ktam204 commited on
Commit
fc80e6c
·
verified ·
1 Parent(s): c1b535e

Upload folder using huggingface_hub

Browse files
Files changed (25) hide show
  1. v0-20250526-142723/args.json +373 -0
  2. v0-20250526-142723/checkpoint-640/README.md +202 -0
  3. v0-20250526-142723/checkpoint-640/adapter_config.json +37 -0
  4. v0-20250526-142723/checkpoint-640/adapter_model.safetensors +3 -0
  5. v0-20250526-142723/checkpoint-640/additional_config.json +1 -0
  6. v0-20250526-142723/checkpoint-640/args.json +373 -0
  7. v0-20250526-142723/checkpoint-640/global_step638/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
  8. v0-20250526-142723/checkpoint-640/global_step638/zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  9. v0-20250526-142723/checkpoint-640/global_step638/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
  10. v0-20250526-142723/checkpoint-640/global_step638/zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  11. v0-20250526-142723/checkpoint-640/global_step638/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
  12. v0-20250526-142723/checkpoint-640/global_step638/zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
  13. v0-20250526-142723/checkpoint-640/global_step638/zero_pp_rank_3_mp_rank_00_model_states.pt +3 -0
  14. v0-20250526-142723/checkpoint-640/global_step638/zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
  15. v0-20250526-142723/checkpoint-640/latest +1 -0
  16. v0-20250526-142723/checkpoint-640/rng_state_0.pth +3 -0
  17. v0-20250526-142723/checkpoint-640/rng_state_1.pth +3 -0
  18. v0-20250526-142723/checkpoint-640/rng_state_2.pth +3 -0
  19. v0-20250526-142723/checkpoint-640/rng_state_3.pth +3 -0
  20. v0-20250526-142723/checkpoint-640/scheduler.pt +3 -0
  21. v0-20250526-142723/checkpoint-640/trainer_state.json +1195 -0
  22. v0-20250526-142723/checkpoint-640/training_args.bin +3 -0
  23. v0-20250526-142723/checkpoint-640/zero_to_fp32.py +760 -0
  24. v0-20250526-142723/logging.jsonl +130 -0
  25. v0-20250526-142723/runs/events.out.tfevents.1748269983.e0b00eb95078.491.0 +3 -0
v0-20250526-142723/args.json ADDED
@@ -0,0 +1,373 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model": "/kaggle/input/qwen-3/transformers/32b-awq/1",
3
+ "model_type": "qwen3",
4
+ "model_revision": null,
5
+ "task_type": "causal_lm",
6
+ "torch_dtype": "float16",
7
+ "attn_impl": "flash_attn",
8
+ "num_labels": null,
9
+ "problem_type": null,
10
+ "rope_scaling": null,
11
+ "device_map": null,
12
+ "max_memory": {},
13
+ "local_repo_path": null,
14
+ "init_strategy": null,
15
+ "template": "qwen3",
16
+ "system": null,
17
+ "max_length": 512,
18
+ "truncation_strategy": "delete",
19
+ "max_pixels": null,
20
+ "agent_template": null,
21
+ "norm_bbox": null,
22
+ "use_chat_template": true,
23
+ "padding_free": false,
24
+ "padding_side": "right",
25
+ "loss_scale": "default",
26
+ "sequence_parallel_size": 1,
27
+ "response_prefix": null,
28
+ "template_backend": "swift",
29
+ "dataset": [
30
+ "combined_messages.jsonl"
31
+ ],
32
+ "val_dataset": [],
33
+ "split_dataset_ratio": 0.0,
34
+ "data_seed": 42,
35
+ "dataset_num_proc": 8,
36
+ "load_from_cache_file": true,
37
+ "dataset_shuffle": true,
38
+ "val_dataset_shuffle": false,
39
+ "streaming": false,
40
+ "interleave_prob": null,
41
+ "stopping_strategy": "first_exhausted",
42
+ "shuffle_buffer_size": 1000,
43
+ "download_mode": "reuse_dataset_if_exists",
44
+ "columns": {},
45
+ "strict": false,
46
+ "remove_unused_columns": true,
47
+ "model_name": [
48
+ null,
49
+ null
50
+ ],
51
+ "model_author": [
52
+ null,
53
+ null
54
+ ],
55
+ "custom_dataset_info": [],
56
+ "quant_method": null,
57
+ "quant_bits": null,
58
+ "hqq_axis": null,
59
+ "bnb_4bit_compute_dtype": "float32",
60
+ "bnb_4bit_quant_type": "nf4",
61
+ "bnb_4bit_use_double_quant": true,
62
+ "bnb_4bit_quant_storage": null,
63
+ "max_new_tokens": 64,
64
+ "temperature": 0.0,
65
+ "top_k": null,
66
+ "top_p": null,
67
+ "repetition_penalty": null,
68
+ "num_beams": 1,
69
+ "stream": false,
70
+ "stop_words": [],
71
+ "logprobs": false,
72
+ "top_logprobs": null,
73
+ "ckpt_dir": null,
74
+ "lora_modules": [],
75
+ "tuner_backend": "peft",
76
+ "train_type": "lora",
77
+ "adapters": [],
78
+ "external_plugins": [],
79
+ "seed": 42,
80
+ "model_kwargs": {},
81
+ "load_args": false,
82
+ "load_data_args": false,
83
+ "use_hf": false,
84
+ "hub_token": null,
85
+ "custom_register_path": [],
86
+ "ddp_timeout": 1800,
87
+ "ddp_backend": null,
88
+ "ignore_args_error": false,
89
+ "use_swift_lora": false,
90
+ "output_dir": "/kaggle/tmp/save_checkpoint/v0-20250526-142723",
91
+ "overwrite_output_dir": false,
92
+ "do_train": false,
93
+ "do_eval": false,
94
+ "do_predict": false,
95
+ "eval_strategy": "steps",
96
+ "prediction_loss_only": false,
97
+ "per_device_train_batch_size": 1,
98
+ "per_device_eval_batch_size": 1,
99
+ "per_gpu_train_batch_size": null,
100
+ "per_gpu_eval_batch_size": null,
101
+ "gradient_accumulation_steps": 8,
102
+ "eval_accumulation_steps": null,
103
+ "eval_delay": 0,
104
+ "torch_empty_cache_steps": null,
105
+ "learning_rate": 3e-05,
106
+ "weight_decay": 0.1,
107
+ "adam_beta1": 0.9,
108
+ "adam_beta2": 0.95,
109
+ "adam_epsilon": 1e-08,
110
+ "max_grad_norm": 1.0,
111
+ "num_train_epochs": 3.0,
112
+ "max_steps": -1,
113
+ "lr_scheduler_type": "cosine",
114
+ "lr_scheduler_kwargs": null,
115
+ "warmup_ratio": 0.05,
116
+ "warmup_steps": 0,
117
+ "log_level": "passive",
118
+ "log_level_replica": "warning",
119
+ "log_on_each_node": true,
120
+ "logging_dir": "/kaggle/tmp/save_checkpoint/v0-20250526-142723/runs",
121
+ "logging_strategy": "steps",
122
+ "logging_first_step": true,
123
+ "logging_steps": 5,
124
+ "logging_nan_inf_filter": true,
125
+ "save_strategy": "steps",
126
+ "save_steps": 640.0,
127
+ "save_total_limit": 4,
128
+ "save_safetensors": true,
129
+ "save_on_each_node": false,
130
+ "save_only_model": false,
131
+ "restore_callback_states_from_checkpoint": false,
132
+ "no_cuda": false,
133
+ "use_cpu": false,
134
+ "use_mps_device": false,
135
+ "jit_mode_eval": false,
136
+ "use_ipex": false,
137
+ "bf16": false,
138
+ "fp16": true,
139
+ "fp16_opt_level": "O1",
140
+ "half_precision_backend": "auto",
141
+ "bf16_full_eval": false,
142
+ "fp16_full_eval": false,
143
+ "tf32": null,
144
+ "local_rank": 0,
145
+ "tpu_num_cores": null,
146
+ "tpu_metrics_debug": false,
147
+ "debug": null,
148
+ "dataloader_drop_last": false,
149
+ "eval_steps": 640.0,
150
+ "dataloader_num_workers": 8,
151
+ "dataloader_prefetch_factor": null,
152
+ "past_index": -1,
153
+ "run_name": "/kaggle/tmp/save_checkpoint/v0-20250526-142723",
154
+ "disable_tqdm": null,
155
+ "label_names": null,
156
+ "load_best_model_at_end": false,
157
+ "metric_for_best_model": "loss",
158
+ "greater_is_better": false,
159
+ "ignore_data_skip": false,
160
+ "fsdp": "",
161
+ "fsdp_min_num_params": 0,
162
+ "fsdp_config": null,
163
+ "tp_size": 0,
164
+ "fsdp_transformer_layer_cls_to_wrap": null,
165
+ "accelerator_config": {
166
+ "dispatch_batches": false
167
+ },
168
+ "deepspeed": {
169
+ "fp16": {
170
+ "enabled": "auto",
171
+ "loss_scale": 0,
172
+ "loss_scale_window": 1000,
173
+ "initial_scale_power": 16,
174
+ "hysteresis": 2,
175
+ "min_loss_scale": 1
176
+ },
177
+ "bf16": {
178
+ "enabled": "auto"
179
+ },
180
+ "zero_optimization": {
181
+ "stage": 3,
182
+ "offload_optimizer": {
183
+ "device": "none",
184
+ "pin_memory": true
185
+ },
186
+ "offload_param": {
187
+ "device": "none",
188
+ "pin_memory": true
189
+ },
190
+ "overlap_comm": false,
191
+ "contiguous_gradients": true,
192
+ "sub_group_size": 1000000000.0,
193
+ "reduce_bucket_size": "auto",
194
+ "zero_quantized_weights": false,
195
+ "zero_quantized_gradients": false,
196
+ "stage3_prefetch_bucket_size": "auto",
197
+ "stage3_param_persistence_threshold": "auto",
198
+ "stage3_max_live_parameters": 1000000000.0,
199
+ "stage3_max_reuse_distance": 1000000000.0,
200
+ "stage3_gather_16bit_weights_on_model_save": true
201
+ },
202
+ "gradient_accumulation_steps": "auto",
203
+ "gradient_clipping": "auto",
204
+ "steps_per_print": 2000,
205
+ "train_batch_size": "auto",
206
+ "train_micro_batch_size_per_gpu": "auto",
207
+ "wall_clock_breakdown": false
208
+ },
209
+ "label_smoothing_factor": 0.0,
210
+ "optim": "adamw_torch",
211
+ "optim_args": null,
212
+ "adafactor": false,
213
+ "group_by_length": false,
214
+ "length_column_name": "length",
215
+ "report_to": [
216
+ "tensorboard"
217
+ ],
218
+ "ddp_find_unused_parameters": null,
219
+ "ddp_bucket_cap_mb": null,
220
+ "ddp_broadcast_buffers": null,
221
+ "dataloader_pin_memory": true,
222
+ "dataloader_persistent_workers": false,
223
+ "skip_memory_metrics": true,
224
+ "use_legacy_prediction_loop": false,
225
+ "push_to_hub": false,
226
+ "resume_from_checkpoint": null,
227
+ "hub_model_id": null,
228
+ "hub_strategy": "every_save",
229
+ "hub_private_repo": null,
230
+ "hub_always_push": false,
231
+ "gradient_checkpointing": true,
232
+ "gradient_checkpointing_kwargs": null,
233
+ "include_inputs_for_metrics": false,
234
+ "include_for_metrics": [],
235
+ "eval_do_concat_batches": true,
236
+ "fp16_backend": "auto",
237
+ "push_to_hub_model_id": null,
238
+ "push_to_hub_organization": null,
239
+ "push_to_hub_token": null,
240
+ "mp_parameters": "",
241
+ "auto_find_batch_size": false,
242
+ "full_determinism": false,
243
+ "torchdynamo": null,
244
+ "ray_scope": "last",
245
+ "torch_compile": false,
246
+ "torch_compile_backend": null,
247
+ "torch_compile_mode": null,
248
+ "include_tokens_per_second": false,
249
+ "include_num_input_tokens_seen": false,
250
+ "neftune_noise_alpha": null,
251
+ "optim_target_modules": null,
252
+ "batch_eval_metrics": false,
253
+ "eval_on_start": false,
254
+ "use_liger_kernel": true,
255
+ "eval_use_gather_object": false,
256
+ "average_tokens_across_devices": false,
257
+ "sortish_sampler": false,
258
+ "predict_with_generate": false,
259
+ "generation_max_length": null,
260
+ "generation_num_beams": null,
261
+ "generation_config": null,
262
+ "vit_gradient_checkpointing": null,
263
+ "check_model": true,
264
+ "acc_strategy": "token",
265
+ "train_dataloader_shuffle": true,
266
+ "max_epochs": null,
267
+ "aligner_lr": null,
268
+ "vit_lr": null,
269
+ "optimizer": null,
270
+ "metric_warmup_step": 0,
271
+ "fsdp_num": 1,
272
+ "acc_steps": 1,
273
+ "eval_use_evalscope": false,
274
+ "eval_datasets": [],
275
+ "eval_limit": null,
276
+ "eval_datasets_args": null,
277
+ "eval_generation_config": null,
278
+ "freeze_parameters": [],
279
+ "freeze_parameters_regex": null,
280
+ "freeze_parameters_ratio": 0.0,
281
+ "trainable_parameters": [],
282
+ "trainable_parameters_regex": null,
283
+ "freeze_llm": false,
284
+ "freeze_vit": true,
285
+ "freeze_aligner": true,
286
+ "target_modules": [
287
+ "all-linear"
288
+ ],
289
+ "target_regex": null,
290
+ "modules_to_save": [],
291
+ "lora_rank": 32,
292
+ "lora_alpha": 128,
293
+ "lora_dropout": 0.05,
294
+ "lora_bias": "none",
295
+ "lora_dtype": null,
296
+ "lorap_lr_ratio": null,
297
+ "use_rslora": false,
298
+ "use_dora": false,
299
+ "lora_ga_batch_size": 2,
300
+ "lora_ga_iters": 2,
301
+ "lora_ga_max_length": 1024,
302
+ "lora_ga_direction": "ArB2r",
303
+ "lora_ga_scale": "stable",
304
+ "lora_ga_stable_gamma": 16,
305
+ "init_weights": true,
306
+ "fourier_n_frequency": 2000,
307
+ "fourier_scaling": 300.0,
308
+ "boft_block_size": 4,
309
+ "boft_block_num": 0,
310
+ "boft_n_butterfly_factor": 1,
311
+ "boft_dropout": 0.0,
312
+ "vera_rank": 256,
313
+ "vera_projection_prng_key": 0,
314
+ "vera_dropout": 0.0,
315
+ "vera_d_initial": 0.1,
316
+ "adapter_act": "gelu",
317
+ "adapter_length": 128,
318
+ "use_galore": false,
319
+ "galore_target_modules": null,
320
+ "galore_rank": 128,
321
+ "galore_update_proj_gap": 50,
322
+ "galore_scale": 1.0,
323
+ "galore_proj_type": "std",
324
+ "galore_optim_per_parameter": false,
325
+ "galore_with_embedding": false,
326
+ "galore_quantization": false,
327
+ "galore_proj_quant": false,
328
+ "galore_proj_bits": 4,
329
+ "galore_proj_group_size": 256,
330
+ "galore_cos_threshold": 0.4,
331
+ "galore_gamma_proj": 2,
332
+ "galore_queue_size": 5,
333
+ "adalora_target_r": 8,
334
+ "adalora_init_r": 12,
335
+ "adalora_tinit": 0,
336
+ "adalora_tfinal": 0,
337
+ "adalora_deltaT": 1,
338
+ "adalora_beta1": 0.85,
339
+ "adalora_beta2": 0.85,
340
+ "adalora_orth_reg_weight": 0.5,
341
+ "llamapro_num_new_blocks": 4,
342
+ "llamapro_num_groups": null,
343
+ "lisa_activated_layers": 0,
344
+ "lisa_step_interval": 20,
345
+ "reft_layer_key": null,
346
+ "reft_layers": null,
347
+ "reft_rank": 4,
348
+ "reft_intervention_type": "LoreftIntervention",
349
+ "reft_args": null,
350
+ "swanlab_token": null,
351
+ "swanlab_project": null,
352
+ "swanlab_workspace": null,
353
+ "swanlab_exp_name": null,
354
+ "swanlab_mode": "cloud",
355
+ "add_version": true,
356
+ "resume_only_model": false,
357
+ "create_checkpoint_symlink": false,
358
+ "packing": true,
359
+ "lazy_tokenize": false,
360
+ "loss_type": null,
361
+ "metric": null,
362
+ "zero_hpz_partition_size": null,
363
+ "rank": 0,
364
+ "global_world_size": 4,
365
+ "local_world_size": 4,
366
+ "model_suffix": "1",
367
+ "model_info": "ModelInfo(model_type='qwen3', model_dir='/kaggle/input/qwen-3/transformers/32b-awq/1', torch_dtype=torch.float16, max_model_len=40960, quant_method='awq', quant_bits=4, rope_scaling=None, config=None, task_type='causal_lm', num_labels=None)",
368
+ "model_meta": "ModelMeta(model_type='qwen3', model_groups=[ModelGroup(models=[Model(ms_model_id='Qwen/Qwen3-0.6B-Base', hf_model_id='Qwen/Qwen3-0.6B-Base', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-1.7B-Base', hf_model_id='Qwen/Qwen3-1.7B-Base', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-4B-Base', hf_model_id='Qwen/Qwen3-4B-Base', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-8B-Base', hf_model_id='Qwen/Qwen3-8B-Base', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-14B-Base', hf_model_id='Qwen/Qwen3-14B-Base', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-32B-Base', hf_model_id='Qwen/Qwen3-32B-Base', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-0.6B', hf_model_id='Qwen/Qwen3-0.6B', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-1.7B', hf_model_id='Qwen/Qwen3-1.7B', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-4B', hf_model_id='Qwen/Qwen3-4B', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-8B', hf_model_id='Qwen/Qwen3-8B', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-14B', hf_model_id='Qwen/Qwen3-14B', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-32B', hf_model_id='Qwen/Qwen3-32B', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-0.6B-FP8', hf_model_id='Qwen/Qwen3-0.6B-FP8', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-1.7B-FP8', hf_model_id='Qwen/Qwen3-1.7B-FP8', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-4B-FP8', hf_model_id='Qwen/Qwen3-4B-FP8', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-8B-FP8', hf_model_id='Qwen/Qwen3-8B-FP8', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-14B-FP8', hf_model_id='Qwen/Qwen3-14B-FP8', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-32B-FP8', hf_model_id='Qwen/Qwen3-32B-FP8', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-4B-AWQ', hf_model_id='Qwen/Qwen3-4B-AWQ', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-8B-AWQ', hf_model_id='Qwen/Qwen3-8B-AWQ', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-14B-AWQ', hf_model_id='Qwen/Qwen3-14B-AWQ', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-32B-AWQ', hf_model_id='Qwen/Qwen3-32B-AWQ', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='swift/Qwen3-32B-AWQ', hf_model_id=None, model_path=None, ms_revision=None, hf_revision=None)], ignore_patterns=None, requires=None, tags=[])], template='qwen3', get_function=<function get_model_tokenizer_with_flash_attn at 0x7e1c95bd7880>, model_arch='llama', architectures=['Qwen3ForCausalLM'], additional_saved_files=[], torch_dtype=None, is_multimodal=False, is_reward=False, task_type=None, ignore_patterns=None, requires=['transformers>=4.51'], tags=[])",
