.59875135, "grad_norm": 0.56897599, "learning_rate": 2.177e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015648, "epoch": 1.15052042, "global_step/max_steps": "360/936", "percentage": "38.46%", "elapsed_time": "6h 19m 0s", "remaining_time": "10h 6m 25s"}
|
74 |
+
{"loss": 0.595965, "grad_norm": 0.53106956, "learning_rate": 2.153e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015657, "epoch": 1.16653323, "global_step/max_steps": "365/936", "percentage": "39.00%", "elapsed_time": "6h 24m 7s", "remaining_time": "10h 0m 55s"}
|
75 |
+
{"loss": 0.58605342, "grad_norm": 0.52265372, "learning_rate": 2.129e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.01566, "epoch": 1.18254604, "global_step/max_steps": "370/936", "percentage": "39.53%", "elapsed_time": "6h 29m 22s", "remaining_time": "9h 55m 38s"}
|
76 |
+
{"loss": 0.5731144, "grad_norm": 0.53428241, "learning_rate": 2.105e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015665, "epoch": 1.19855885, "global_step/max_steps": "375/936", "percentage": "40.06%", "elapsed_time": "6h 34m 33s", "remaining_time": "9h 50m 14s"}
|
77 |
+
{"loss": 0.55925112, "grad_norm": 0.56765169, "learning_rate": 2.081e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015674, "epoch": 1.21457166, "global_step/max_steps": "380/936", "percentage": "40.60%", "elapsed_time": "6h 39m 39s", "remaining_time": "9h 44m 46s"}
|
78 |
+
{"loss": 0.56619668, "grad_norm": 0.56151828, "learning_rate": 2.056e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015681, "epoch": 1.23058447, "global_step/max_steps": "385/936", "percentage": "41.13%", "elapsed_time": "6h 44m 46s", "remaining_time": "9h 39m 18s"}
|
79 |
+
{"loss": 0.57897353, "grad_norm": 0.54221575, "learning_rate": 2.032e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015684, "epoch": 1.24659728, "global_step/max_steps": "390/936", "percentage": "41.67%", "elapsed_time": "6h 50m 1s", "remaining_time": "9h 34m 1s"}
|
80 |
+
{"loss": 0.5753809, "grad_norm": 0.60302455, "learning_rate": 2.007e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.01569, "epoch": 1.26261009, "global_step/max_steps": "395/936", "percentage": "42.20%", "elapsed_time": "6h 55m 9s", "remaining_time": "9h 28m 37s"}
|
81 |
+
{"loss": 0.57927155, "grad_norm": 0.61434188, "learning_rate": 1.982e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015693, "epoch": 1.2786229, "global_step/max_steps": "400/936", "percentage": "42.74%", "elapsed_time": "7h 0m 24s", "remaining_time": "9h 23m 20s"}
|
82 |
+
{"loss": 0.58422585, "grad_norm": 0.55861518, "learning_rate": 1.956e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015698, "epoch": 1.29463571, "global_step/max_steps": "405/936", "percentage": "43.27%", "elapsed_time": "7h 5m 34s", "remaining_time": "9h 17m 58s"}
|
83 |
+
{"loss": 0.59080114, "grad_norm": 0.58414442, "learning_rate": 1.931e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015701, "epoch": 1.31064852, "global_step/max_steps": "410/936", "percentage": "43.80%", "elapsed_time": "7h 10m 48s", "remaining_time": "9h 12m 42s"}
|
84 |
+
{"loss": 0.56734295, "grad_norm": 0.59653036, "learning_rate": 1.906e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015705, "epoch": 1.32666133, "global_step/max_steps": "415/936", "percentage": "44.34%", "elapsed_time": "7h 15m 59s", "remaining_time": "9h 7m 21s"}
|
85 |
+
{"loss": 0.57474675, "grad_norm": 0.57229239, "learning_rate": 1.88e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015707, "epoch": 1.34267414, "global_step/max_steps": "420/936", "percentage": "44.87%", "elapsed_time": "7h 21m 15s", "remaining_time": "9h 2m 6s"}
|
86 |
+
{"loss": 0.58866596, "grad_norm": 0.56471395, "learning_rate": 1.854e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015712, "epoch": 1.35868695, "global_step/max_steps": "425/936", "percentage": "45.41%", "elapsed_time": "7h 26m 23s", "remaining_time": "8h 56m 43s"}
|
87 |
+
{"loss": 0.55964842, "grad_norm": 0.60322438, "learning_rate": 1.829e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015713, "epoch": 1.37469976, "global_step/max_steps": "430/936", "percentage": "45.94%", "elapsed_time": "7h 31m 41s", "remaining_time": "8h 51m 31s"}