369
+ "model_dir": "/kaggle/input/qwen-3/transformers/32b-awq/1",
370
+ "hub": "<class 'swift.hub.hub.MSHub'>",
371
+ "evaluation_strategy": "steps",
372
+ "training_args": "Seq2SeqTrainingArguments(output_dir='/kaggle/tmp/save_checkpoint/v0-20250526-142723', overwrite_output_dir=False, do_train=False, do_eval=True, do_predict=False, eval_strategy=<IntervalStrategy.STEPS: 'steps'>, prediction_loss_only=False, per_device_train_batch_size=1, per_device_eval_batch_size=1, per_gpu_train_batch_size=None, per_gpu_eval_batch_size=None, gradient_accumulation_steps=8, eval_accumulation_steps=None, eval_delay=0, torch_empty_cache_steps=None, learning_rate=3e-05, weight_decay=0.1, adam_beta1=0.9, adam_beta2=0.95, adam_epsilon=1e-08, max_grad_norm=1.0, num_train_epochs=3.0, max_steps=-1, lr_scheduler_type=<SchedulerType.COSINE: 'cosine'>, lr_scheduler_kwargs=None, warmup_ratio=0.05, warmup_steps=0, log_level='passive', log_level_replica='warning', log_on_each_node=True, logging_dir='/kaggle/tmp/save_checkpoint/v0-20250526-142723/runs', logging_strategy=<IntervalStrategy.STEPS: 'steps'>, logging_first_step=True, logging_steps=5, logging_nan_inf_filter=True, save_strategy=<SaveStrategy.STEPS: 'steps'>, save_steps=640, save_total_limit=4, save_safetensors=True, save_on_each_node=False, save_only_model=False, restore_callback_states_from_checkpoint=False, no_cuda=False, use_cpu=False, use_mps_device=False, seed=42, data_seed=42, jit_mode_eval=False, use_ipex=False, bf16=False, fp16=True, fp16_opt_level='O1', half_precision_backend='auto', bf16_full_eval=False, fp16_full_eval=False, tf32=None, local_rank=0, ddp_backend=None, tpu_num_cores=None, tpu_metrics_debug=False, debug=[], dataloader_drop_last=False, eval_steps=640, dataloader_num_workers=8, dataloader_prefetch_factor=10, past_index=-1, run_name='/kaggle/tmp/save_checkpoint/v0-20250526-142723', disable_tqdm=False, remove_unused_columns=False, label_names=None, load_best_model_at_end=False, metric_for_best_model='loss', greater_is_better=False, ignore_data_skip=False, fsdp=[], fsdp_min_num_params=0, fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, tp_size=0, fsdp_transformer_layer_cls_to_wrap=None, accelerator_config=AcceleratorConfig(split_batches=False, dispatch_batches=False, even_batches=True, use_seedable_sampler=True, non_blocking=False, gradient_accumulation_kwargs=None, use_configured_state=False), deepspeed={'fp16': {'enabled': 'auto', 'loss_scale': 0, 'loss_scale_window': 1000, 'initial_scale_power': 16, 'hysteresis': 2, 'min_loss_scale': 1}, 'bf16': {'enabled': 'auto'}, 'zero_optimization': {'stage': 3, 'offload_optimizer': {'device': 'none', 'pin_memory': True}, 'offload_param': {'device': 'none', 'pin_memory': True}, 'overlap_comm': False, 'contiguous_gradients': True, 'sub_group_size': 1000000000.0, 'reduce_bucket_size': 'auto', 'zero_quantized_weights': False, 'zero_quantized_gradients': False, 'stage3_prefetch_bucket_size': 'auto', 'stage3_param_persistence_threshold': 'auto', 'stage3_max_live_parameters': 1000000000.0, 'stage3_max_reuse_distance': 1000000000.0, 'stage3_gather_16bit_weights_on_model_save': True}, 'gradient_accumulation_steps': 'auto', 'gradient_clipping': 'auto', 'steps_per_print': 2000, 'train_batch_size': 'auto', 'train_micro_batch_size_per_gpu': 'auto', 'wall_clock_breakdown': False}, label_smoothing_factor=0.0, optim=<OptimizerNames.ADAMW_TORCH: 'adamw_torch'>, optim_args=None, adafactor=False, group_by_length=False, length_column_name='length', report_to=['tensorboard'], ddp_find_unused_parameters=None, ddp_bucket_cap_mb=None, ddp_broadcast_buffers=None, dataloader_pin_memory=True, dataloader_persistent_workers=False, skip_memory_metrics=True, use_legacy_prediction_loop=False, push_to_hub=False, resume_from_checkpoint=None, hub_model_id=None, hub_strategy=<HubStrategy.EVERY_SAVE: 'every_save'>, hub_token=None, hub_private_repo=None, hub_always_push=False, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, include_inputs_for_metrics=False, include_for_metrics=[], eval_do_concat_batches=True, fp16_backend='auto', push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=None, mp_parameters='', auto_find_batch_size=False, full_determinism=False, torchdynamo=None, ray_scope='last', ddp_timeout=1800, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, include_tokens_per_second=None, include_num_input_tokens_seen=None, neftune_noise_alpha=None, optim_target_modules=None, batch_eval_metrics=False, eval_on_start=False, use_liger_kernel=True, eval_use_gather_object=False, average_tokens_across_devices=None, sortish_sampler=False, predict_with_generate=False, generation_max_length=None, generation_num_beams=None, generation_config=None, vit_gradient_checkpointing=True, check_model=True, acc_strategy='token', train_dataloader_shuffle=True, max_epochs=None, aligner_lr=None, vit_lr=None, optimizer=None, metric_warmup_step=0, fsdp_num=1, acc_steps=1, eval_use_evalscope=False, eval_datasets=[], eval_limit=None, eval_datasets_args=None, eval_generation_config=None, train_type='lora', local_repo_path=None, galore_config=None)"
373
+ }
v0-20250526-142723/checkpoint-640/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /kaggle/input/qwen-3/transformers/32b-awq/1
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
v0-20250526-142723/checkpoint-640/adapter_config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/kaggle/input/qwen-3/transformers/32b-awq/1",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 128,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0.05,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": [],
21
+ "peft_type": "LORA",
22
+ "r": 32,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": [
26
+ "k_proj",
27
+ "q_proj",
28
+ "down_proj",
29
+ "up_proj",
30
+ "o_proj",
31
+ "gate_proj",
32
+ "v_proj"
33
+ ],
34
+ "task_type": "CAUSAL_LM",
35
+ "use_dora": false,
36
+ "use_rslora": false
37
+ }
v0-20250526-142723/checkpoint-640/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:42d591d4dedc9f27ecafa9089762ccfec480789034e044a5c390f866c8c1f994
3
+ size 536991984
v0-20250526-142723/checkpoint-640/additional_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"lora_dtype": null, "lorap_lr_ratio": null, "lorap_emb_lr": 1e-06}
v0-20250526-142723/checkpoint-640/args.json ADDED
@@ -0,0 +1,373 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model": "/kaggle/input/qwen-3/transformers/32b-awq/1",
3
+ "model_type": "qwen3",
4
+ "model_revision": null,
5
+ "task_type": "causal_lm",
6
+ "torch_dtype": "float16",
7
+ "attn_impl": "flash_attn",
8
+ "num_labels": null,
9
+ "problem_type": null,
10
+ "rope_scaling": null,
11
+ "device_map": null,
12
+ "max_memory": {},
13
+ "local_repo_path": null,
14
+ "init_strategy": null,
15
+ "template": "qwen3",
16
+ "system": null,
17
+ "max_length": 512,
18
+ "truncation_strategy": "delete",
19
+ "max_pixels": null,
20
+ "agent_template": null,
21
+ "norm_bbox": null,
22
+ "use_chat_template": true,
23
+ "padding_free": false,
24
+ "padding_side": "right",
25
+ "loss_scale": "default",
26
+ "sequence_parallel_size": 1,
27
+ "response_prefix": null,
28
+ "template_backend": "swift",
29
+ "dataset": [
30
+ "combined_messages.jsonl"
31
+ ],
32
+ "val_dataset": [],
33
+ "split_dataset_ratio": 0.0,
34
+ "data_seed": 42,
35
+ "dataset_num_proc": 8,
36
+ "load_from_cache_file": true,
37
+ "dataset_shuffle": true,
38
+ "val_dataset_shuffle": false,
39
+ "streaming": false,
40
+ "interleave_prob": null,
41
+ "stopping_strategy": "first_exhausted",
42
+ "shuffle_buffer_size": 1000,
43
+ "download_mode": "reuse_dataset_if_exists",
44
+ "columns": {},
45
+ "strict": false,
46
+ "remove_unused_columns": true,
47
+ "model_name": [
48
+ null,
49
+ null
50
+ ],
51
+ "model_author": [
52
+ null,
53
+ null
54
+ ],
55
+ "custom_dataset_info": [],
56
+ "quant_method": null,
57
+ "quant_bits": null,
58
+ "hqq_axis": null,
59
+ "bnb_4bit_compute_dtype": "float32",
60
+ "bnb_4bit_quant_type": "nf4",
61
+ "bnb_4bit_use_double_quant": true,
62
+ "bnb_4bit_quant_storage": null,
63
+ "max_new_tokens": 64,
64
+ "temperature": 0.0,
65
+ "top_k": null,
66
+ "top_p": null,
67
+ "repetition_penalty": null,
68
+ "num_beams": 1,
69
+ "stream": false,
70
+ "stop_words": [],
71
+ "logprobs": false,
72
+ "top_logprobs": null,
73
+ "ckpt_dir": null,
74
+ "lora_modules": [],
75
+ "tuner_backend": "peft",
76
+ "train_type": "lora",
77
+ "adapters": [],
78
+ "external_plugins": [],
79
+ "seed": 42,
80
+ "model_kwargs": {},
81
+ "load_args": false,
82
+ "load_data_args": false,
83
+ "use_hf": false,
84
+ "hub_token": null,
85
+ "custom_register_path": [],
86
+ "ddp_timeout": 1800,
87
+ "ddp_backend": null,
88
+ "ignore_args_error": false,
89
+ "use_swift_lora": false,
90
+ "output_dir": "/kaggle/tmp/save_checkpoint/v0-20250526-142723",
91
+ "overwrite_output_dir": false,
92
+ "do_train": false,
93
+ "do_eval": false,
94
+ "do_predict": false,
95
+ "eval_strategy": "steps",
96
+ "prediction_loss_only": false,
97
+ "per_device_train_batch_size": 1,
98
+ "per_device_eval_batch_size": 1,
99
+ "per_gpu_train_batch_size": null,
100
+ "per_gpu_eval_batch_size": null,
101
+ "gradient_accumulation_steps": 8,
102
+ "eval_accumulation_steps": null,
103
+ "eval_delay": 0,
104
+ "torch_empty_cache_steps": null,
105
+ "learning_rate": 3e-05,
106
+ "weight_decay": 0.1,
107
+ "adam_beta1": 0.9,
108
+ "adam_beta2": 0.95,
109
+ "adam_epsilon": 1e-08,
110
+ "max_grad_norm": 1.0,
111
+ "num_train_epochs": 3.0,
112
+ "max_steps": -1,
113
+ "lr_scheduler_type": "cosine",
114
+ "lr_scheduler_kwargs": null,
115
+ "warmup_ratio": 0.05,
116
+ "warmup_steps": 0,
117
+ "log_level": "passive",
118
+ "log_level_replica": "warning",
119
+ "log_on_each_node": true,
120
+ "logging_dir": "/kaggle/tmp/save_checkpoint/v0-20250526-142723/runs",
121
+ "logging_strategy": "steps",
122
+ "logging_first_step": true,
123
+ "logging_steps": 5,
124
+ "logging_nan_inf_filter": true,
125
+ "save_strategy": "steps",
126
+ "save_steps": 640.0,
127
+ "save_total_limit": 4,
128
+ "save_safetensors": true,
129
+ "save_on_each_node": false,
130
+ "save_only_model": false,
131
+ "restore_callback_states_from_checkpoint": false,
132
+ "no_cuda": false,
133
+ "use_cpu": false,
134
+ "use_mps_device": false,
135
+ "jit_mode_eval": false,
136
+ "use_ipex": false,
137
+ "bf16": false,
138
+ "fp16": true,
139
+ "fp16_opt_level": "O1",
140
+ "half_precision_backend": "auto",
141
+ "bf16_full_eval": false,
142
+ "fp16_full_eval": false,
143
+ "tf32": null,
144
+ "local_rank": 0,
145
+ "tpu_num_cores": null,
146
+ "tpu_metrics_debug": false,
147
+ "debug": null,
148
+ "dataloader_drop_last": false,
149
+ "eval_steps": 640.0,
150
+ "dataloader_num_workers": 8,
151
+ "dataloader_prefetch_factor": null,
152
+ "past_index": -1,
153
+ "run_name": "/kaggle/tmp/save_checkpoint/v0-20250526-142723",
154
+ "disable_tqdm": null,
155
+ "label_names": null,
156
+ "load_best_model_at_end": false,
157
+ "metric_for_best_model": "loss",
158
+ "greater_is_better": false,
159
+ "ignore_data_skip": false,
160
+ "fsdp": "",
161
+ "fsdp_min_num_params": 0,
162
+ "fsdp_config": null,
163
+ "tp_size": 0,
164
+ "fsdp_transformer_layer_cls_to_wrap": null,
165
+ "accelerator_config": {
166
+ "dispatch_batches": false
167
+ },
168
+ "deepspeed": {
169
+ "fp16": {
170
+ "enabled": "auto",
171
+ "loss_scale": 0,
172
+ "loss_scale_window": 1000,
173
+ "initial_scale_power": 16,
174
+ "hysteresis": 2,
175
+ "min_loss_scale": 1
176
+ },
177
+ "bf16": {
178
+ "enabled": "auto"
179
+ },
180
+ "zero_optimization": {
181
+ "stage": 3,
182
+ "offload_optimizer": {
183
+ "device": "none",
184
+ "pin_memory": true
185
+ },
186
+ "offload_param": {
187
+ "device": "none",
188
+ "pin_memory": true
189
+ },
190
+ "overlap_comm": false,
191
+ "contiguous_gradients": true,
192
+ "sub_group_size": 1000000000.0,
193
+ "reduce_bucket_size": "auto",
194
+ "zero_quantized_weights": false,
195
+ "zero_quantized_gradients": false,
196
+ "stage3_prefetch_bucket_size": "auto",
197
+ "stage3_param_persistence_threshold": "auto",
198
+ "stage3_max_live_parameters": 1000000000.0,
199
+ "stage3_max_reuse_distance": 1000000000.0,
200
+ "stage3_gather_16bit_weights_on_model_save": true
201
+ },
202
+ "gradient_accumulation_steps": "auto",
203
+ "gradient_clipping": "auto",
204
+ "steps_per_print": 2000,
205
+ "train_batch_size": "auto",
206
+ "train_micro_batch_size_per_gpu": "auto",
207
+ "wall_clock_breakdown": false
208
+ },
209
+ "label_smoothing_factor": 0.0,
210
+ "optim": "adamw_torch",
211
+ "optim_args": null,
212
+ "adafactor": false,
213
+ "group_by_length": false,
214
+ "length_column_name": "length",
215
+ "report_to": [
216
+ "tensorboard"
217
+ ],
218
+ "ddp_find_unused_parameters": null,
219
+ "ddp_bucket_cap_mb": null,
220
+ "ddp_broadcast_buffers": null,
221
+ "dataloader_pin_memory": true,
222
+ "dataloader_persistent_workers": false,
223
+ "skip_memory_metrics": true,
224
+ "use_legacy_prediction_loop": false,
225
+ "push_to_hub": false,
226
+ "resume_from_checkpoint": null,
227
+ "hub_model_id": null,
228
+ "hub_strategy": "every_save",
229
+ "hub_private_repo": null,
230
+ "hub_always_push": false,
231
+ "gradient_checkpointing": true,
232
+ "gradient_checkpointing_kwargs": null,
233
+ "include_inputs_for_metrics": false,
234
+ "include_for_metrics": [],
235
+ "eval_do_concat_batches": true,
236
+ "fp16_backend": "auto",
237
+ "push_to_hub_model_id": null,
238
+ "push_to_hub_organization": null,
239
+ "push_to_hub_token": null,
240
+ "mp_parameters": "",
241
+ "auto_find_batch_size": false,
242
+ "full_determinism": false,
243
+ "torchdynamo": null,
244
+ "ray_scope": "last",
245
+ "torch_compile": false,
246
+ "torch_compile_backend": null,
247
+ "torch_compile_mode": null,
248
+ "include_tokens_per_second": false,
249
+ "include_num_input_tokens_seen": false,
250
+ "neftune_noise_alpha": null,
251
+ "optim_target_modules": null,
252
+ "batch_eval_metrics": false,
253
+ "eval_on_start": false,
254
+ "use_liger_kernel": true,
255
+ "eval_use_gather_object": false,
256
+ "average_tokens_across_devices": false,
257
+ "sortish_sampler": false,
258
+ "predict_with_generate": false,
259
+ "generation_max_length": null,
260
+ "generation_num_beams": null,
261
+ "generation_config": null,
262
+ "vit_gradient_checkpointing": null,
263
+ "check_model": true,
264
+ "acc_strategy": "token",
265
+ "train_dataloader_shuffle": true,
266
+ "max_epochs": null,
267
+ "aligner_lr": null,
268
+ "vit_lr": null,
269
+ "optimizer": null,
270
+ "metric_warmup_step": 0,
271
+ "fsdp_num": 1,
272
+ "acc_steps": 1,
273
+ "eval_use_evalscope": false,
274
+ "eval_datasets": [],
275
+ "eval_limit": null,
276
+ "eval_datasets_args": null,
277
+ "eval_generation_config": null,
278
+ "freeze_parameters": [],
279
+ "freeze_parameters_regex": null,
280
+ "freeze_parameters_ratio": 0.0,
281
+ "trainable_parameters": [],
282
+ "trainable_parameters_regex": null,
283
+ "freeze_llm": false,
284
+ "freeze_vit": true,
285
+ "freeze_aligner": true,
286
+ "target_modules": [
287
+ "all-linear"
288
+ ],
289
+ "target_regex": null,
290
+ "modules_to_save": [],
291
+ "lora_rank": 32,
292
+ "lora_alpha": 128,
293
+ "lora_dropout": 0.05,
294
+ "lora_bias": "none",
295
+ "lora_dtype": null,
296
+ "lorap_lr_ratio": null,
297
+ "use_rslora": false,
298
+ "use_dora": false,
299
+ "lora_ga_batch_size": 2,
300
+ "lora_ga_iters": 2,
301
+ "lora_ga_max_length": 1024,
302
+ "lora_ga_direction": "ArB2r",
303
+ "lora_ga_scale": "stable",
304
+ "lora_ga_stable_gamma": 16,
305
+ "init_weights": true,
306
+ "fourier_n_frequency": 2000,
307
+ "fourier_scaling": 300.0,
308
+ "boft_block_size": 4,
309
+ "boft_block_num": 0,
310
+ "boft_n_butterfly_factor": 1,
311
+ "boft_dropout": 0.0,
312
+ "vera_rank": 256,
313
+ "vera_projection_prng_key": 0,
314
+ "vera_dropout": 0.0,
315
+ "vera_d_initial": 0.1,
316
+ "adapter_act": "gelu",
317
+ "adapter_length": 128,
318
+ "use_galore": false,
319
+ "galore_target_modules": null,
320
+ "galore_rank": 128,
321
+ "galore_update_proj_gap": 50,
322
+ "galore_scale": 1.0,
323
+ "galore_proj_type": "std",
324
+ "galore_optim_per_parameter": false,
325
+ "galore_with_embedding": false,
326
+ "galore_quantization": false,
327
+ "galore_proj_quant": false,
328
+ "galore_proj_bits": 4,
329
+ "galore_proj_group_size": 256,
330
+ "galore_cos_threshold": 0.4,
331
+ "galore_gamma_proj": 2,
332
+ "galore_queue_size": 5,
333
+ "adalora_target_r": 8,
334
+ "adalora_init_r": 12,
335
+ "adalora_tinit": 0,
336
+ "adalora_tfinal": 0,
337
+ "adalora_deltaT": 1,
338
+ "adalora_beta1": 0.85,
339
+ "adalora_beta2": 0.85,
340
+ "adalora_orth_reg_weight": 0.5,
341
+ "llamapro_num_new_blocks": 4,
342
+ "llamapro_num_groups": null,
343
+ "lisa_activated_layers": 0,
344
+ "lisa_step_interval": 20,
345
+ "reft_layer_key": null,
346
+ "reft_layers": null,
347
+ "reft_rank": 4,
348
+ "reft_intervention_type": "LoreftIntervention",
349
+ "reft_args": null,
350
+ "swanlab_token": null,
351
+ "swanlab_project": null,
352
+ "swanlab_workspace": null,
353
+ "swanlab_exp_name": null,
354
+ "swanlab_mode": "cloud",
355
+ "add_version": true,
356
+ "resume_only_model": false,
357
+ "create_checkpoint_symlink": false,
358
+ "packing": true,
359
+ "lazy_tokenize": false,
360
+ "loss_type": null,
361
+ "metric": null,
362
+ "zero_hpz_partition_size": null,
363
+ "rank": 0,
364
+ "global_world_size": 4,
365
+ "local_world_size": 4,
366
+ "model_suffix": "1",
367
+ "model_info": "ModelInfo(model_type='qwen3', model_dir='/kaggle/input/qwen-3/transformers/32b-awq/1', torch_dtype=torch.float16, max_model_len=40960, quant_method='awq', quant_bits=4, rope_scaling=None, config=None, task_type='causal_lm', num_labels=None)",
368
+ "model_meta": "ModelMeta(model_type='qwen3', model_groups=[ModelGroup(models=[Model(ms_model_id='Qwen/Qwen3-0.6B-Base', hf_model_id='Qwen/Qwen3-0.6B-Base', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-1.7B-Base', hf_model_id='Qwen/Qwen3-1.7B-Base', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-4B-Base', hf_model_id='Qwen/Qwen3-4B-Base', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-8B-Base', hf_model_id='Qwen/Qwen3-8B-Base', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-14B-Base', hf_model_id='Qwen/Qwen3-14B-Base', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-32B-Base', hf_model_id='Qwen/Qwen3-32B-Base', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-0.6B', hf_model_id='Qwen/Qwen3-0.6B', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-1.7B', hf_model_id='Qwen/Qwen3-1.7B', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-4B', hf_model_id='Qwen/Qwen3-4B', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-8B', hf_model_id='Qwen/Qwen3-8B', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-14B', hf_model_id='Qwen/Qwen3-14B', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-32B', hf_model_id='Qwen/Qwen3-32B', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-0.6B-FP8', hf_model_id='Qwen/Qwen3-0.6B-FP8', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-1.7B-FP8', hf_model_id='Qwen/Qwen3-1.7B-FP8', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-4B-FP8', hf_model_id='Qwen/Qwen3-4B-FP8', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-8B-FP8', hf_model_id='Qwen/Qwen3-8B-FP8', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-14B-FP8', hf_model_id='Qwen/Qwen3-14B-FP8', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-32B-FP8', hf_model_id='Qwen/Qwen3-32B-FP8', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-4B-AWQ', hf_model_id='Qwen/Qwen3-4B-AWQ', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-8B-AWQ', hf_model_id='Qwen/Qwen3-8B-AWQ', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-14B-AWQ', hf_model_id='Qwen/Qwen3-14B-AWQ', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-32B-AWQ', hf_model_id='Qwen/Qwen3-32B-AWQ', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='swift/Qwen3-32B-AWQ', hf_model_id=None, model_path=None, ms_revision=None, hf_revision=None)], ignore_patterns=None, requires=None, tags=[])], template='qwen3', get_function=<function get_model_tokenizer_with_flash_attn at 0x7e1c95bd7880>, model_arch='llama', architectures=['Qwen3ForCausalLM'], additional_saved_files=[], torch_dtype=None, is_multimodal=False, is_reward=False, task_type=None, ignore_patterns=None, requires=['transformers>=4.51'], tags=[])",
369
+ "model_dir": "/kaggle/input/qwen-3/transformers/32b-awq/1",
370
+ "hub": "<class 'swift.hub.hub.MSHub'>",
371
+ "evaluation_strategy": "steps",
372
+ "training_args": "Seq2SeqTrainingArguments(output_dir='/kaggle/tmp/save_checkpoint/v0-20250526-142723', overwrite_output_dir=False, do_train=False, do_eval=True, do_predict=False, eval_strategy=<IntervalStrategy.STEPS: 'steps'>, prediction_loss_only=False, per_device_train_batch_size=1, per_device_eval_batch_size=1, per_gpu_train_batch_size=None, per_gpu_eval_batch_size=None, gradient_accumulation_steps=8, eval_accumulation_steps=None, eval_delay=0, torch_empty_cache_steps=None, learning_rate=3e-05, weight_decay=0.1, adam_beta1=0.9, adam_beta2=0.95, adam_epsilon=1e-08, max_grad_norm=1.0, num_train_epochs=3.0, max_steps=-1, lr_scheduler_type=<SchedulerType.COSINE: 'cosine'>, lr_scheduler_kwargs=None, warmup_ratio=0.05, warmup_steps=0, log_level='passive', log_level_replica='warning', log_on_each_node=True, logging_dir='/kaggle/tmp/save_checkpoint/v0-20250526-142723/runs', logging_strategy=<IntervalStrategy.STEPS: 'steps'>, logging_first_step=True, logging_steps=5, logging_nan_inf_filter=True, save_strategy=<SaveStrategy.STEPS: 'steps'>, save_steps=640, save_total_limit=4, save_safetensors=True, save_on_each_node=False, save_only_model=False, restore_callback_states_from_checkpoint=False, no_cuda=False, use_cpu=False, use_mps_device=False, seed=42, data_seed=42, jit_mode_eval=False, use_ipex=False, bf16=False, fp16=True, fp16_opt_level='O1', half_precision_backend='auto', bf16_full_eval=False, fp16_full_eval=False, tf32=None, local_rank=0, ddp_backend=None, tpu_num_cores=None, tpu_metrics_debug=False, debug=[], dataloader_drop_last=False, eval_steps=640, dataloader_num_workers=8, dataloader_prefetch_factor=10, past_index=-1, run_name='/kaggle/tmp/save_checkpoint/v0-20250526-142723', disable_tqdm=False, remove_unused_columns=False, label_names=None, load_best_model_at_end=False, metric_for_best_model='loss', greater_is_better=False, ignore_data_skip=False, fsdp=[], fsdp_min_num_params=0, fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, tp_size=0, fsdp_transformer_layer_cls_to_wrap=None, accelerator_config=AcceleratorConfig(split_batches=False, dispatch_batches=False, even_batches=True, use_seedable_sampler=True, non_blocking=False, gradient_accumulation_kwargs=None, use_configured_state=False), deepspeed={'fp16': {'enabled': 'auto', 'loss_scale': 0, 'loss_scale_window': 1000, 'initial_scale_power': 16, 'hysteresis': 2, 'min_loss_scale': 1}, 'bf16': {'enabled': 'auto'}, 'zero_optimization': {'stage': 3, 'offload_optimizer': {'device': 'none', 'pin_memory': True}, 'offload_param': {'device': 'none', 'pin_memory': True}, 'overlap_comm': False, 'contiguous_gradients': True, 'sub_group_size': 1000000000.0, 'reduce_bucket_size': 'auto', 'zero_quantized_weights': False, 'zero_quantized_gradients': False, 'stage3_prefetch_bucket_size': 'auto', 'stage3_param_persistence_threshold': 'auto', 'stage3_max_live_parameters': 1000000000.0, 'stage3_max_reuse_distance': 1000000000.0, 'stage3_gather_16bit_weights_on_model_save': True}, 'gradient_accumulation_steps': 'auto', 'gradient_clipping': 'auto', 'steps_per_print': 2000, 'train_batch_size': 'auto', 'train_micro_batch_size_per_gpu': 'auto', 'wall_clock_breakdown': False}, label_smoothing_factor=0.0, optim=<OptimizerNames.ADAMW_TORCH: 'adamw_torch'>, optim_args=None, adafactor=False, group_by_length=False, length_column_name='length', report_to=['tensorboard'], ddp_find_unused_parameters=None, ddp_bucket_cap_mb=None, ddp_broadcast_buffers=None, dataloader_pin_memory=True, dataloader_persistent_workers=False, skip_memory_metrics=True, use_legacy_prediction_loop=False, push_to_hub=False, resume_from_checkpoint=None, hub_model_id=None, hub_strategy=<HubStrategy.EVERY_SAVE: 'every_save'>, hub_token=None, hub_private_repo=None, hub_always_push=False, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, include_inputs_for_metrics=False, include_for_metrics=[], eval_do_concat_batches=True, fp16_backend='auto', push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=None, mp_parameters='', auto_find_batch_size=False, full_determinism=False, torchdynamo=None, ray_scope='last', ddp_timeout=1800, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, include_tokens_per_second=None, include_num_input_tokens_seen=None, neftune_noise_alpha=None, optim_target_modules=None, batch_eval_metrics=False, eval_on_start=False, use_liger_kernel=True, eval_use_gather_object=False, average_tokens_across_devices=None, sortish_sampler=False, predict_with_generate=False, generation_max_length=None, generation_num_beams=None, generation_config=None, vit_gradient_checkpointing=True, check_model=True, acc_strategy='token', train_dataloader_shuffle=True, max_epochs=None, aligner_lr=None, vit_lr=None, optimizer=None, metric_warmup_step=0, fsdp_num=1, acc_steps=1, eval_use_evalscope=False, eval_datasets=[], eval_limit=None, eval_datasets_args=None, eval_generation_config=None, train_type='lora', local_repo_path=None, galore_config=None)"
373
+ }
v0-20250526-142723/checkpoint-640/global_step638/zero_pp_rank_0_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ff1af3289ba9d861c4fcd687408f06d22ae67e1600a0d6266ef56e4bc5dc0837
3
+ size 16214111450
v0-20250526-142723/checkpoint-640/global_step638/zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:076a40be547cb18e4e0b0df2b44bc7c05f69bb84520ef356b63bf60fb8d9c9b7
3
+ size 805310600
v0-20250526-142723/checkpoint-640/global_step638/zero_pp_rank_1_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1001252c25a75572fb298792ea4dd520a5809e1c01c749fb7f57364a2aa3d726
3
+ size 16214111450
v0-20250526-142723/checkpoint-640/global_step638/zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:22846cbae9231f77dfe9407a53fd274976d13145cc2cdd04240aa8a94bd00445
3
+ size 805310600
v0-20250526-142723/checkpoint-640/global_step638/zero_pp_rank_2_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c3e92ce9765953dcbee3f63b855fd247676df9cd68f1ef905ede2ec9280c7247
3
+ size 16214111450
v0-20250526-142723/checkpoint-640/global_step638/zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:087691cbc41e92060c624a117bd188a47333da659fe3937429d4b446d51a36a7
3
+ size 805310600
v0-20250526-142723/checkpoint-640/global_step638/zero_pp_rank_3_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:be8ba1c740f05aa6f553f0f33c7f952a88aa742ff0cc515240eb53d5d45da857
3
+ size 16214111450
v0-20250526-142723/checkpoint-640/global_step638/zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e7122b1acdfd418777310e08127e439192845c276acc07bb25b3f129e6ba431c
3
+ size 805310600
v0-20250526-142723/checkpoint-640/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step638
v0-20250526-142723/checkpoint-640/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ece6b6cdc3888475d045810d85bd19f71338a8dc932c4a9cacba07c4664dd43e
3
+ size 15024
v0-20250526-142723/checkpoint-640/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d1b1886e5fae9ba9ac0a7730b8b73207b1f2be2a766e6deeffe8466504eb3518
3
+ size 15024
v0-20250526-142723/checkpoint-640/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a9b839f13070e39523c6ed87eba7a2598369f822d84fe8422a7a342b1ed854de
3
+ size 15024
v0-20250526-142723/checkpoint-640/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cacbccf4ecf328a22a2e7528c676c5bd89abb44df99ab9197794c87061ade90a
3
+ size 15024
v0-20250526-142723/checkpoint-640/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2f6ac32993f35ca226989dd29f003ef5e8da7dec327c86fb0bf46b0ae034064f
3
+ size 1064
v0-20250526-142723/checkpoint-640/trainer_state.json ADDED
@@ -0,0 +1,1195 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 2.044835868694956,
6
+ "eval_steps": 640,
7
+ "global_step": 640,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.0032025620496397116,
14
+ "grad_norm": 1.113493326174143,
15
+ "learning_rate": 6.382978723404255e-07,
16
+ "loss": 1.4235601425170898,
17
+ "memory(GiB)": 21.89,
18
+ "step": 1,
19
+ "train_speed(iter/s)": 0.001478
20
+ },
21
+ {
22
+ "epoch": 0.016012810248198558,
23
+ "grad_norm": 1.2512449636957643,
24
+ "learning_rate": 3.1914893617021277e-06,
25
+ "loss": 1.4059971570968628,
26
+ "memory(GiB)": 21.89,
27
+ "step": 5,
28
+ "train_speed(iter/s)": 0.0054
29
+ },
30
+ {
31
+ "epoch": 0.032025620496397116,
32
+ "grad_norm": 1.1685257009513943,
33
+ "learning_rate": 6.3829787234042555e-06,
34
+ "loss": 1.4040182113647461,
35
+ "memory(GiB)": 21.89,
36
+ "step": 10,
37
+ "train_speed(iter/s)": 0.008109
38
+ },
39
+ {
40
+ "epoch": 0.04803843074459568,
41
+ "grad_norm": 1.0347892126573268,
42
+ "learning_rate": 9.574468085106385e-06,
43
+ "loss": 1.2724601745605468,
44
+ "memory(GiB)": 21.89,
45
+ "step": 15,
46
+ "train_speed(iter/s)": 0.009701
47
+ },
48
+ {
49
+ "epoch": 0.06405124099279423,
50
+ "grad_norm": 0.7170611254380553,
51
+ "learning_rate": 1.2765957446808511e-05,
52
+ "loss": 1.1707847595214844,
53
+ "memory(GiB)": 21.89,
54
+ "step": 20,
55
+ "train_speed(iter/s)": 0.010796
56
+ },
57
+ {
58
+ "epoch": 0.08006405124099279,
59
+ "grad_norm": 0.6048649522124168,
60
+ "learning_rate": 1.5957446808510637e-05,
61
+ "loss": 1.0797317504882813,
62
+ "memory(GiB)": 21.89,
63
+ "step": 25,
64
+ "train_speed(iter/s)": 0.011557
65
+ },
66
+ {
67
+ "epoch": 0.09607686148919135,
68
+ "grad_norm": 0.6938325308343493,
69
+ "learning_rate": 1.914893617021277e-05,
70
+ "loss": 0.9897993087768555,
71
+ "memory(GiB)": 21.89,
72
+ "step": 30,
73
+ "train_speed(iter/s)": 0.012125
74
+ },
75
+ {
76
+ "epoch": 0.11208967173738991,
77
+ "grad_norm": 0.609530150936291,
78
+ "learning_rate": 2.2340425531914894e-05,
79
+ "loss": 0.8915694236755372,
80
+ "memory(GiB)": 21.89,
81
+ "step": 35,
82
+ "train_speed(iter/s)": 0.012567
83
+ },
84
+ {
85
+ "epoch": 0.12810248198558846,
86
+ "grad_norm": 0.6060866850380204,
87
+ "learning_rate": 2.5531914893617022e-05,
88
+ "loss": 0.8486058235168457,
89
+ "memory(GiB)": 21.89,
90
+ "step": 40,
91
+ "train_speed(iter/s)": 0.012912
92
+ },
93
+ {
94
+ "epoch": 0.14411529223378702,
95
+ "grad_norm": 0.5542471477131478,
96
+ "learning_rate": 2.872340425531915e-05,
97
+ "loss": 0.7968315124511719,
98
+ "memory(GiB)": 21.89,
99
+ "step": 45,
100
+ "train_speed(iter/s)": 0.013196
101
+ },
102
+ {
103
+ "epoch": 0.16012810248198558,
104
+ "grad_norm": 0.5328098621829698,
105
+ "learning_rate": 2.9999157061425123e-05,
106
+ "loss": 0.7713782310485839,
107
+ "memory(GiB)": 21.89,
108
+ "step": 50,
109
+ "train_speed(iter/s)": 0.013423
110
+ },
111
+ {
112
+ "epoch": 0.17614091273018415,
113
+ "grad_norm": 0.5124254128934531,
114
+ "learning_rate": 2.9994006113219365e-05,