|
88 |
+
{"loss": 0.56629629, "grad_norm": 0.57983677, "learning_rate": 1.803e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.01572, "epoch": 1.39071257, "global_step/max_steps": "435/936", "percentage": "46.47%", "elapsed_time": "7h 36m 47s", "remaining_time": "8h 46m 5s"}
|
89 |
+
{"loss": 0.57825279, "grad_norm": 0.58993814, "learning_rate": 1.777e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015723, "epoch": 1.40672538, "global_step/max_steps": "440/936", "percentage": "47.01%", "elapsed_time": "7h 41m 58s", "remaining_time": "8h 40m 46s"}
|
90 |
+
{"loss": 0.5774745, "grad_norm": 0.55913019, "learning_rate": 1.751e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015728, "epoch": 1.42273819, "global_step/max_steps": "445/936", "percentage": "47.54%", "elapsed_time": "7h 47m 7s", "remaining_time": "8h 35m 25s"}
|
91 |
+
{"loss": 0.57460151, "grad_norm": 0.55483078, "learning_rate": 1.724e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015734, "epoch": 1.438751, "global_step/max_steps": "450/936", "percentage": "48.08%", "elapsed_time": "7h 52m 15s", "remaining_time": "8h 30m 2s"}
|
92 |
+
{"loss": 0.57186561, "grad_norm": 0.61629865, "learning_rate": 1.698e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015738, "epoch": 1.45476381, "global_step/max_steps": "455/936", "percentage": "48.61%", "elapsed_time": "7h 57m 26s", "remaining_time": "8h 24m 43s"}
|
93 |
+
{"loss": 0.58383169, "grad_norm": 0.5999632, "learning_rate": 1.672e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.01574, "epoch": 1.47077662, "global_step/max_steps": "460/936", "percentage": "49.15%", "elapsed_time": "8h 2m 39s", "remaining_time": "8h 19m 26s"}
|
94 |
+
{"loss": 0.54161773, "grad_norm": 0.57519344, "learning_rate": 1.646e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015742, "epoch": 1.48678943, "global_step/max_steps": "465/936", "percentage": "49.68%", "elapsed_time": "8h 7m 54s", "remaining_time": "8h 14m 11s"}
|
95 |
+
{"loss": 0.56883354, "grad_norm": 0.63523584, "learning_rate": 1.619e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015747, "epoch": 1.50280224, "global_step/max_steps": "470/936", "percentage": "50.21%", "elapsed_time": "8h 13m 2s", "remaining_time": "8h 8m 50s"}
|
96 |
+
{"loss": 0.58089046, "grad_norm": 0.63237172, "learning_rate": 1.593e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015751, "epoch": 1.51881505, "global_step/max_steps": "475/936", "percentage": "50.75%", "elapsed_time": "8h 18m 11s", "remaining_time": "8h 3m 30s"}
|
97 |
+
{"loss": 0.5448812, "grad_norm": 0.62982368, "learning_rate": 1.566e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015752, "epoch": 1.53482786, "global_step/max_steps": "480/936", "percentage": "51.28%", "elapsed_time": "8h 23m 27s", "remaining_time": "7h 58m 17s"}
|
98 |
+
{"loss": 0.59056048, "grad_norm": 0.58769507, "learning_rate": 1.54e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015754, "epoch": 1.55084067, "global_step/max_steps": "485/936", "percentage": "51.82%", "elapsed_time": "8h 28m 41s", "remaining_time": "7h 53m 1s"}
|
99 |
+
{"loss": 0.59814448, "grad_norm": 0.63846963, "learning_rate": 1.513e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015756, "epoch": 1.56685348, "global_step/max_steps": "490/936", "percentage": "52.35%", "elapsed_time": "8h 33m 53s", "remaining_time": "7h 47m 44s"}
|
100 |
+
{"loss": 0.54483361, "grad_norm": 0.59827094, "learning_rate": 1.487e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015757, "epoch": 1.58286629, "global_step/max_steps": "495/936", "percentage": "52.88%", "elapsed_time": "8h 39m 10s", "remaining_time": "7h 42m 31s"}
|
101 |
+
{"loss": 0.59855957, "grad_norm": 0.62999094, "learning_rate": 1.46e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.01576, "epoch": 1.5988791, "global_step/max_steps": "500/936", "percentage": "53.42%", "elapsed_time": "8h 44m 21s", "remaining_time": "7h 37m 14s"}
|
102 |
+
{"loss": 0.55943136, "grad_norm": 0.62793673, "learning_rate": 1.434e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015763, "epoch": 1.61489191, "global_step/max_steps": "505/936", "percentage": "53.95%", "elapsed_time": "8h 49m 31s", "remaining_time": "7h 31m 56s"}