115
+ "loss": 0.7756826400756835,
116
+ "memory(GiB)": 21.89,
117
+ "step": 55,
118
+ "train_speed(iter/s)": 0.013636
119
+ },
120
+ {
121
+ "epoch": 0.1921537229783827,
122
+ "grad_norm": 0.45894560927350003,
123
+ "learning_rate": 2.9984174122163244e-05,
124
+ "loss": 0.7531558990478515,
125
+ "memory(GiB)": 21.89,
126
+ "step": 60,
127
+ "train_speed(iter/s)": 0.013815
128
+ },
129
+ {
130
+ "epoch": 0.20816653322658127,
131
+ "grad_norm": 0.42532071725821213,
132
+ "learning_rate": 2.9969664157748082e-05,
133
+ "loss": 0.720164680480957,
134
+ "memory(GiB)": 21.89,
135
+ "step": 65,
136
+ "train_speed(iter/s)": 0.013962
137
+ },
138
+ {
139
+ "epoch": 0.22417934347477983,
140
+ "grad_norm": 0.4661145482327595,
141
+ "learning_rate": 2.995048074990167e-05,
142
+ "loss": 0.7291761875152588,
143
+ "memory(GiB)": 21.89,
144
+ "step": 70,
145
+ "train_speed(iter/s)": 0.014104
146
+ },
147
+ {
148
+ "epoch": 0.2401921537229784,
149
+ "grad_norm": 0.5105236274459655,
150
+ "learning_rate": 2.99266298875741e-05,
151
+ "loss": 0.7409891128540039,
152
+ "memory(GiB)": 21.89,
153
+ "step": 75,
154
+ "train_speed(iter/s)": 0.014203
155
+ },
156
+ {
157
+ "epoch": 0.2562049639711769,
158
+ "grad_norm": 0.5866969087739654,
159
+ "learning_rate": 2.989811901686801e-05,
160
+ "loss": 0.7214169502258301,
161
+ "memory(GiB)": 21.89,
162
+ "step": 80,
163
+ "train_speed(iter/s)": 0.01431
164
+ },
165
+ {
166
+ "epoch": 0.2722177742193755,
167
+ "grad_norm": 0.4549841107961782,
168
+ "learning_rate": 2.986495703871398e-05,
169
+ "loss": 0.7045151233673096,
170
+ "memory(GiB)": 21.89,
171
+ "step": 85,
172
+ "train_speed(iter/s)": 0.014401
173
+ },
174
+ {
175
+ "epoch": 0.28823058446757405,
176
+ "grad_norm": 0.4514625540852967,
177
+ "learning_rate": 2.98271543060917e-05,
178
+ "loss": 0.6741261005401611,
179
+ "memory(GiB)": 21.89,
180
+ "step": 90,
181
+ "train_speed(iter/s)": 0.014476
182
+ },
183
+ {
184
+ "epoch": 0.3042433947157726,
185
+ "grad_norm": 0.43958566816038286,
186
+ "learning_rate": 2.978472262079782e-05,
187
+ "loss": 0.7089397430419921,
188
+ "memory(GiB)": 21.89,
189
+ "step": 95,
190
+ "train_speed(iter/s)": 0.014542
191
+ },
192
+ {
193
+ "epoch": 0.32025620496397117,
194
+ "grad_norm": 0.4652252500687268,
195
+ "learning_rate": 2.973767522976153e-05,
196
+ "loss": 0.6852937698364258,
197
+ "memory(GiB)": 21.89,
198
+ "step": 100,
199
+ "train_speed(iter/s)": 0.014601
200
+ },
201
+ {
202
+ "epoch": 0.33626901521216973,
203
+ "grad_norm": 0.4569144232265872,
204
+ "learning_rate": 2.9686026820908904e-05,
205
+ "loss": 0.6984831809997558,
206
+ "memory(GiB)": 21.89,
207
+ "step": 105,
208
+ "train_speed(iter/s)": 0.014666
209
+ },
210
+ {
211
+ "epoch": 0.3522818254603683,
212
+ "grad_norm": 0.49062268332997805,
213
+ "learning_rate": 2.964140614841668e-05,
214
+ "loss": 0.6909584522247314,
215
+ "memory(GiB)": 21.89,
216
+ "step": 110,
217
+ "train_speed(iter/s)": 0.014717
218
+ },
219
+ {
220
+ "epoch": 0.36829463570856685,
221
+ "grad_norm": 0.4599131682455051,
222
+ "learning_rate": 2.9581517502891373e-05,
223
+ "loss": 0.7058491706848145,
224
+ "memory(GiB)": 21.89,
225
+ "step": 115,
226
+ "train_speed(iter/s)": 0.014779
227
+ },
228
+ {
229
+ "epoch": 0.3843074459567654,
230
+ "grad_norm": 0.46586840624727305,
231
+ "learning_rate": 2.9517076591097877e-05,
232
+ "loss": 0.6904548645019531,
233
+ "memory(GiB)": 21.89,
234
+ "step": 120,
235
+ "train_speed(iter/s)": 0.014825
236
+ },
237
+ {
238
+ "epoch": 0.400320256204964,
239
+ "grad_norm": 0.4790148747464638,
240
+ "learning_rate": 2.9448103531119858e-05,
241
+ "loss": 0.6842238903045654,
242
+ "memory(GiB)": 21.89,
243
+ "step": 125,
244
+ "train_speed(iter/s)": 0.014876
245
+ },
246
+ {
247
+ "epoch": 0.41633306645316254,
248
+ "grad_norm": 0.48414224671346245,
249
+ "learning_rate": 2.9374619855951676e-05,
250
+ "loss": 0.6715976238250733,
251
+ "memory(GiB)": 21.89,
252
+ "step": 130,
253
+ "train_speed(iter/s)": 0.014914
254
+ },
255
+ {
256
+ "epoch": 0.4323458767013611,
257
+ "grad_norm": 0.44756883959355714,
258
+ "learning_rate": 2.929664850677595e-05,
259
+ "loss": 0.6528284072875976,
260
+ "memory(GiB)": 21.89,
261
+ "step": 135,
262
+ "train_speed(iter/s)": 0.014956
263
+ },
264
+ {
265
+ "epoch": 0.44835868694955966,
266
+ "grad_norm": 0.4614445331228631,
267
+ "learning_rate": 2.921421382580142e-05,
268
+ "loss": 0.6604287624359131,
269
+ "memory(GiB)": 21.89,
270
+ "step": 140,
271
+ "train_speed(iter/s)": 0.014993
272
+ },
273
+ {
274
+ "epoch": 0.4643714971977582,
275
+ "grad_norm": 0.4552618648718467,
276
+ "learning_rate": 2.9127341548663437e-05,
277
+ "loss": 0.663853931427002,
278
+ "memory(GiB)": 21.89,
279
+ "step": 145,
280
+ "train_speed(iter/s)": 0.015021
281
+ },
282
+ {
283
+ "epoch": 0.4803843074459568,
284
+ "grad_norm": 0.48893303880924177,
285
+ "learning_rate": 2.9036058796389484e-05,
286
+ "loss": 0.6526768684387207,
287
+ "memory(GiB)": 21.89,
288
+ "step": 150,
289
+ "train_speed(iter/s)": 0.01506
290
+ },
291
+ {
292
+ "epoch": 0.49639711769415534,
293
+ "grad_norm": 0.5294944478705774,
294
+ "learning_rate": 2.8940394066932122e-05,
295
+ "loss": 0.6768057346343994,
296
+ "memory(GiB)": 21.89,
297
+ "step": 155,
298
+ "train_speed(iter/s)": 0.015082
299
+ },
300
+ {
301
+ "epoch": 0.5124099279423538,
302
+ "grad_norm": 0.4779511788683914,
303
+ "learning_rate": 2.8840377226272102e-05,
304
+ "loss": 0.6269515991210938,
305
+ "memory(GiB)": 21.89,
306
+ "step": 160,
307
+ "train_speed(iter/s)": 0.015104
308
+ },
309
+ {
310
+ "epoch": 0.5284227381905524,
311
+ "grad_norm": 0.4492505317976044,
312
+ "learning_rate": 2.873603949909435e-05,
313
+ "loss": 0.6443400382995605,
314
+ "memory(GiB)": 21.89,
315
+ "step": 165,
316
+ "train_speed(iter/s)": 0.015127
317
+ },
318
+ {
319
+ "epoch": 0.544435548438751,
320
+ "grad_norm": 0.4997181805996068,
321
+ "learning_rate": 2.862741345903985e-05,
322
+ "loss": 0.6411213874816895,
323
+ "memory(GiB)": 21.89,
324
+ "step": 170,
325
+ "train_speed(iter/s)": 0.015159
326
+ },
327
+ {
328
+ "epoch": 0.5604483586869495,
329
+ "grad_norm": 0.4529198350769972,
330
+ "learning_rate": 2.8514533018536286e-05,
331
+ "loss": 0.6319211006164551,
332
+ "memory(GiB)": 21.89,
333
+ "step": 175,
334
+ "train_speed(iter/s)": 0.015177
335
+ },
336
+ {
337
+ "epoch": 0.5764611689351481,
338
+ "grad_norm": 0.4439771339111341,
339
+ "learning_rate": 2.839743341821082e-05,
340
+ "loss": 0.6533251762390136,
341
+ "memory(GiB)": 21.89,
342
+ "step": 180,
343
+ "train_speed(iter/s)": 0.015196
344
+ },
345
+ {
346
+ "epoch": 0.5924739791833467,
347
+ "grad_norm": 0.4482439997043441,
348
+ "learning_rate": 2.8276151215888127e-05,
349
+ "loss": 0.6418941974639892,
350
+ "memory(GiB)": 21.89,
351
+ "step": 185,
352
+ "train_speed(iter/s)": 0.015212
353
+ },
354
+ {
355
+ "epoch": 0.6084867894315452,
356
+ "grad_norm": 0.4878967638917357,
357
+ "learning_rate": 2.8150724275177312e-05,
358
+ "loss": 0.6312544822692872,
359
+ "memory(GiB)": 21.89,
360
+ "step": 190,
361
+ "train_speed(iter/s)": 0.015235
362
+ },
363
+ {
364
+ "epoch": 0.6244995996797438,
365
+ "grad_norm": 0.48121964708849274,
366
+ "learning_rate": 2.8021191753651025e-05,
367
+ "loss": 0.6673158168792724,
368
+ "memory(GiB)": 21.89,
369
+ "step": 195,
370
+ "train_speed(iter/s)": 0.015256
371
+ },
372
+ {
373
+ "epoch": 0.6405124099279423,
374
+ "grad_norm": 0.46466509624654573,
375
+ "learning_rate": 2.788759409062078e-05,
376
+ "loss": 0.6434747695922851,
377
+ "memory(GiB)": 21.89,
378
+ "step": 200,
379
+ "train_speed(iter/s)": 0.015269
380
+ },
381
+ {
382
+ "epoch": 0.6565252201761409,
383
+ "grad_norm": 0.4673641697899948,
384
+ "learning_rate": 2.774997299451196e-05,
385
+ "loss": 0.6431779384613037,
386
+ "memory(GiB)": 21.89,
387
+ "step": 205,
388
+ "train_speed(iter/s)": 0.015292
389
+ },
390
+ {
391
+ "epoch": 0.6725380304243395,
392
+ "grad_norm": 0.45779788532747007,
393
+ "learning_rate": 2.760837142984274e-05,
394
+ "loss": 0.6721176624298095,
395
+ "memory(GiB)": 21.89,
396
+ "step": 210,
397
+ "train_speed(iter/s)": 0.015313
398
+ },
399
+ {
400
+ "epoch": 0.688550840672538,
401
+ "grad_norm": 0.4618914038595962,
402
+ "learning_rate": 2.7462833603810768e-05,
403
+ "loss": 0.6672334671020508,
404
+ "memory(GiB)": 21.89,
405
+ "step": 215,
406
+ "train_speed(iter/s)": 0.015327
407
+ },
408
+ {
409
+ "epoch": 0.7045636509207366,
410
+ "grad_norm": 0.4764969973944645,
411
+ "learning_rate": 2.731340495249196e-05,
412
+ "loss": 0.6564915657043457,
413
+ "memory(GiB)": 21.89,
414
+ "step": 220,
415
+ "train_speed(iter/s)": 0.015342
416
+ },
417
+ {
418
+ "epoch": 0.7205764611689351,
419
+ "grad_norm": 0.4660822969884439,
420
+ "learning_rate": 2.7160132126655602e-05,
421
+ "loss": 0.6348361968994141,
422
+ "memory(GiB)": 21.89,
423
+ "step": 225,
424
+ "train_speed(iter/s)": 0.015365
425
+ },
426
+ {
427
+ "epoch": 0.7365892714171337,
428
+ "grad_norm": 0.4889253530342789,
429
+ "learning_rate": 2.700306297720026e-05,
430
+ "loss": 0.6062727928161621,
431
+ "memory(GiB)": 21.89,
432
+ "step": 230,
433
+ "train_speed(iter/s)": 0.015384
434
+ },
435
+ {
436
+ "epoch": 0.7526020816653323,
437
+ "grad_norm": 0.5838631024249971,
438
+ "learning_rate": 2.684224654021498e-05,
439
+ "loss": 0.6389497756958008,
440
+ "memory(GiB)": 21.89,
441
+ "step": 235,
442
+ "train_speed(iter/s)": 0.0154
443
+ },
444
+ {
445
+ "epoch": 0.7686148919135308,
446
+ "grad_norm": 0.4607421617033317,
447
+ "learning_rate": 2.667773302167053e-05,
448
+ "loss": 0.6525444984436035,
449
+ "memory(GiB)": 21.89,
450
+ "step": 240,
451
+ "train_speed(iter/s)": 0.015413
452
+ },
453
+ {
454
+ "epoch": 0.7846277021617294,
455
+ "grad_norm": 0.45477587237162076,
456
+ "learning_rate": 2.6509573781745376e-05,
457
+ "loss": 0.605835247039795,
458
+ "memory(GiB)": 21.89,
459
+ "step": 245,
460
+ "train_speed(iter/s)": 0.015424
461
+ },
462
+ {
463
+ "epoch": 0.800640512409928,
464
+ "grad_norm": 0.4730567311540799,
465
+ "learning_rate": 2.6337821318791303e-05,
466
+ "loss": 0.6313736438751221,
467
+ "memory(GiB)": 21.89,
468
+ "step": 250,
469
+ "train_speed(iter/s)": 0.015433
470
+ },
471
+ {
472
+ "epoch": 0.8166533226581265,
473
+ "grad_norm": 0.485561541193875,
474
+ "learning_rate": 2.6162529252943772e-05,
475
+ "loss": 0.6605137825012207,
476
+ "memory(GiB)": 21.89,
477
+ "step": 255,
478
+ "train_speed(iter/s)": 0.01545
479
+ },
480
+ {
481
+ "epoch": 0.8326661329063251,
482
+ "grad_norm": 0.459278946124628,
483
+ "learning_rate": 2.598375230938198e-05,
484
+ "loss": 0.6483343124389649,
485
+ "memory(GiB)": 21.89,
486
+ "step": 260,
487
+ "train_speed(iter/s)": 0.015463
488
+ },
489
+ {
490
+ "epoch": 0.8486789431545236,
491
+ "grad_norm": 0.45947637817712067,
492
+ "learning_rate": 2.5801546301244004e-05,
493
+ "loss": 0.6174493789672851,
494
+ "memory(GiB)": 21.89,
495
+ "step": 265,
496
+ "train_speed(iter/s)": 0.015476
497
+ },
498
+ {
499
+ "epoch": 0.8646917534027222,
500
+ "grad_norm": 0.48423584850188345,
501
+ "learning_rate": 2.561596811220225e-05,
502
+ "loss": 0.634972095489502,
503
+ "memory(GiB)": 21.89,
504
+ "step": 270,
505
+ "train_speed(iter/s)": 0.015483
506
+ },
507
+ {
508
+ "epoch": 0.8807045636509208,
509
+ "grad_norm": 0.48548008083825134,
510
+ "learning_rate": 2.5427075678704676e-05,
511
+ "loss": 0.6042546272277832,
512
+ "memory(GiB)": 21.89,
513
+ "step": 275,
514
+ "train_speed(iter/s)": 0.015495
515
+ },
516
+ {
517
+ "epoch": 0.8967173738991193,
518
+ "grad_norm": 0.45844672211039833,
519
+ "learning_rate": 2.5234927971887388e-05,
520
+ "loss": 0.6437081813812255,
521
+ "memory(GiB)": 21.89,
522
+ "step": 280,
523
+ "train_speed(iter/s)": 0.015505
524
+ },
525
+ {
526
+ "epoch": 0.9127301841473179,
527
+ "grad_norm": 0.49926899360643134,
528
+ "learning_rate": 2.503958497916419e-05,
529
+ "loss": 0.6593117713928223,
530
+ "memory(GiB)": 21.89,
531
+ "step": 285,
532
+ "train_speed(iter/s)": 0.015514
533
+ },
534
+ {
535
+ "epoch": 0.9287429943955164,
536
+ "grad_norm": 0.4768232218990846,
537
+ "learning_rate": 2.484110768549885e-05,
538
+ "loss": 0.6409697532653809,
539
+ "memory(GiB)": 21.89,
540
+ "step": 290,
541
+ "train_speed(iter/s)": 0.015526
542
+ },
543
+ {
544
+ "epoch": 0.944755804643715,
545
+ "grad_norm": 0.5281620311391436,
546
+ "learning_rate": 2.4639558054365917e-05,
547
+ "loss": 0.6230706214904785,
548
+ "memory(GiB)": 21.89,
549
+ "step": 295,
550
+ "train_speed(iter/s)": 0.015534
551
+ },
552
+ {
553
+ "epoch": 0.9607686148919136,
554
+ "grad_norm": 0.60387991785874,
555
+ "learning_rate": 2.443499900840614e-05,
556
+ "loss": 0.6483660221099854,
557
+ "memory(GiB)": 21.89,
558
+ "step": 300,
559
+ "train_speed(iter/s)": 0.015545
560
+ },
561
+ {
562
+ "epoch": 0.9767814251401121,
563
+ "grad_norm": 0.5084362292098538,
564
+ "learning_rate": 2.422749440978232e-05,
565
+ "loss": 0.6511590480804443,
566
+ "memory(GiB)": 21.89,
567
+ "step": 305,
568
+ "train_speed(iter/s)": 0.015551
569
+ },
570
+ {
571
+ "epoch": 0.9927942353883107,
572
+ "grad_norm": 0.497645628004113,
573
+ "learning_rate": 2.4017109040241948e-05,
574
+ "loss": 0.6253134727478027,
575
+ "memory(GiB)": 21.89,
576
+ "step": 310,
577
+ "train_speed(iter/s)": 0.01556
578
+ },
579
+ {
580
+ "epoch": 1.0064051240992795,
581
+ "grad_norm": 0.4950469311671422,
582
+ "learning_rate": 2.3803908580892694e-05,
583
+ "loss": 0.6339423179626464,
584
+ "memory(GiB)": 21.89,
585
+ "step": 315,
586
+ "train_speed(iter/s)": 0.015602
587
+ },
588
+ {
589
+ "epoch": 1.022417934347478,
590
+ "grad_norm": 0.4698835893629837,
591
+ "learning_rate": 2.358795959169713e-05,
592
+ "loss": 0.5884588241577149,
593
+ "memory(GiB)": 21.89,
594
+ "step": 320,
595
+ "train_speed(iter/s)": 0.015606
596
+ },
597
+ {
598
+ "epoch": 1.0384307445956766,
599
+ "grad_norm": 0.5152602884010152,
600
+ "learning_rate": 2.336932949069314e-05,
601
+ "loss": 0.594908618927002,
602
+ "memory(GiB)": 21.89,
603
+ "step": 325,
604
+ "train_speed(iter/s)": 0.015611
605
+ },
606
+ {
607
+ "epoch": 1.054443554843875,
608
+ "grad_norm": 0.498139219735909,
609
+ "learning_rate": 2.314808653294634e-05,
610
+ "loss": 0.5890667915344239,
611
+ "memory(GiB)": 21.89,
612
+ "step": 330,
613
+ "train_speed(iter/s)": 0.015616
614
+ },
615
+ {
616
+ "epoch": 1.0704563650920738,
617
+ "grad_norm": 0.5394223909434638,
618
+ "learning_rate": 2.2924299789241255e-05,
619
+ "loss": 0.5816782951354981,
620
+ "memory(GiB)": 21.89,
621
+ "step": 335,
622
+ "train_speed(iter/s)": 0.01562
623
+ },
624
+ {
625
+ "epoch": 1.0864691753402722,
626
+ "grad_norm": 0.5050953771476231,
627
+ "learning_rate": 2.2698039124517843e-05,
628
+ "loss": 0.549614429473877,
629
+ "memory(GiB)": 21.89,
630
+ "step": 340,
631
+ "train_speed(iter/s)": 0.01563
632
+ },
633
+ {
634
+ "epoch": 1.1024819855884709,
635
+ "grad_norm": 0.5126249224138567,
636
+ "learning_rate": 2.2469375176060017e-05,
637
+ "loss": 0.5438549041748046,
638
+ "memory(GiB)": 21.89,
639
+ "step": 345,
640
+ "train_speed(iter/s)": 0.015636
641
+ },
642
+ {
643
+ "epoch": 1.1184947958366693,
644
+ "grad_norm": 0.5398621051568007,
645
+ "learning_rate": 2.2238379331443118e-05,
646
+ "loss": 0.5632871627807617,
647
+ "memory(GiB)": 21.89,
648
+ "step": 350,
649
+ "train_speed(iter/s)": 0.015641
650
+ },
651
+ {
652
+ "epoch": 1.1345076060848678,
653
+ "grad_norm": 0.5036409732278169,
654
+ "learning_rate": 2.2005123706247113e-05,
655
+ "loss": 0.6045978546142579,
656
+ "memory(GiB)": 21.89,
657
+ "step": 355,
658
+ "train_speed(iter/s)": 0.015646
659
+ },
660
+ {
661
+ "epoch": 1.1505204163330665,
662
+ "grad_norm": 0.5689759899872553,
663
+ "learning_rate": 2.1769681121542527e-05,
664
+ "loss": 0.5987513542175293,
665
+ "memory(GiB)": 21.89,
666
+ "step": 360,
667
+ "train_speed(iter/s)": 0.015648
668
+ },
669
+ {
670
+ "epoch": 1.1665332265812651,
671
+ "grad_norm": 0.531069555558785,
672
+ "learning_rate": 2.153212508115613e-05,
673
+ "loss": 0.5959650039672851,
674
+ "memory(GiB)": 21.89,
675
+ "step": 365,
676
+ "train_speed(iter/s)": 0.015657
677
+ },
678
+ {
679
+ "epoch": 1.1825460368294636,
680
+ "grad_norm": 0.5226537183617093,
681
+ "learning_rate": 2.1292529748723436e-05,
682
+ "loss": 0.5860534191131592,
683
+ "memory(GiB)": 21.89,
684
+ "step": 370,
685
+ "train_speed(iter/s)": 0.01566
686
+ },
687
+ {
688
+ "epoch": 1.198558847077662,
689
+ "grad_norm": 0.5342824123143468,
690
+ "learning_rate": 2.1050969924535267e-05,
691
+ "loss": 0.5731143951416016,
692
+ "memory(GiB)": 21.89,
693
+ "step": 375,
694
+ "train_speed(iter/s)": 0.015665
695
+ },
696
+ {
697
+ "epoch": 1.2145716573258607,
698
+ "grad_norm": 0.5676516907493653,
699
+ "learning_rate": 2.080752102218553e-05,
700
+ "loss": 0.5592511177062989,
701
+ "memory(GiB)": 21.89,
702
+ "step": 380,
703
+ "train_speed(iter/s)": 0.015674
704
+ },
705
+ {
706
+ "epoch": 1.2305844675740594,
707
+ "grad_norm": 0.5615182761459606,
708
+ "learning_rate": 2.05622590450275e-05,
709
+ "loss": 0.5661966800689697,
710
+ "memory(GiB)": 21.89,
711
+ "step": 385,
712
+ "train_speed(iter/s)": 0.015681
713
+ },
714
+ {
715
+ "epoch": 1.2465972778222578,
716
+ "grad_norm": 0.5422157473688541,
717
+ "learning_rate": 2.0315260562446048e-05,
718
+ "loss": 0.5789735317230225,
719
+ "memory(GiB)": 21.89,
720
+ "step": 390,
721
+ "train_speed(iter/s)": 0.015684
722
+ },
723
+ {
724
+ "epoch": 1.2626100880704563,
725
+ "grad_norm": 0.6030245537246277,
726
+ "learning_rate": 2.0066602685953065e-05,
727
+ "loss": 0.5753808975219726,
728
+ "memory(GiB)": 21.89,
729
+ "step": 395,
730
+ "train_speed(iter/s)": 0.01569
731
+ },
732
+ {
733
+ "epoch": 1.278622898318655,
734
+ "grad_norm": 0.6143418775145588,
735
+ "learning_rate": 1.9816363045113748e-05,
736
+ "loss": 0.5792715549468994,
737
+ "memory(GiB)": 21.89,
738
+ "step": 400,
739
+ "train_speed(iter/s)": 0.015693
740
+ },
741
+ {
742
+ "epoch": 1.2946357085668536,
743
+ "grad_norm": 0.5586151801773422,
744
+ "learning_rate": 1.9564619763311043e-05,
745
+ "loss": 0.584225845336914,
746
+ "memory(GiB)": 21.89,
747
+ "step": 405,
748
+ "train_speed(iter/s)": 0.015698
749
+ },
750
+ {
751
+ "epoch": 1.310648518815052,
752
+ "grad_norm": 0.584144416801851,
753
+ "learning_rate": 1.931145143335601e-05,
754
+ "loss": 0.5908011436462403,
755
+ "memory(GiB)": 21.89,
756
+ "step": 410,
757
+ "train_speed(iter/s)": 0.015701
758
+ },
759
+ {
760
+ "epoch": 1.3266613290632505,
761
+ "grad_norm": 0.5965303572137761,
762
+ "learning_rate": 1.905693709295158e-05,
763
+ "loss": 0.5673429489135742,
764
+ "memory(GiB)": 21.89,
765
+ "step": 415,
766
+ "train_speed(iter/s)": 0.015705
767
+ },
768
+ {
769
+ "epoch": 1.3426741393114492,
770
+ "grad_norm": 0.5722923860659136,
771
+ "learning_rate": 1.880115620001743e-05,
772
+ "loss": 0.5747467517852783,
773
+ "memory(GiB)": 21.89,
774
+ "step": 420,
775
+ "train_speed(iter/s)": 0.015707
776
+ },
777
+ {
778
+ "epoch": 1.3586869495596476,
779
+ "grad_norm": 0.5647139487279343,
780
+ "learning_rate": 1.854418860788369e-05,
781
+ "loss": 0.5886659622192383,
782
+ "memory(GiB)": 21.89,
783
+ "step": 425,
784
+ "train_speed(iter/s)": 0.015712
785
+ },
786
+ {
787
+ "epoch": 1.3746997598078463,
788
+ "grad_norm": 0.6032243756929382,
789
+ "learning_rate": 1.8286114540361192e-05,
790
+ "loss": 0.5596484184265137,
791
+ "memory(GiB)": 21.89,
792
+ "step": 430,
793
+ "train_speed(iter/s)": 0.015713
794
+ },
795
+ {
796
+ "epoch": 1.3907125700560448,
797
+ "grad_norm": 0.5798367707195509,
798
+ "learning_rate": 1.802701456669603e-05,
799
+ "loss": 0.5662962913513183,
800
+ "memory(GiB)": 21.89,
801
+ "step": 435,
802
+ "train_speed(iter/s)": 0.01572
803
+ },
804
+ {
805
+ "epoch": 1.4067253803042434,
806
+ "grad_norm": 0.5899381390433364,
807
+ "learning_rate": 1.776696957641634e-05,
808
+ "loss": 0.5782527923583984,
809
+ "memory(GiB)": 21.89,
810
+ "step": 440,
811
+ "train_speed(iter/s)": 0.015723
812
+ },
813
+ {
814
+ "epoch": 1.4227381905524419,
815
+ "grad_norm": 0.5591301892423585,
816
+ "learning_rate": 1.7506060754079025e-05,
817
+ "loss": 0.5774744987487793,
818
+ "memory(GiB)": 21.89,
819
+ "step": 445,
820
+ "train_speed(iter/s)": 0.015728
821
+ },
822
+ {
823
+ "epoch": 1.4387510008006406,
824
+ "grad_norm": 0.5548307822015812,
825
+ "learning_rate": 1.7244369553924408e-05,
826
+ "loss": 0.5746015071868896,
827
+ "memory(GiB)": 21.89,
828
+ "step": 450,
829
+ "train_speed(iter/s)": 0.015734
830
+ },
831
+ {
832
+ "epoch": 1.454763811048839,
833
+ "grad_norm": 0.6162986484237953,
834
+ "learning_rate": 1.6981977674446692e-05,
835
+ "loss": 0.5718656063079834,
836
+ "memory(GiB)": 21.89,
837
+ "step": 455,
838
+ "train_speed(iter/s)": 0.015738
839
+ },
840
+ {
841
+ "epoch": 1.4707766212970377,
842
+ "grad_norm": 0.5999632035162504,
843
+ "learning_rate": 1.671896703288815e-05,
844
+ "loss": 0.5838316917419434,
845
+ "memory(GiB)": 21.89,
846
+ "step": 460,
847
+ "train_speed(iter/s)": 0.01574
848
+ },
849
+ {
850
+ "epoch": 1.4867894315452361,
851
+ "grad_norm": 0.5751934375698643,
852
+ "learning_rate": 1.6455419739665037e-05,
853
+ "loss": 0.5416177272796631,
854
+ "memory(GiB)": 21.89,
855
+ "step": 465,
856
+ "train_speed(iter/s)": 0.015742
857
+ },
858
+ {
859
+ "epoch": 1.5028022417934348,
860
+ "grad_norm": 0.6352358425841226,
861
+ "learning_rate": 1.6191418072733176e-05,
862
+ "loss": 0.5688335418701171,
863
+ "memory(GiB)": 21.89,
864
+ "step": 470,
865
+ "train_speed(iter/s)": 0.015747
866
+ },
867
+ {
868
+ "epoch": 1.5188150520416333,
869
+ "grad_norm": 0.632371720864356,
870
+ "learning_rate": 1.5927044451901265e-05,
871
+ "loss": 0.5808904647827149,
872
+ "memory(GiB)": 21.89,
873
+ "step": 475,
874
+ "train_speed(iter/s)": 0.015751
875
+ },
876
+ {
877
+ "epoch": 1.534827862289832,
878
+ "grad_norm": 0.6298236805463155,
879
+ "learning_rate": 1.5662381413099885e-05,
880
+ "loss": 0.5448812007904053,
881
+ "memory(GiB)": 21.89,
882
+ "step": 480,
883
+ "train_speed(iter/s)": 0.015752
884
+ },
885
+ {
886
+ "epoch": 1.5508406725380304,
887
+ "grad_norm": 0.5876950666906403,
888
+ "learning_rate": 1.5397511582614238e-05,
889
+ "loss": 0.5905604839324952,
890
+ "memory(GiB)": 21.89,
891
+ "step": 485,
892
+ "train_speed(iter/s)": 0.015754
893
+ },
894
+ {
895
+ "epoch": 1.5668534827862288,
896
+ "grad_norm": 0.6384696335208135,
897
+ "learning_rate": 1.5132517651288716e-05,
898
+ "loss": 0.5981444835662841,
899
+ "memory(GiB)": 21.89,
900
+ "step": 490,
901
+ "train_speed(iter/s)": 0.015756
902
+ },
903
+ {
904
+ "epoch": 1.5828662930344275,
905
+ "grad_norm": 0.5982709352921093,
906
+ "learning_rate": 1.4867482348711284e-05,
907
+ "loss": 0.5448336124420166,
908
+ "memory(GiB)": 21.89,
909
+ "step": 495,
910
+ "train_speed(iter/s)": 0.015757
911
+ },
912
+ {
913
+ "epoch": 1.5988791032826262,
914
+ "grad_norm": 0.6299909354063818,
915
+ "learning_rate": 1.4602488417385766e-05,
916
+ "loss": 0.5985595703125,
917
+ "memory(GiB)": 21.89,
918
+ "step": 500,
919
+ "train_speed(iter/s)": 0.01576
920
+ },
921
+ {
922
+ "epoch": 1.6148919135308246,
923
+ "grad_norm": 0.6279367310875671,
924
+ "learning_rate": 1.4337618586900119e-05,
925
+ "loss": 0.5594313621520997,
926
+ "memory(GiB)": 21.89,
927
+ "step": 505,
928
+ "train_speed(iter/s)": 0.015763
929
+ },
930
+ {
931
+ "epoch": 1.630904723779023,
932
+ "grad_norm": 0.6414407834261869,
933
+ "learning_rate": 1.4072955548098741e-05,
934
+ "loss": 0.5500194549560546,
935
+ "memory(GiB)": 21.89,
936
+ "step": 510,
937
+ "train_speed(iter/s)": 0.015768
938
+ },
939
+ {
940
+ "epoch": 1.6469175340272217,
941
+ "grad_norm": 0.6597776832435496,
942
+ "learning_rate": 1.3808581927266827e-05,
943
+ "loss": 0.574251365661621,
944
+ "memory(GiB)": 21.89,
945
+ "step": 515,
946
+ "train_speed(iter/s)": 0.01577
947
+ },
948
+ {
949
+ "epoch": 1.6629303442754204,
950
+ "grad_norm": 0.5981444255387114,
951
+ "learning_rate": 1.354458026033497e-05,
952
+ "loss": 0.5687233924865722,
953
+ "memory(GiB)": 21.89,
954
+ "step": 520,
955
+ "train_speed(iter/s)": 0.015773
956
+ },
957
+ {
958
+ "epoch": 1.6789431545236189,
959
+ "grad_norm": 0.6626788950409892,
960
+ "learning_rate": 1.3281032967111851e-05,
961
+ "loss": 0.5612329006195068,
962
+ "memory(GiB)": 21.89,
963
+ "step": 525,
964
+ "train_speed(iter/s)": 0.015776
965
+ },
966
+ {
967
+ "epoch": 1.6949559647718173,
968
+ "grad_norm": 0.6165757016552958,
969
+ "learning_rate": 1.3018022325553313e-05,
970
+ "loss": 0.5564169406890869,
971
+ "memory(GiB)": 21.89,
972
+ "step": 530,
973
+ "train_speed(iter/s)": 0.015778
974
+ },
975
+ {
976
+ "epoch": 1.710968775020016,
977
+ "grad_norm": 0.6557631786725961,
978
+ "learning_rate": 1.2755630446075594e-05,
979
+ "loss": 0.5940975189208985,
980
+ "memory(GiB)": 21.89,
981
+ "step": 535,
982
+ "train_speed(iter/s)": 0.015782
983
+ },
984
+ {
985
+ "epoch": 1.7269815852682147,
986
+ "grad_norm": 0.6246530913265699,
987
+ "learning_rate": 1.2493939245920982e-05,
988
+ "loss": 0.5587568759918213,
989
+ "memory(GiB)": 21.89,
990
+ "step": 540,
991
+ "train_speed(iter/s)": 0.015784
992
+ },
993
+ {
994
+ "epoch": 1.742994395516413,
995
+ "grad_norm": 0.5688706338790032,
996
+ "learning_rate": 1.2233030423583662e-05,
997
+ "loss": 0.52943115234375,
998
+ "memory(GiB)": 21.89,
999
+ "step": 545,
1000
+ "train_speed(iter/s)": 0.015785
1001
+ },
1002
+ {
1003
+ "epoch": 1.7590072057646116,
1004
+ "grad_norm": 0.669504073907202,
1005
+ "learning_rate": 1.1972985433303976e-05,
1006
+ "loss": 0.5580001831054687,
1007
+ "memory(GiB)": 21.89,
1008
+ "step": 550,
1009
+ "train_speed(iter/s)": 0.015787
1010
+ },
1011
+ {
1012
+ "epoch": 1.7750200160128102,
1013
+ "grad_norm": 0.6235300104081916,
1014
+ "learning_rate": 1.1713885459638814e-05,
1015
+ "loss": 0.5758135795593262,
1016
+ "memory(GiB)": 21.89,
1017
+ "step": 555,
1018
+ "train_speed(iter/s)": 0.015788
1019
+ },
1020
+ {
1021
+ "epoch": 1.791032826261009,
1022
+ "grad_norm": 0.6352611781580906,
1023
+ "learning_rate": 1.1455811392116308e-05,
1024
+ "loss": 0.5714420795440673,
1025
+ "memory(GiB)": 21.89,
1026
+ "step": 560,
1027
+ "train_speed(iter/s)": 0.015791
1028
+ },
1029
+ {
1030
+ "epoch": 1.8070456365092074,
1031
+ "grad_norm": 0.6806986898527,
1032
+ "learning_rate": 1.1198843799982572e-05,
1033
+ "loss": 0.5534315586090088,
1034
+ "memory(GiB)": 21.89,
1035
+ "step": 565,
1036
+ "train_speed(iter/s)": 0.015793
1037
+ },
1038
+ {
1039
+ "epoch": 1.8230584467574058,
1040
+ "grad_norm": 0.5993577207262759,
1041
+ "learning_rate": 1.0943062907048421e-05,
1042
+ "loss": 0.5411487102508545,
1043
+ "memory(GiB)": 21.89,
1044
+ "step": 570,
1045
+ "train_speed(iter/s)": 0.015794
1046
+ },
1047
+ {
1048
+ "epoch": 1.8390712570056045,
1049
+ "grad_norm": 0.6680590526449376,
1050
+ "learning_rate": 1.0688548566643992e-05,
1051
+ "loss": 0.5467194080352783,
1052
+ "memory(GiB)": 21.89,
1053
+ "step": 575,
1054
+ "train_speed(iter/s)": 0.015797
1055
+ },
1056
+ {
1057
+ "epoch": 1.8550840672538031,
1058
+ "grad_norm": 0.6649716095610546,
1059
+ "learning_rate": 1.0485902421783774e-05,
1060
+ "loss": 0.578249454498291,
1061
+ "memory(GiB)": 21.89,
1062
+ "step": 580,
1063
+ "train_speed(iter/s)": 0.0158
1064
+ },
1065
+ {
1066
+ "epoch": 1.8710968775020016,
1067
+ "grad_norm": 0.6103854609707349,
1068
+ "learning_rate": 1.0233867828334953e-05,
1069
+ "loss": 0.5735835552215576,
1070
+ "memory(GiB)": 21.89,
1071
+ "step": 585,
1072
+ "train_speed(iter/s)": 0.015801
1073
+ },
1074
+ {
1075
+ "epoch": 1.8871096877502,
1076
+ "grad_norm": 0.753072105008473,
1077
+ "learning_rate": 9.98332119405846e-06,
1078
+ "loss": 0.5487753868103027,
1079
+ "memory(GiB)": 21.89,
1080
+ "step": 590,
1081
+ "train_speed(iter/s)": 0.015805
1082
+ },
1083
+ {
1084
+ "epoch": 1.9031224979983987,
1085
+ "grad_norm": 0.6170844249926819,
1086
+ "learning_rate": 9.734340738178836e-06,
1087
+ "loss": 0.5737974166870117,
1088
+ "memory(GiB)": 21.89,
1089
+ "step": 595,
1090
+ "train_speed(iter/s)": 0.015808
1091
+ },
1092
+ {
1093
+ "epoch": 1.9191353082465974,
1094
+ "grad_norm": 0.6451794374019962,
1095
+ "learning_rate": 9.487004190968708e-06,
1096
+ "loss": 0.552049970626831,
1097
+ "memory(GiB)": 21.89,
1098
+ "step": 600,
1099
+ "train_speed(iter/s)": 0.015809
1100
+ },
1101
+ {
1102
+ "epoch": 1.9351481184947958,
1103
+ "grad_norm": 0.6251942278157026,
1104
+ "learning_rate": 9.241388769481819e-06,
1105
+ "loss": 0.5469517707824707,
1106
+ "memory(GiB)": 21.89,
1107
+ "step": 605,
1108
+ "train_speed(iter/s)": 0.015812
1109
+ },
1110
+ {
1111
+ "epoch": 1.9511609287429943,
1112
+ "grad_norm": 0.6198204771719735,
1113
+ "learning_rate": 8.99757115344633e-06,
1114
+ "loss": 0.5650198936462403,
1115
+ "memory(GiB)": 21.89,
1116
+ "step": 610,
1117
+ "train_speed(iter/s)": 0.015812
1118
+ },
1119
+ {
1120
+ "epoch": 1.967173738991193,
1121
+ "grad_norm": 0.6356161184262821,
1122
+ "learning_rate": 8.755627461325817e-06,
1123
+ "loss": 0.5307876586914062,
1124
+ "memory(GiB)": 21.89,
1125
+ "step": 615,
1126
+ "train_speed(iter/s)": 0.015813
1127
+ },
1128
+ {
1129
+ "epoch": 1.9831865492393916,
1130
+ "grad_norm": 0.6601174519481827,
1131
+ "learning_rate": 8.515633226555564e-06,
1132
+ "loss": 0.5552098274230957,
1133
+ "memory(GiB)": 21.89,
1134
+ "step": 620,
1135
+ "train_speed(iter/s)": 0.015815
1136
+ },
1137
+ {
1138
+ "epoch": 1.99919935948759,
1139
+ "grad_norm": 0.6493635460743743,
1140
+ "learning_rate": 8.277663373961396e-06,
1141
+ "loss": 0.5575791358947754,
1142
+ "memory(GiB)": 21.89,
1143
+ "step": 625,
1144
+ "train_speed(iter/s)": 0.015818
1145
+ },
1146
+ {
1147
+ "epoch": 2.012810248198559,
1148
+ "grad_norm": 0.6130205867475395,
1149
+ "learning_rate": 8.04179219636866e-06,
1150
+ "loss": 0.5210562705993652,
1151
+ "memory(GiB)": 21.89,
1152
+ "step": 630,
1153
+ "train_speed(iter/s)": 0.015839
1154
+ },
1155
+ {
1156
+ "epoch": 2.0288230584467573,
1157
+ "grad_norm": 0.6169564813848567,
1158
+ "learning_rate": 7.808093331408354e-06,
1159
+ "loss": 0.5348440647125244,
1160
+ "memory(GiB)": 21.89,
1161
+ "step": 635,
1162
+ "train_speed(iter/s)": 0.015839
1163
+ },
1164
+ {
1165
+ "epoch": 2.044835868694956,
1166
+ "grad_norm": 0.6502484575021102,
1167
+ "learning_rate": 7.5766397385279204e-06,
1168
+ "loss": 0.4850314140319824,
1169
+ "memory(GiB)": 21.89,
1170
+ "step": 640,
1171
+ "train_speed(iter/s)": 0.015839
1172
+ }
1173
+ ],
1174
+ "logging_steps": 5,
1175
+ "max_steps": 936,
1176
+ "num_input_tokens_seen": 0,
1177
+ "num_train_epochs": 3,
1178
+ "save_steps": 640,
1179
+ "stateful_callbacks": {
1180
+ "TrainerControl": {
1181
+ "args": {
1182
+ "should_epoch_stop": false,
1183
+ "should_evaluate": false,
1184
+ "should_log": false,
1185
+ "should_save": true,
1186
+ "should_training_stop": false
1187
+ },
1188
+ "attributes": {}
1189
+ }
1190
+ },
1191
+ "total_flos": 240166800818176.0,
1192
+ "train_batch_size": 1,
1193
+ "trial_name": null,
1194
+ "trial_params": null
1195
+ }
v0-20250526-142723/checkpoint-640/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:858c61ca7c16487e1f1d03f40e0f57220ac2d4a688d05729201fe8a4acd1052b
3
+ size 8312
v0-20250526-142723/checkpoint-640/zero_to_fp32.py ADDED
@@ -0,0 +1,760 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import gc
25
+ import json
26
+ import numpy as np
27
+ from tqdm import tqdm
28
+ from collections import OrderedDict
29
+ from dataclasses import dataclass
30
+
31
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
32
+ # DeepSpeed data structures it has to be available in the current python environment.