|
103 |
+
{"loss": 0.55001945, "grad_norm": 0.64144078, "learning_rate": 1.407e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015768, "epoch": 1.63090472, "global_step/max_steps": "510/936", "percentage": "54.49%", "elapsed_time": "8h 54m 39s", "remaining_time": "7h 26m 36s"}
|
104 |
+
{"loss": 0.57425137, "grad_norm": 0.65977768, "learning_rate": 1.381e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.01577, "epoch": 1.64691753, "global_step/max_steps": "515/936", "percentage": "55.02%", "elapsed_time": "8h 59m 52s", "remaining_time": "7h 21m 19s"}
|
105 |
+
{"loss": 0.56872339, "grad_norm": 0.59814443, "learning_rate": 1.354e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015773, "epoch": 1.66293034, "global_step/max_steps": "520/936", "percentage": "55.56%", "elapsed_time": "9h 5m 2s", "remaining_time": "7h 16m 1s"}
|
106 |
+
{"loss": 0.5612329, "grad_norm": 0.6626789, "learning_rate": 1.328e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015776, "epoch": 1.67894315, "global_step/max_steps": "525/936", "percentage": "56.09%", "elapsed_time": "9h 10m 13s", "remaining_time": "7h 10m 44s"}
|
107 |
+
{"loss": 0.55641694, "grad_norm": 0.6165757, "learning_rate": 1.302e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015778, "epoch": 1.69495596, "global_step/max_steps": "530/936", "percentage": "56.62%", "elapsed_time": "9h 15m 26s", "remaining_time": "7h 5m 29s"}
|
108 |
+
{"loss": 0.59409752, "grad_norm": 0.65576318, "learning_rate": 1.276e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015782, "epoch": 1.71096878, "global_step/max_steps": "535/936", "percentage": "57.16%", "elapsed_time": "9h 20m 33s", "remaining_time": "7h 0m 9s"}
|
109 |
+
{"loss": 0.55875688, "grad_norm": 0.62465309, "learning_rate": 1.249e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015784, "epoch": 1.72698159, "global_step/max_steps": "540/936", "percentage": "57.69%", "elapsed_time": "9h 25m 47s", "remaining_time": "6h 54m 55s"}
|
110 |
+
{"loss": 0.52943115, "grad_norm": 0.56887063, "learning_rate": 1.223e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015785, "epoch": 1.7429944, "global_step/max_steps": "545/936", "percentage": "58.23%", "elapsed_time": "9h 31m 2s", "remaining_time": "6h 49m 41s"}
|
111 |
+
{"loss": 0.55800018, "grad_norm": 0.66950407, "learning_rate": 1.197e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015787, "epoch": 1.75900721, "global_step/max_steps": "550/936", "percentage": "58.76%", "elapsed_time": "9h 36m 13s", "remaining_time": "6h 44m 24s"}
|
112 |
+
{"loss": 0.57581358, "grad_norm": 0.62353001, "learning_rate": 1.171e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015788, "epoch": 1.77502002, "global_step/max_steps": "555/936", "percentage": "59.29%", "elapsed_time": "9h 41m 29s", "remaining_time": "6h 39m 11s"}
|
113 |
+
{"loss": 0.57144208, "grad_norm": 0.63526118, "learning_rate": 1.146e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015791, "epoch": 1.79103283, "global_step/max_steps": "560/936", "percentage": "59.83%", "elapsed_time": "9h 46m 39s", "remaining_time": "6h 33m 53s"}
|
114 |
+
{"loss": 0.55343156, "grad_norm": 0.68069869, "learning_rate": 1.12e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015793, "epoch": 1.80704564, "global_step/max_steps": "565/936", "percentage": "60.36%", "elapsed_time": "9h 51m 49s", "remaining_time": "6h 28m 36s"}
|
115 |
+
{"loss": 0.54114871, "grad_norm": 0.59935772, "learning_rate": 1.094e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015794, "epoch": 1.82305845, "global_step/max_steps": "570/936", "percentage": "60.90%", "elapsed_time": "9h 57m 4s", "remaining_time": "6h 23m 23s"}
|
116 |
+
{"loss": 0.54671941, "grad_norm": 0.66805905, "learning_rate": 1.069e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015797, "epoch": 1.83907126, "global_step/max_steps": "575/936", "percentage": "61.43%", "elapsed_time": "10h 2m 15s", "remaining_time": "6h 18m 6s"}
|
117 |
+