33
+ from deepspeed.utils import logger
34
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
35
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
36
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
37
+
38
+
39
+ @dataclass
40
+ class zero_model_state:
41
+ buffers: dict()
42
+ param_shapes: dict()
43
+ shared_params: list
44
+ ds_version: int
45
+ frozen_param_shapes: dict()
46
+ frozen_param_fragments: dict()
47
+
48
+
49
+ debug = 0
50
+
51
+ # load to cpu
52
+ device = torch.device('cpu')
53
+
54
+
55
+ def atoi(text):
56
+ return int(text) if text.isdigit() else text
57
+
58
+
59
+ def natural_keys(text):
60
+ '''
61
+ alist.sort(key=natural_keys) sorts in human order
62
+ http://nedbatchelder.com/blog/200712/human_sorting.html
63
+ (See Toothy's implementation in the comments)
64
+ '''
65
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
66
+
67
+
68
+ def get_model_state_file(checkpoint_dir, zero_stage):
69
+ if not os.path.isdir(checkpoint_dir):
70
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
71
+
72
+ # there should be only one file
73
+ if zero_stage <= 2:
74
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
75
+ elif zero_stage == 3:
76
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
77
+
78
+ if not os.path.exists(file):
79
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
80
+
81
+ return file
82
+
83
+
84
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
85
+ # XXX: need to test that this simple glob rule works for multi-node setup too
86
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
87
+
88
+ if len(ckpt_files) == 0:
89
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
90
+
91
+ return ckpt_files
92
+
93
+
94
+ def get_optim_files(checkpoint_dir):
95
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
96
+
97
+
98
+ def get_model_state_files(checkpoint_dir):
99
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
100
+
101
+
102
+ def parse_model_states(files):
103
+ zero_model_states = []
104
+ for file in files:
105
+ state_dict = torch.load(file, map_location=device, weights_only=False)
106
+
107
+ if BUFFER_NAMES not in state_dict:
108
+ raise ValueError(f"{file} is not a model state checkpoint")
109
+ buffer_names = state_dict[BUFFER_NAMES]
110
+ if debug:
111
+ print("Found buffers:", buffer_names)
112
+
113
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
114
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
115
+ param_shapes = state_dict[PARAM_SHAPES]
116
+
117
+ # collect parameters that are included in param_shapes
118
+ param_names = []
119
+ for s in param_shapes:
120
+ for name in s.keys():
121
+ param_names.append(name)
122
+
123
+ # update with frozen parameters
124
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
125
+ if frozen_param_shapes is not None:
126
+ if debug:
127
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
128
+ param_names += list(frozen_param_shapes.keys())
129
+
130
+ # handle shared params
131
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
132
+
133
+ ds_version = state_dict.get(DS_VERSION, None)
134
+
135
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
136
+
137
+ z_model_state = zero_model_state(buffers=buffers,
138
+ param_shapes=param_shapes,
139
+ shared_params=shared_params,
140
+ ds_version=ds_version,
141
+ frozen_param_shapes=frozen_param_shapes,
142
+ frozen_param_fragments=frozen_param_fragments)
143
+ zero_model_states.append(z_model_state)
144
+
145
+ return zero_model_states
146
+
147
+
148
+ def parse_optim_states(files, ds_checkpoint_dir):
149
+ total_files = len(files)
150
+ state_dicts = []
151
+ for f in tqdm(files, desc='Loading checkpoint shards'):
152
+ state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
153
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
154
+ # and also handle the case where it was already removed by another helper script
155
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
156
+ state_dicts.append(state_dict)
157
+
158
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
159
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
160
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
161
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
162
+
163
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
164
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
165
+ # use the max of the partition_count to get the dp world_size.
166
+
167
+ if type(world_size) is list:
168
+ world_size = max(world_size)
169
+
170
+ if world_size != total_files:
171
+ raise ValueError(
172
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
173
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
174
+ )
175
+
176
+ # the groups are named differently in each stage
177
+ if zero_stage <= 2:
178
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
179
+ elif zero_stage == 3:
180
+ fp32_groups_key = FP32_FLAT_GROUPS
181
+ else:
182
+ raise ValueError(f"unknown zero stage {zero_stage}")
183
+
184
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
185
+ return zero_stage, world_size, fp32_flat_groups
186
+
187
+
188
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
189
+ """
190
+ Returns fp32 state_dict reconstructed from ds checkpoint
191
+
192
+ Args:
193
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
194
+
195
+ """
196
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
197
+
198
+ optim_files = get_optim_files(ds_checkpoint_dir)
199
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
200
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
201
+
202
+ model_files = get_model_state_files(ds_checkpoint_dir)
203
+
204
+ zero_model_states = parse_model_states(model_files)
205
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
206
+
207
+ if zero_stage <= 2:
208
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
209
+ exclude_frozen_parameters)
210
+ elif zero_stage == 3:
211
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
212
+ exclude_frozen_parameters)
213
+
214
+
215
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
+ return
218
+
219
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
+
222
+ if debug:
223
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
+
226
+ wanted_params = len(frozen_param_shapes)
227
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
+ print(f'Frozen params: Have {avail_numel} numels to process.')
230
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
+
232
+ total_params = 0
233
+ total_numel = 0
234
+ for name, shape in frozen_param_shapes.items():
235
+ total_params += 1
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+
239
+ state_dict[name] = frozen_param_fragments[name]
240
+
241
+ if debug:
242
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
+
244
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
+
246
+
247
+ def _has_callable(obj, fn):
248
+ attr = getattr(obj, fn, None)
249
+ return callable(attr)
250
+
251
+
252
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
253
+ param_shapes = zero_model_states[0].param_shapes
254
+
255
+ # Reconstruction protocol:
256
+ #
257
+ # XXX: document this
258
+
259
+ if debug:
260
+ for i in range(world_size):
261
+ for j in range(len(fp32_flat_groups[0])):
262
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
263
+
264
+ # XXX: memory usage doubles here (zero2)
265
+ num_param_groups = len(fp32_flat_groups[0])
266
+ merged_single_partition_of_fp32_groups = []
267
+ for i in range(num_param_groups):
268
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
269
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
270
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
271
+ avail_numel = sum(
272
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
273
+
274
+ if debug:
275
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
276
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
277
+ # not asserting if there is a mismatch due to possible padding
278
+ print(f"Have {avail_numel} numels to process.")
279
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
280
+
281
+ # params
282
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
283
+ # out-of-core computing solution
284
+ total_numel = 0
285
+ total_params = 0
286
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
287
+ offset = 0
288
+ avail_numel = full_single_fp32_vector.numel()
289
+ for name, shape in shapes.items():
290
+
291
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
292
+ total_numel += unpartitioned_numel
293
+ total_params += 1
294
+
295
+ if debug:
296
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
297
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
298
+ offset += unpartitioned_numel
299
+
300
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
301
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
302
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
303
+ # live optimizer object, so we are checking that the numbers are within the right range
304
+ align_to = 2 * world_size
305
+
306
+ def zero2_align(x):
307
+ return align_to * math.ceil(x / align_to)
308
+
309
+ if debug:
310
+ print(f"original offset={offset}, avail_numel={avail_numel}")
311
+
312
+ offset = zero2_align(offset)
313
+ avail_numel = zero2_align(avail_numel)
314
+
315
+ if debug:
316
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
317
+
318
+ # Sanity check
319
+ if offset != avail_numel:
320
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
321
+
322
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
323
+
324
+
325
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
326
+ exclude_frozen_parameters):
327
+ state_dict = OrderedDict()
328
+
329
+ # buffers
330
+ buffers = zero_model_states[0].buffers
331
+ state_dict.update(buffers)
332
+ if debug:
333
+ print(f"added {len(buffers)} buffers")
334
+
335
+ if not exclude_frozen_parameters:
336
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
337
+
338
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
339
+
340
+ # recover shared parameters
341
+ for pair in zero_model_states[0].shared_params:
342
+ if pair[1] in state_dict:
343
+ state_dict[pair[0]] = state_dict[pair[1]]
344
+
345
+ return state_dict
346
+
347
+
348
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
349
+ remainder = unpartitioned_numel % world_size
350
+ padding_numel = (world_size - remainder) if remainder else 0
351
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
352
+ return partitioned_numel, padding_numel
353
+
354
+
355
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
356
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
357
+ return
358
+
359
+ if debug:
360
+ for i in range(world_size):
361
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
362
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
363
+
364
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
365
+ wanted_params = len(frozen_param_shapes)
366
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
367
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
368
+ print(f'Frozen params: Have {avail_numel} numels to process.')
369
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
370
+
371
+ total_params = 0
372
+ total_numel = 0
373
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
374
+ total_params += 1
375
+ unpartitioned_numel = shape.numel()
376
+ total_numel += unpartitioned_numel
377
+
378
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
379
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
380
+
381
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
382
+
383
+ if debug:
384
+ print(
385
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
386
+ )
387
+
388
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
389
+
390
+
391
+ class GatheredTensor:
392
+ """
393
+ A pseudo tensor that collects partitioned weights.
394
+ It is more memory efficient when there are multiple groups.
395
+ """
396
+
397
+ def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
398
+ self.flat_groups = flat_groups
399
+ self.flat_groups_offset = flat_groups_offset
400
+ self.offset = offset
401
+ self.partitioned_numel = partitioned_numel
402
+ self.shape = shape
403
+ self.dtype = self.flat_groups[0][0].dtype
404
+
405
+ def contiguous(self):
406
+ """
407
+ Merge partitioned weights from flat_groups into a single tensor.
408
+ """
409
+ end_idx = self.offset + self.partitioned_numel
410
+ world_size = len(self.flat_groups)
411
+ pad_flat_param_chunks = []
412
+
413
+ for rank_i in range(world_size):
414
+ # for each rank, we need to collect weights from related group/groups
415
+ flat_groups_at_rank_i = self.flat_groups[rank_i]
416
+ start_group_id = None
417
+ end_group_id = None
418
+ for group_id in range(len(self.flat_groups_offset)):
419
+ if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
420
+ start_group_id = group_id
421
+ if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
422
+ end_group_id = group_id
423
+ break
424
+ # collect weights from related group/groups
425
+ for group_id in range(start_group_id, end_group_id + 1):
426
+ flat_tensor = flat_groups_at_rank_i[group_id]
427
+ start_offset = self.offset - self.flat_groups_offset[group_id]
428
+ end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
429
+ pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
430
+
431
+ # collect weights from all ranks
432
+ pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
433
+ param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
434
+ return param
435
+
436
+
437
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
438
+ param_shapes = zero_model_states[0].param_shapes
439
+ avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
440
+
441
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
442
+ # param, re-consolidating each param, while dealing with padding if any
443
+
444
+ # merge list of dicts, preserving order
445
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
446
+
447
+ if debug:
448
+ for i in range(world_size):
449
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
450
+
451
+ wanted_params = len(param_shapes)
452
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
453
+ # not asserting if there is a mismatch due to possible padding
454
+ avail_numel = fp32_flat_groups[0].numel() * world_size
455
+ print(f"Trainable params: Have {avail_numel} numels to process.")
456
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
457
+
458
+ # params
459
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
460
+ # out-of-core computing solution
461
+ offset = 0
462
+ total_numel = 0
463
+ total_params = 0
464
+ flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
465
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
466
+ unpartitioned_numel = shape.numel()
467
+ total_numel += unpartitioned_numel
468
+ total_params += 1
469
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
470
+
471
+ if debug:
472
+ print(
473
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
474
+ )
475
+
476
+ # memory efficient tensor
477
+ tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
478
+ state_dict[name] = tensor
479
+ offset += partitioned_numel
480
+
481
+ offset *= world_size
482
+
483
+ # Sanity check
484
+ if offset != avail_numel:
485
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
486
+
487
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
488
+
489
+
490
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
491
+ exclude_frozen_parameters):
492
+ state_dict = OrderedDict()
493
+
494
+ # buffers
495
+ buffers = zero_model_states[0].buffers
496
+ state_dict.update(buffers)
497
+ if debug:
498
+ print(f"added {len(buffers)} buffers")
499
+
500
+ if not exclude_frozen_parameters:
501
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
502
+
503
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
504
+
505
+ # recover shared parameters
506
+ for pair in zero_model_states[0].shared_params:
507
+ if pair[1] in state_dict:
508
+ state_dict[pair[0]] = state_dict[pair[1]]
509
+
510
+ return state_dict
511
+
512
+
513
+ def to_torch_tensor(state_dict, return_empty_tensor=False):
514
+ """
515
+ Convert state_dict of GatheredTensor to torch tensor
516
+ """
517
+ torch_state_dict = {}
518
+ converted_tensors = {}
519
+ for name, tensor in state_dict.items():
520
+ tensor_id = id(tensor)
521
+ if tensor_id in converted_tensors: # shared tensors
522
+ shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
523
+ torch_state_dict[name] = shared_tensor
524
+ else:
525
+ converted_tensors[tensor_id] = name
526
+ if return_empty_tensor:
527
+ torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
528
+ else:
529
+ torch_state_dict[name] = tensor.contiguous()
530
+ return torch_state_dict
531
+
532
+
533
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
534
+ tag=None,
535
+ exclude_frozen_parameters=False,
536
+ lazy_mode=False):
537
+ """
538
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
539
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
540
+ via a model hub.
541
+
542
+ Args:
543
+ - ``checkpoint_dir``: path to the desired checkpoint folder
544
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
545
+ - ``exclude_frozen_parameters``: exclude frozen parameters
546
+ - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
547
+ Convert the pesduo tensor to torch tensor by ``.contiguous()``
548
+
549
+ Returns:
550
+ - pytorch ``state_dict``
551
+
552
+ A typical usage might be ::
553
+
554
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
555
+ # do the training and checkpoint saving
556
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
557
+ model = model.cpu() # move to cpu
558
+ model.load_state_dict(state_dict)
559
+ # submit to model hub or save the model to share with others
560
+
561
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
562
+ application. i.e. you will need to re-initialize the deepspeed engine, since
563
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
564
+
565
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
566
+
567
+ Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
568
+ You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
569
+ the checkpoint. Or you can load state_dict in lazy mode ::
570
+
571
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
572
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
573
+ for name, lazy_tensor in state_dict.item():
574
+ tensor = lazy_tensor.contiguous() # to cpu
575
+ print(name, tensor)
576
+ # del tensor to release memory if it no longer in use
577
+ """
578
+ if tag is None:
579
+ latest_path = os.path.join(checkpoint_dir, 'latest')
580
+ if os.path.isfile(latest_path):
581
+ with open(latest_path, 'r') as fd:
582
+ tag = fd.read().strip()
583
+ else:
584
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
585
+
586
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
587
+
588
+ if not os.path.isdir(ds_checkpoint_dir):
589
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
590
+
591
+ state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
592
+ if lazy_mode:
593
+ return state_dict
594
+ else:
595
+ return to_torch_tensor(state_dict)
596
+
597
+
598
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
599
+ output_dir,
600
+ max_shard_size="5GB",
601
+ safe_serialization=False,
602
+ tag=None,
603
+ exclude_frozen_parameters=False):
604
+ """
605
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
606
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
607
+
608
+ Args:
609
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
610
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
611
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
612
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
613
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
614
+ - ``exclude_frozen_parameters``: exclude frozen parameters
615
+ """
616
+
617
+ # Dependency pre-check
618
+ if safe_serialization:
619
+ try:
620
+ from safetensors.torch import save_file
621
+ except ImportError:
622
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
623
+ raise
624
+ if max_shard_size is not None:
625
+ try:
626
+ from huggingface_hub import split_torch_state_dict_into_shards
627
+ except ImportError:
628
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
629
+ raise
630
+
631
+ # Convert zero checkpoint to state_dict
632
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
633
+ tag,
634
+ exclude_frozen_parameters,
635
+ lazy_mode=True)
636
+
637
+ # Shard the model if it is too big.
638
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
639
+ if max_shard_size is not None:
640
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
641
+ # an memory-efficient approach for sharding
642
+ empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
643
+ state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
644
+ filename_pattern=filename_pattern,
645
+ max_shard_size=max_shard_size)
646
+ else:
647
+ from collections import namedtuple
648
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
649
+ state_dict_split = StateDictSplit(is_sharded=False,
650
+ filename_to_tensors={weights_name: list(state_dict.keys())})
651
+
652
+ # Save the model by shard
653
+ os.makedirs(output_dir, exist_ok=True)
654
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
655
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
656
+ shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
657
+ shard_state_dict = to_torch_tensor(shard_state_dict)
658
+ output_path = os.path.join(output_dir, shard_file)
659
+ if safe_serialization:
660
+ save_file(shard_state_dict, output_path, metadata={"format": "pt"})
661
+ else:
662
+ torch.save(shard_state_dict, output_path)
663
+ # release the memory of current shard
664
+ for tensor_name in list(shard_state_dict.keys()):
665
+ del state_dict[tensor_name]
666
+ del shard_state_dict[tensor_name]
667
+ del shard_state_dict
668
+ gc.collect()
669
+
670
+ # Save index if sharded
671
+ if state_dict_split.is_sharded:
672
+ index = {
673
+ "metadata": state_dict_split.metadata,
674
+ "weight_map": state_dict_split.tensor_to_filename,
675
+ }
676
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
677
+ save_index_file = os.path.join(output_dir, save_index_file)
678
+ with open(save_index_file, "w", encoding="utf-8") as f:
679
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
680
+ f.write(content)
681
+
682
+
683
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
684
+ """
685
+ 1. Put the provided model to cpu
686
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
687
+ 3. Load it into the provided model
688
+
689
+ Args:
690
+ - ``model``: the model object to update
691
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
692
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
693
+
694
+ Returns:
695
+ - ``model`: modified model
696
+
697
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
698
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
699
+ conveniently placed for you in the checkpoint folder.
700
+
701
+ A typical usage might be ::
702
+
703
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
704
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
705
+ # submit to model hub or save the model to share with others
706
+
707
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
708
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
709
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
710
+
711
+ """
712
+ logger.info(f"Extracting fp32 weights")
713
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
714
+
715
+ logger.info(f"Overwriting model with fp32 weights")
716
+ model = model.cpu()
717
+ model.load_state_dict(state_dict, strict=False)
718
+
719
+ return model
720
+
721
+
722
+ if __name__ == "__main__":
723
+ parser = argparse.ArgumentParser()
724
+ parser.add_argument("checkpoint_dir",
725
+ type=str,
726
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
727
+ parser.add_argument("output_dir",
728
+ type=str,
729
+ help="directory to the pytorch fp32 state_dict output files"
730
+ "(e.g. path/checkpoint-12-output/)")
731
+ parser.add_argument(
732
+ "--max_shard_size",
733
+ type=str,
734
+ default="5GB",
735
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
736
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
737
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
738
+ "without CPU OOM issues.")
739
+ parser.add_argument(
740
+ "--safe_serialization",
741
+ default=False,
742
+ action='store_true',
743
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
744
+ parser.add_argument("-t",
745
+ "--tag",
746
+ type=str,
747
+ default=None,
748
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
749
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
750
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
751
+ args = parser.parse_args()
752
+
753
+ debug = args.debug
754
+
755
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
756
+ args.output_dir,
757
+ max_shard_size=args.max_shard_size,
758
+ safe_serialization=args.safe_serialization,
759
+ tag=args.tag,
760
+ exclude_frozen_parameters=args.exclude_frozen_parameters)
v0-20250526-142723/logging.jsonl ADDED
@@ -0,0 +1,130 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"loss": 1.42356014, "grad_norm": 1.11349333, "learning_rate": 6.4e-07, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.001478, "epoch": 0.00320256, "global_step/max_steps": "1/936", "percentage": "0.11%", "elapsed_time": "6m 51s", "remaining_time": "4d 10h 56m 8s"}
2
+ {"loss": 1.40599716, "grad_norm": 1.25124496, "learning_rate": 3.19e-06, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.0054, "epoch": 0.01601281, "global_step/max_steps": "5/936", "percentage": "0.53%", "elapsed_time": "11m 1s", "remaining_time": "1d 10h 11m 30s"}
3
+ {"loss": 1.40401821, "grad_norm": 1.1685257, "learning_rate": 6.38e-06, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.008109, "epoch": 0.03202562, "global_step/max_steps": "10/936", "percentage": "1.07%", "elapsed_time": "16m 8s", "remaining_time": "1d 0h 54m 23s"}
4
+ {"loss": 1.27246017, "grad_norm": 1.03478921, "learning_rate": 9.57e-06, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.009701, "epoch": 0.04803843, "global_step/max_steps": "15/936", "percentage": "1.60%", "elapsed_time": "21m 21s", "remaining_time": "21h 51m 19s"}
5
+ {"loss": 1.17078476, "grad_norm": 0.71706113, "learning_rate": 1.277e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.010796, "epoch": 0.06405124, "global_step/max_steps": "20/936", "percentage": "2.14%", "elapsed_time": "26m 27s", "remaining_time": "20h 11m 57s"}
6
+ {"loss": 1.07973175, "grad_norm": 0.60486495, "learning_rate": 1.596e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.011557, "epoch": 0.08006405, "global_step/max_steps": "25/936", "percentage": "2.67%", "elapsed_time": "31m 38s", "remaining_time": "19h 12m 53s"}
7
+ {"loss": 0.98979931, "grad_norm": 0.69383253, "learning_rate": 1.915e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.012125, "epoch": 0.09607686, "global_step/max_steps": "30/936", "percentage": "3.21%", "elapsed_time": "36m 49s", "remaining_time": "18h 32m 0s"}
8
+ {"loss": 0.89156942, "grad_norm": 0.60953015, "learning_rate": 2.234e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.012567, "epoch": 0.11208967, "global_step/max_steps": "35/936", "percentage": "3.74%", "elapsed_time": "42m 0s", "remaining_time": "18h 1m 15s"}
9
+ {"loss": 0.84860582, "grad_norm": 0.60608669, "learning_rate": 2.553e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.012912, "epoch": 0.12810248, "global_step/max_steps": "40/936", "percentage": "4.27%", "elapsed_time": "47m 12s", "remaining_time": "17h 37m 38s"}
10
+ {"loss": 0.79683151, "grad_norm": 0.55424715, "learning_rate": 2.872e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.013196, "epoch": 0.14411529, "global_step/max_steps": "45/936", "percentage": "4.81%", "elapsed_time": "52m 25s", "remaining_time": "17h 17m 58s"}
11
+ {"loss": 0.77137823, "grad_norm": 0.53280986, "learning_rate": 3e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.013423, "epoch": 0.1601281, "global_step/max_steps": "50/936", "percentage": "5.34%", "elapsed_time": "57m 39s", "remaining_time": "17h 1m 50s"}
12
+ {"loss": 0.77568264, "grad_norm": 0.51242541, "learning_rate": 2.999e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.013636, "epoch": 0.17614091, "global_step/max_steps": "55/936", "percentage": "5.88%", "elapsed_time": "1h 2m 48s", "remaining_time": "16h 46m 5s"}
13
+ {"loss": 0.7531559, "grad_norm": 0.45894561, "learning_rate": 2.998e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.013815, "epoch": 0.19215372, "global_step/max_steps": "60/936", "percentage": "6.41%", "elapsed_time": "1h 7m 58s", "remaining_time": "16h 32m 23s"}
14
+ {"loss": 0.72016468, "grad_norm": 0.42532072, "learning_rate": 2.997e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.013962, "epoch": 0.20816653, "global_step/max_steps": "65/936", "percentage": "6.94%", "elapsed_time": "1h 13m 10s", "remaining_time": "16h 20m 32s"}
15
+ {"loss": 0.72917619, "grad_norm": 0.46611455, "learning_rate": 2.995e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.014104, "epoch": 0.22417934, "global_step/max_steps": "70/936", "percentage": "7.48%", "elapsed_time": "1h 18m 18s", "remaining_time": "16h 8m 44s"}
16
+ {"loss": 0.74098911, "grad_norm": 0.51052363, "learning_rate": 2.993e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.014203, "epoch": 0.24019215, "global_step/max_steps": "75/936", "percentage": "8.01%", "elapsed_time": "1h 23m 35s", "remaining_time": "15h 59m 40s"}
17
+ {"loss": 0.72141695, "grad_norm": 0.58669691, "learning_rate": 2.99e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.01431, "epoch": 0.25620496, "global_step/max_steps": "80/936", "percentage": "8.55%", "elapsed_time": "1h 28m 45s", "remaining_time": "15h 49m 45s"}
18
+ {"loss": 0.70451512, "grad_norm": 0.45498411, "learning_rate": 2.986e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.014401, "epoch": 0.27221777, "global_step/max_steps": "85/936", "percentage": "9.08%", "elapsed_time": "1h 33m 57s", "remaining_time": "15h 40m 40s"}
19
+ {"loss": 0.6741261, "grad_norm": 0.45146255, "learning_rate": 2.983e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.014476, "epoch": 0.28823058, "global_step/max_steps": "90/936", "percentage": "9.62%", "elapsed_time": "1h 39m 12s", "remaining_time": "15h 32m 31s"}
20
+ {"loss": 0.70893974, "grad_norm": 0.43958567, "learning_rate": 2.978e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.014542, "epoch": 0.30424339, "global_step/max_steps": "95/936", "percentage": "10.15%", "elapsed_time": "1h 44m 27s", "remaining_time": "15h 24m 46s"}
21
+ {"loss": 0.68529377, "grad_norm": 0.46522525, "learning_rate": 2.974e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.014601, "epoch": 0.3202562, "global_step/max_steps": "100/936", "percentage": "10.68%", "elapsed_time": "1h 49m 43s", "remaining_time": "15h 17m 22s"}
22
+ {"loss": 0.69848318, "grad_norm": 0.45691442, "learning_rate": 2.969e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.014666, "epoch": 0.33626902, "global_step/max_steps": "105/936", "percentage": "11.22%", "elapsed_time": "1h 54m 54s", "remaining_time": "15h 9m 24s"}
23
+ {"loss": 0.69095845, "grad_norm": 0.49062268, "learning_rate": 2.964e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.014717, "epoch": 0.35228183, "global_step/max_steps": "110/936", "percentage": "11.75%", "elapsed_time": "2h 0m 9s", "remaining_time": "15h 2m 15s"}
24
+ {"loss": 0.70584917, "grad_norm": 0.45991317, "learning_rate": 2.958e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.014779, "epoch": 0.36829464, "global_step/max_steps": "115/936", "percentage": "12.29%", "elapsed_time": "2h 5m 16s", "remaining_time": "14h 54m 21s"}
25
+ {"loss": 0.69045486, "grad_norm": 0.46586841, "learning_rate": 2.952e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.014825, "epoch": 0.38430745, "global_step/max_steps": "120/936", "percentage": "12.82%", "elapsed_time": "2h 10m 29s", "remaining_time": "14h 47m 20s"}
26
+ {"loss": 0.68422389, "grad_norm": 0.47901487, "learning_rate": 2.945e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.014876, "epoch": 0.40032026, "global_step/max_steps": "125/936", "percentage": "13.35%", "elapsed_time": "2h 15m 38s", "remaining_time": "14h 40m 0s"}
27
+ {"loss": 0.67159762, "grad_norm": 0.48414225, "learning_rate": 2.937e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.014914, "epoch": 0.41633307, "global_step/max_steps": "130/936", "percentage": "13.89%", "elapsed_time": "2h 20m 51s", "remaining_time": "14h 33m 19s"}
28
+ {"loss": 0.65282841, "grad_norm": 0.44756884, "learning_rate": 2.93e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.014956, "epoch": 0.43234588, "global_step/max_steps": "135/936", "percentage": "14.42%", "elapsed_time": "2h 26m 1s", "remaining_time": "14h 26m 25s"}
29
+ {"loss": 0.66042876, "grad_norm": 0.46144453, "learning_rate": 2.921e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.014993, "epoch": 0.44835869, "global_step/max_steps": "140/936", "percentage": "14.96%", "elapsed_time": "2h 31m 12s", "remaining_time": "14h 19m 45s"}
30
+ {"loss": 0.66385393, "grad_norm": 0.45526186, "learning_rate": 2.913e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015021, "epoch": 0.4643715, "global_step/max_steps": "145/936", "percentage": "15.49%", "elapsed_time": "2h 36m 28s", "remaining_time": "14h 13m 35s"}
31
+ {"loss": 0.65267687, "grad_norm": 0.48893304, "learning_rate": 2.904e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.01506, "epoch": 0.48038431, "global_step/max_steps": "150/936", "percentage": "16.03%", "elapsed_time": "2h 41m 35s", "remaining_time": "14h 6m 42s"}
32
+ {"loss": 0.67680573, "grad_norm": 0.52949445, "learning_rate": 2.894e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015082, "epoch": 0.49639712, "global_step/max_steps": "155/936", "percentage": "16.56%", "elapsed_time": "2h 46m 52s", "remaining_time": "14h 0m 47s"}
33
+ {"loss": 0.6269516, "grad_norm": 0.47795118, "learning_rate": 2.884e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015104, "epoch": 0.51240993, "global_step/max_steps": "160/936", "percentage": "17.09%", "elapsed_time": "2h 52m 8s", "remaining_time": "13h 54m 52s"}
34
+ {"loss": 0.64434004, "grad_norm": 0.44925053, "learning_rate": 2.874e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015127, "epoch": 0.52842274, "global_step/max_steps": "165/936", "percentage": "17.63%", "elapsed_time": "2h 57m 22s", "remaining_time": "13h 48m 49s"}
35
+ {"loss": 0.64112139, "grad_norm": 0.49971818, "learning_rate": 2.863e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015159, "epoch": 0.54443555, "global_step/max_steps": "170/936", "percentage": "18.16%", "elapsed_time": "3h 2m 29s", "remaining_time": "13h 42m 17s"}
36
+ {"loss": 0.6319211, "grad_norm": 0.45291984, "learning_rate": 2.851e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015177, "epoch": 0.56044836, "global_step/max_steps": "175/936", "percentage": "18.70%", "elapsed_time": "3h 7m 45s", "remaining_time": "13h 36m 30s"}
37
+ {"loss": 0.65332518, "grad_norm": 0.44397713, "learning_rate": 2.84e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015196, "epoch": 0.57646117, "global_step/max_steps": "180/936", "percentage": "19.23%", "elapsed_time": "3h 13m 0s", "remaining_time": "13h 30m 38s"}
38
+ {"loss": 0.6418942, "grad_norm": 0.448244, "learning_rate": 2.828e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015212, "epoch": 0.59247398, "global_step/max_steps": "185/936", "percentage": "19.76%", "elapsed_time": "3h 18m 16s", "remaining_time": "13h 24m 54s"}
39
+ {"loss": 0.63125448, "grad_norm": 0.48789676, "learning_rate": 2.815e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015235, "epoch": 0.60848679, "global_step/max_steps": "190/936", "percentage": "20.30%", "elapsed_time": "3h 23m 26s", "remaining_time": "13h 18m 46s"}
40
+ {"loss": 0.66731582, "grad_norm": 0.48121965, "learning_rate": 2.802e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015256, "epoch": 0.6244996, "global_step/max_steps": "195/936", "percentage": "20.83%", "elapsed_time": "3h 28m 36s", "remaining_time": "13h 12m 43s"}
41
+ {"loss": 0.64347477, "grad_norm": 0.4646651, "learning_rate": 2.789e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015269, "epoch": 0.64051241, "global_step/max_steps": "200/936", "percentage": "21.37%", "elapsed_time": "3h 33m 53s", "remaining_time": "13h 7m 7s"}
42
+ {"loss": 0.64317794, "grad_norm": 0.46736417, "learning_rate": 2.775e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015292, "epoch": 0.65652522, "global_step/max_steps": "205/936", "percentage": "21.90%", "elapsed_time": "3h 39m 0s", "remaining_time": "13h 0m 58s"}
43
+ {"loss": 0.67211766, "grad_norm": 0.45779789, "learning_rate": 2.761e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015313, "epoch": 0.67253803, "global_step/max_steps": "210/936", "percentage": "22.44%", "elapsed_time": "3h 44m 8s", "remaining_time": "12h 54m 54s"}
44
+ {"loss": 0.66723347, "grad_norm": 0.4618914, "learning_rate": 2.746e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015327, "epoch": 0.68855084, "global_step/max_steps": "215/936", "percentage": "22.97%", "elapsed_time": "3h 49m 23s", "remaining_time": "12h 49m 14s"}
45
+ {"loss": 0.65649157, "grad_norm": 0.476497, "learning_rate": 2.731e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015342, "epoch": 0.70456365, "global_step/max_steps": "220/936", "percentage": "23.50%", "elapsed_time": "3h 54m 34s", "remaining_time": "12h 43m 26s"}
46
+ {"loss": 0.6348362, "grad_norm": 0.4660823, "learning_rate": 2.716e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015365, "epoch": 0.72057646, "global_step/max_steps": "225/936", "percentage": "24.04%", "elapsed_time": "3h 59m 38s", "remaining_time": "12h 37m 17s"}
47
+ {"loss": 0.60627279, "grad_norm": 0.48892535, "learning_rate": 2.7e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015384, "epoch": 0.73658927, "global_step/max_steps": "230/936", "percentage": "24.57%", "elapsed_time": "4h 4m 45s", "remaining_time": "12h 31m 18s"}
48
+ {"loss": 0.63894978, "grad_norm": 0.5838631, "learning_rate": 2.684e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.0154, "epoch": 0.75260208, "global_step/max_steps": "235/936", "percentage": "25.11%", "elapsed_time": "4h 9m 55s", "remaining_time": "12h 25m 29s"}
49
+ {"loss": 0.6525445, "grad_norm": 0.46074216, "learning_rate": 2.668e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015413, "epoch": 0.76861489, "global_step/max_steps": "240/936", "percentage": "25.64%", "elapsed_time": "4h 15m 6s", "remaining_time": "12h 19m 49s"}
50
+ {"loss": 0.60583525, "grad_norm": 0.45477587, "learning_rate": 2.651e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015424, "epoch": 0.7846277, "global_step/max_steps": "245/936", "percentage": "26.18%", "elapsed_time": "4h 20m 19s", "remaining_time": "12h 14m 14s"}
51
+ {"loss": 0.63137364, "grad_norm": 0.47305673, "learning_rate": 2.634e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015433, "epoch": 0.80064051, "global_step/max_steps": "250/936", "percentage": "26.71%", "elapsed_time": "4h 25m 34s", "remaining_time": "12h 8m 44s"}
52