{"loss": 0.57824945, "grad_norm": 0.66497161, "learning_rate": 1.049e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.0158, "epoch": 1.85508407, "global_step/max_steps": "580/936", "percentage": "61.97%", "elapsed_time": "10h 7m 24s", "remaining_time": "6h 12m 49s"}
|
118 |
+
{"loss": 0.57358356, "grad_norm": 0.61038546, "learning_rate": 1.023e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015801, "epoch": 1.87109688, "global_step/max_steps": "585/936", "percentage": "62.50%", "elapsed_time": "10h 12m 38s", "remaining_time": "6h 7m 34s"}
|
119 |
+
{"loss": 0.54877539, "grad_norm": 0.75307211, "learning_rate": 9.98e-06, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015805, "epoch": 1.88710969, "global_step/max_steps": "590/936", "percentage": "63.03%", "elapsed_time": "10h 17m 45s", "remaining_time": "6h 2m 16s"}
|
120 |
+
{"loss": 0.57379742, "grad_norm": 0.61708442, "learning_rate": 9.73e-06, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015808, "epoch": 1.9031225, "global_step/max_steps": "595/936", "percentage": "63.57%", "elapsed_time": "10h 22m 55s", "remaining_time": "5h 57m 0s"}
|
121 |
+
{"loss": 0.55204997, "grad_norm": 0.64517944, "learning_rate": 9.49e-06, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015809, "epoch": 1.91913531, "global_step/max_steps": "600/936", "percentage": "64.10%", "elapsed_time": "10h 28m 8s", "remaining_time": "5h 51m 45s"}
|
122 |
+
{"loss": 0.54695177, "grad_norm": 0.62519423, "learning_rate": 9.24e-06, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015812, "epoch": 1.93514812, "global_step/max_steps": "605/936", "percentage": "64.64%", "elapsed_time": "10h 33m 18s", "remaining_time": "5h 46m 29s"}
|
123 |
+
{"loss": 0.56501989, "grad_norm": 0.61982048, "learning_rate": 9e-06, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015812, "epoch": 1.95116093, "global_step/max_steps": "610/936", "percentage": "65.17%", "elapsed_time": "10h 38m 33s", "remaining_time": "5h 41m 15s"}
|
124 |
+
{"loss": 0.53078766, "grad_norm": 0.63561612, "learning_rate": 8.76e-06, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015813, "epoch": 1.96717374, "global_step/max_steps": "615/936", "percentage": "65.71%", "elapsed_time": "10h 43m 47s", "remaining_time": "5h 36m 1s"}
|
125 |
+
{"loss": 0.55520983, "grad_norm": 0.66011745, "learning_rate": 8.52e-06, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015815, "epoch": 1.98318655, "global_step/max_steps": "620/936", "percentage": "66.24%", "elapsed_time": "10h 48m 58s", "remaining_time": "5h 30m 46s"}
|
126 |
+
{"loss": 0.55757914, "grad_norm": 0.64936355, "learning_rate": 8.28e-06, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015818, "epoch": 1.99919936, "global_step/max_steps": "625/936", "percentage": "66.77%", "elapsed_time": "10h 54m 5s", "remaining_time": "5h 25m 28s"}
|
127 |
+
{"loss": 0.52105627, "grad_norm": 0.61302059, "learning_rate": 8.04e-06, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015839, "epoch": 2.01281025, "global_step/max_steps": "630/936", "percentage": "67.31%", "elapsed_time": "10h 58m 31s", "remaining_time": "5h 19m 51s"}
|
128 |
+
{"loss": 0.53484406, "grad_norm": 0.61695648, "learning_rate": 7.81e-06, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015839, "epoch": 2.02882306, "global_step/max_steps": "635/936", "percentage": "67.84%", "elapsed_time": "11h 3m 46s", "remaining_time": "5h 14m 38s"}
|
129 |
+
{"loss": 0.48503141, "grad_norm": 0.65024846, "learning_rate": 7.58e-06, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015839, "epoch": 2.04483587, "global_step/max_steps": "640/936", "percentage": "68.38%", "elapsed_time": "11h 9m 1s", "remaining_time": "5h 9m 25s"}
|
130 |
+
{"loss": 0.52498808, "grad_norm": 0.6899964, "learning_rate": 7.35e-06, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015787, "epoch": 2.06084868, "global_step/max_steps": "645/936", "percentage": "68.91%", "elapsed_time": "11h 16m 31s", "remaining_time": "5h 5m 13s"}
|
v0-20250526-142723/runs/events.out.tfevents.1748269983.e0b00eb95078.491.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:06fc0271b4f4505a579610cf7d1d0655171607267cc56b67c8cbdcfbed850035
|
3 |
+
size 50114
|