+ {"loss": 0.66051378, "grad_norm": 0.48556154, "learning_rate": 2.616e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.01545, "epoch": 0.81665332, "global_step/max_steps": "255/936", "percentage": "27.24%", "elapsed_time": "4h 30m 39s", "remaining_time": "12h 2m 49s"}
53
+ {"loss": 0.64833431, "grad_norm": 0.45927895, "learning_rate": 2.598e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015463, "epoch": 0.83266613, "global_step/max_steps": "260/936", "percentage": "27.78%", "elapsed_time": "4h 35m 49s", "remaining_time": "11h 57m 7s"}
54
+ {"loss": 0.61744938, "grad_norm": 0.45947638, "learning_rate": 2.58e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015476, "epoch": 0.84867894, "global_step/max_steps": "265/936", "percentage": "28.31%", "elapsed_time": "4h 40m 58s", "remaining_time": "11h 51m 27s"}
55
+ {"loss": 0.6349721, "grad_norm": 0.48423585, "learning_rate": 2.562e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015483, "epoch": 0.86469175, "global_step/max_steps": "270/936", "percentage": "28.85%", "elapsed_time": "4h 46m 13s", "remaining_time": "11h 46m 1s"}
56
+ {"loss": 0.60425463, "grad_norm": 0.48548008, "learning_rate": 2.543e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015495, "epoch": 0.88070456, "global_step/max_steps": "275/936", "percentage": "29.38%", "elapsed_time": "4h 51m 23s", "remaining_time": "11h 40m 23s"}
57
+ {"loss": 0.64370818, "grad_norm": 0.45844672, "learning_rate": 2.523e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015505, "epoch": 0.89671737, "global_step/max_steps": "280/936", "percentage": "29.91%", "elapsed_time": "4h 56m 34s", "remaining_time": "11h 34m 49s"}
58
+ {"loss": 0.65931177, "grad_norm": 0.49926899, "learning_rate": 2.504e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015514, "epoch": 0.91273018, "global_step/max_steps": "285/936", "percentage": "30.45%", "elapsed_time": "5h 1m 45s", "remaining_time": "11h 29m 16s"}
59
+ {"loss": 0.64096975, "grad_norm": 0.47682322, "learning_rate": 2.484e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015526, "epoch": 0.92874299, "global_step/max_steps": "290/936", "percentage": "30.98%", "elapsed_time": "5h 6m 53s", "remaining_time": "11h 23m 38s"}
60
+ {"loss": 0.62307062, "grad_norm": 0.52816203, "learning_rate": 2.464e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015534, "epoch": 0.9447558, "global_step/max_steps": "295/936", "percentage": "31.52%", "elapsed_time": "5h 12m 6s", "remaining_time": "11h 18m 9s"}
61
+ {"loss": 0.64836602, "grad_norm": 0.60387992, "learning_rate": 2.443e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015545, "epoch": 0.96076861, "global_step/max_steps": "300/936", "percentage": "32.05%", "elapsed_time": "5h 17m 14s", "remaining_time": "11h 12m 32s"}
62
+ {"loss": 0.65115905, "grad_norm": 0.50843623, "learning_rate": 2.423e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015551, "epoch": 0.97678143, "global_step/max_steps": "305/936", "percentage": "32.59%", "elapsed_time": "5h 22m 28s", "remaining_time": "11h 7m 8s"}
63
+ {"loss": 0.62531347, "grad_norm": 0.49764563, "learning_rate": 2.402e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.01556, "epoch": 0.99279424, "global_step/max_steps": "310/936", "percentage": "33.12%", "elapsed_time": "5h 27m 38s", "remaining_time": "11h 1m 37s"}
64
+ {"loss": 0.63394232, "grad_norm": 0.49504693, "learning_rate": 2.38e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015602, "epoch": 1.00640512, "global_step/max_steps": "315/936", "percentage": "33.65%", "elapsed_time": "5h 32m 4s", "remaining_time": "10h 54m 40s"}
65
+ {"loss": 0.58845882, "grad_norm": 0.46988359, "learning_rate": 2.359e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015606, "epoch": 1.02241793, "global_step/max_steps": "320/936", "percentage": "34.19%", "elapsed_time": "5h 37m 19s", "remaining_time": "10h 49m 21s"}
66
+ {"loss": 0.59490862, "grad_norm": 0.51526029, "learning_rate": 2.337e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015611, "epoch": 1.03843074, "global_step/max_steps": "325/936", "percentage": "34.72%", "elapsed_time": "5h 42m 33s", "remaining_time": "10h 44m 0s"}
67
+ {"loss": 0.58906679, "grad_norm": 0.49813922, "learning_rate": 2.315e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015616, "epoch": 1.05444355, "global_step/max_steps": "330/936", "percentage": "35.26%", "elapsed_time": "5h 47m 47s", "remaining_time": "10h 38m 40s"}
68
+ {"loss": 0.5816783, "grad_norm": 0.53942239, "learning_rate": 2.292e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.01562, "epoch": 1.07045637, "global_step/max_steps": "335/936", "percentage": "35.79%", "elapsed_time": "5h 53m 2s", "remaining_time": "10h 33m 21s"}
69
+ {"loss": 0.54961443, "grad_norm": 0.50509538, "learning_rate": 2.27e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.01563, "epoch": 1.08646918, "global_step/max_steps": "340/936", "percentage": "36.32%", "elapsed_time": "5h 58m 8s", "remaining_time": "10h 27m 48s"}
70
+ {"loss": 0.5438549, "grad_norm": 0.51262492, "learning_rate": 2.247e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015636, "epoch": 1.10248199, "global_step/max_steps": "345/936", "percentage": "36.86%", "elapsed_time": "6h 3m 19s", "remaining_time": "10h 22m 23s"}
71
+ {"loss": 0.56328716, "grad_norm": 0.53986211, "learning_rate": 2.224e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015641, "epoch": 1.1184948, "global_step/max_steps": "350/936", "percentage": "37.39%", "elapsed_time": "6h 8m 32s", "remaining_time": "10h 17m 3s"}
72
+ {"loss": 0.60459785, "grad_norm": 0.50364097, "learning_rate": 2.201e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015646, "epoch": 1.13450761, "global_step/max_steps": "355/936", "percentage": "37.93%", "elapsed_time": "6h 13m 44s", "remaining_time": "10h 11m 39s"}
73
+ {"loss": 0.59875135, "grad_norm": 0.56897599, "learning_rate": 2.177e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015648, "epoch": 1.15052042, "global_step/max_steps": "360/936", "percentage": "38.46%", "elapsed_time": "6h 19m 0s", "remaining_time": "10h 6m 25s"}
74
+ {"loss": 0.595965, "grad_norm": 0.53106956, "learning_rate": 2.153e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015657, "epoch": 1.16653323, "global_step/max_steps": "365/936", "percentage": "39.00%", "elapsed_time": "6h 24m 7s", "remaining_time": "10h 0m 55s"}
75
+ {"loss": 0.58605342, "grad_norm": 0.52265372, "learning_rate": 2.129e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.01566, "epoch": 1.18254604, "global_step/max_steps": "370/936", "percentage": "39.53%", "elapsed_time": "6h 29m 22s", "remaining_time": "9h 55m 38s"}
76
+ {"loss": 0.5731144, "grad_norm": 0.53428241, "learning_rate": 2.105e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015665, "epoch": 1.19855885, "global_step/max_steps": "375/936", "percentage": "40.06%", "elapsed_time": "6h 34m 33s", "remaining_time": "9h 50m 14s"}
77
+ {"loss": 0.55925112, "grad_norm": 0.56765169, "learning_rate": 2.081e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015674, "epoch": 1.21457166, "global_step/max_steps": "380/936", "percentage": "40.60%", "elapsed_time": "6h 39m 39s", "remaining_time": "9h 44m 46s"}
78
+ {"loss": 0.56619668, "grad_norm": 0.56151828, "learning_rate": 2.056e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015681, "epoch": 1.23058447, "global_step/max_steps": "385/936", "percentage": "41.13%", "elapsed_time": "6h 44m 46s", "remaining_time": "9h 39m 18s"}
79
+ {"loss": 0.57897353, "grad_norm": 0.54221575, "learning_rate": 2.032e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015684, "epoch": 1.24659728, "global_step/max_steps": "390/936", "percentage": "41.67%", "elapsed_time": "6h 50m 1s", "remaining_time": "9h 34m 1s"}
80
+ {"loss": 0.5753809, "grad_norm": 0.60302455, "learning_rate": 2.007e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.01569, "epoch": 1.26261009, "global_step/max_steps": "395/936", "percentage": "42.20%", "elapsed_time": "6h 55m 9s", "remaining_time": "9h 28m 37s"}
81
+ {"loss": 0.57927155, "grad_norm": 0.61434188, "learning_rate": 1.982e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015693, "epoch": 1.2786229, "global_step/max_steps": "400/936", "percentage": "42.74%", "elapsed_time": "7h 0m 24s", "remaining_time": "9h 23m 20s"}
82
+ {"loss": 0.58422585, "grad_norm": 0.55861518, "learning_rate": 1.956e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015698, "epoch": 1.29463571, "global_step/max_steps": "405/936", "percentage": "43.27%", "elapsed_time": "7h 5m 34s", "remaining_time": "9h 17m 58s"}
83
+ {"loss": 0.59080114, "grad_norm": 0.58414442, "learning_rate": 1.931e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015701, "epoch": 1.31064852, "global_step/max_steps": "410/936", "percentage": "43.80%", "elapsed_time": "7h 10m 48s", "remaining_time": "9h 12m 42s"}
84
+ {"loss": 0.56734295, "grad_norm": 0.59653036, "learning_rate": 1.906e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015705, "epoch": 1.32666133, "global_step/max_steps": "415/936", "percentage": "44.34%", "elapsed_time": "7h 15m 59s", "remaining_time": "9h 7m 21s"}
85
+ {"loss": 0.57474675, "grad_norm": 0.57229239, "learning_rate": 1.88e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015707, "epoch": 1.34267414, "global_step/max_steps": "420/936", "percentage": "44.87%", "elapsed_time": "7h 21m 15s", "remaining_time": "9h 2m 6s"}
86
+ {"loss": 0.58866596, "grad_norm": 0.56471395, "learning_rate": 1.854e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015712, "epoch": 1.35868695, "global_step/max_steps": "425/936", "percentage": "45.41%", "elapsed_time": "7h 26m 23s", "remaining_time": "8h 56m 43s"}
87
+ {"loss": 0.55964842, "grad_norm": 0.60322438, "learning_rate": 1.829e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015713, "epoch": 1.37469976, "global_step/max_steps": "430/936", "percentage": "45.94%", "elapsed_time": "7h 31m 41s", "remaining_time": "8h 51m 31s"}
88
+ {"loss": 0.56629629, "grad_norm": 0.57983677, "learning_rate": 1.803e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.01572, "epoch": 1.39071257, "global_step/max_steps": "435/936", "percentage": "46.47%", "elapsed_time": "7h 36m 47s", "remaining_time": "8h 46m 5s"}
89
+ {"loss": 0.57825279, "grad_norm": 0.58993814, "learning_rate": 1.777e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015723, "epoch": 1.40672538, "global_step/max_steps": "440/936", "percentage": "47.01%", "elapsed_time": "7h 41m 58s", "remaining_time": "8h 40m 46s"}
90
+ {"loss": 0.5774745, "grad_norm": 0.55913019, "learning_rate": 1.751e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015728, "epoch": 1.42273819, "global_step/max_steps": "445/936", "percentage": "47.54%", "elapsed_time": "7h 47m 7s", "remaining_time": "8h 35m 25s"}
91
+ {"loss": 0.57460151, "grad_norm": 0.55483078, "learning_rate": 1.724e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015734, "epoch": 1.438751, "global_step/max_steps": "450/936", "percentage": "48.08%", "elapsed_time": "7h 52m 15s", "remaining_time": "8h 30m 2s"}
92
+ {"loss": 0.57186561, "grad_norm": 0.61629865, "learning_rate": 1.698e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015738, "epoch": 1.45476381, "global_step/max_steps": "455/936", "percentage": "48.61%", "elapsed_time": "7h 57m 26s", "remaining_time": "8h 24m 43s"}
93
+ {"loss": 0.58383169, "grad_norm": 0.5999632, "learning_rate": 1.672e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.01574, "epoch": 1.47077662, "global_step/max_steps": "460/936", "percentage": "49.15%", "elapsed_time": "8h 2m 39s", "remaining_time": "8h 19m 26s"}
94
+ {"loss": 0.54161773, "grad_norm": 0.57519344, "learning_rate": 1.646e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015742, "epoch": 1.48678943, "global_step/max_steps": "465/936", "percentage": "49.68%", "elapsed_time": "8h 7m 54s", "remaining_time": "8h 14m 11s"}
95
+ {"loss": 0.56883354, "grad_norm": 0.63523584, "learning_rate": 1.619e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015747, "epoch": 1.50280224, "global_step/max_steps": "470/936", "percentage": "50.21%", "elapsed_time": "8h 13m 2s", "remaining_time": "8h 8m 50s"}
96
+ {"loss": 0.58089046, "grad_norm": 0.63237172, "learning_rate": 1.593e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015751, "epoch": 1.51881505, "global_step/max_steps": "475/936", "percentage": "50.75%", "elapsed_time": "8h 18m 11s", "remaining_time": "8h 3m 30s"}
97
+ {"loss": 0.5448812, "grad_norm": 0.62982368, "learning_rate": 1.566e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015752, "epoch": 1.53482786, "global_step/max_steps": "480/936", "percentage": "51.28%", "elapsed_time": "8h 23m 27s", "remaining_time": "7h 58m 17s"}
98
+ {"loss": 0.59056048, "grad_norm": 0.58769507, "learning_rate": 1.54e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015754, "epoch": 1.55084067, "global_step/max_steps": "485/936", "percentage": "51.82%", "elapsed_time": "8h 28m 41s", "remaining_time": "7h 53m 1s"}
99
+ {"loss": 0.59814448, "grad_norm": 0.63846963, "learning_rate": 1.513e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015756, "epoch": 1.56685348, "global_step/max_steps": "490/936", "percentage": "52.35%", "elapsed_time": "8h 33m 53s", "remaining_time": "7h 47m 44s"}
100
+ {"loss": 0.54483361, "grad_norm": 0.59827094, "learning_rate": 1.487e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015757, "epoch": 1.58286629, "global_step/max_steps": "495/936", "percentage": "52.88%", "elapsed_time": "8h 39m 10s", "remaining_time": "7h 42m 31s"}
101
+ {"loss": 0.59855957, "grad_norm": 0.62999094, "learning_rate": 1.46e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.01576, "epoch": 1.5988791, "global_step/max_steps": "500/936", "percentage": "53.42%", "elapsed_time": "8h 44m 21s", "remaining_time": "7h 37m 14s"}
102
+ {"loss": 0.55943136, "grad_norm": 0.62793673, "learning_rate": 1.434e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015763, "epoch": 1.61489191, "global_step/max_steps": "505/936", "percentage": "53.95%", "elapsed_time": "8h 49m 31s", "remaining_time": "7h 31m 56s"}
103
+ {"loss": 0.55001945, "grad_norm": 0.64144078, "learning_rate": 1.407e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015768, "epoch": 1.63090472, "global_step/max_steps": "510/936", "percentage": "54.49%", "elapsed_time": "8h 54m 39s", "remaining_time": "7h 26m 36s"}
104
+ {"loss": 0.57425137, "grad_norm": 0.65977768, "learning_rate": 1.381e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.01577, "epoch": 1.64691753, "global_step/max_steps": "515/936", "percentage": "55.02%", "elapsed_time": "8h 59m 52s", "remaining_time": "7h 21m 19s"}
105
+ {"loss": 0.56872339, "grad_norm": 0.59814443, "learning_rate": 1.354e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015773, "epoch": 1.66293034, "global_step/max_steps": "520/936", "percentage": "55.56%", "elapsed_time": "9h 5m 2s", "remaining_time": "7h 16m 1s"}
106
+ {"loss": 0.5612329, "grad_norm": 0.6626789, "learning_rate": 1.328e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015776, "epoch": 1.67894315, "global_step/max_steps": "525/936", "percentage": "56.09%", "elapsed_time": "9h 10m 13s", "remaining_time": "7h 10m 44s"}
107
+ {"loss": 0.55641694, "grad_norm": 0.6165757, "learning_rate": 1.302e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015778, "epoch": 1.69495596, "global_step/max_steps": "530/936", "percentage": "56.62%", "elapsed_time": "9h 15m 26s", "remaining_time": "7h 5m 29s"}
108
+ {"loss": 0.59409752, "grad_norm": 0.65576318, "learning_rate": 1.276e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015782, "epoch": 1.71096878, "global_step/max_steps": "535/936", "percentage": "57.16%", "elapsed_time": "9h 20m 33s", "remaining_time": "7h 0m 9s"}
109
+ {"loss": 0.55875688, "grad_norm": 0.62465309, "learning_rate": 1.249e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015784, "epoch": 1.72698159, "global_step/max_steps": "540/936", "percentage": "57.69%", "elapsed_time": "9h 25m 47s", "remaining_time": "6h 54m 55s"}
110
+ {"loss": 0.52943115, "grad_norm": 0.56887063, "learning_rate": 1.223e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015785, "epoch": 1.7429944, "global_step/max_steps": "545/936", "percentage": "58.23%", "elapsed_time": "9h 31m 2s", "remaining_time": "6h 49m 41s"}
111
+ {"loss": 0.55800018, "grad_norm": 0.66950407, "learning_rate": 1.197e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015787, "epoch": 1.75900721, "global_step/max_steps": "550/936", "percentage": "58.76%", "elapsed_time": "9h 36m 13s", "remaining_time": "6h 44m 24s"}
112
+ {"loss": 0.57581358, "grad_norm": 0.62353001, "learning_rate": 1.171e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015788, "epoch": 1.77502002, "global_step/max_steps": "555/936", "percentage": "59.29%", "elapsed_time": "9h 41m 29s", "remaining_time": "6h 39m 11s"}
113
+ {"loss": 0.57144208, "grad_norm": 0.63526118, "learning_rate": 1.146e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015791, "epoch": 1.79103283, "global_step/max_steps": "560/936", "percentage": "59.83%", "elapsed_time": "9h 46m 39s", "remaining_time": "6h 33m 53s"}
114
+ {"loss": 0.55343156, "grad_norm": 0.68069869, "learning_rate": 1.12e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015793, "epoch": 1.80704564, "global_step/max_steps": "565/936", "percentage": "60.36%", "elapsed_time": "9h 51m 49s", "remaining_time": "6h 28m 36s"}
115
+ {"loss": 0.54114871, "grad_norm": 0.59935772, "learning_rate": 1.094e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015794, "epoch": 1.82305845, "global_step/max_steps": "570/936", "percentage": "60.90%", "elapsed_time": "9h 57m 4s", "remaining_time": "6h 23m 23s"}
116
+ {"loss": 0.54671941, "grad_norm": 0.66805905, "learning_rate": 1.069e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015797, "epoch": 1.83907126, "global_step/max_steps": "575/936", "percentage": "61.43%", "elapsed_time": "10h 2m 15s", "remaining_time": "6h 18m 6s"}
117
+ {"loss": 0.57824945, "grad_norm": 0.66497161, "learning_rate": 1.049e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.0158, "epoch": 1.85508407, "global_step/max_steps": "580/936", "percentage": "61.97%", "elapsed_time": "10h 7m 24s", "remaining_time": "6h 12m 49s"}
118
+ {"loss": 0.57358356, "grad_norm": 0.61038546, "learning_rate": 1.023e-05, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015801, "epoch": 1.87109688, "global_step/max_steps": "585/936", "percentage": "62.50%", "elapsed_time": "10h 12m 38s", "remaining_time": "6h 7m 34s"}
119
+ {"loss": 0.54877539, "grad_norm": 0.75307211, "learning_rate": 9.98e-06, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015805, "epoch": 1.88710969, "global_step/max_steps": "590/936", "percentage": "63.03%", "elapsed_time": "10h 17m 45s", "remaining_time": "6h 2m 16s"}
120
+ {"loss": 0.57379742, "grad_norm": 0.61708442, "learning_rate": 9.73e-06, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015808, "epoch": 1.9031225, "global_step/max_steps": "595/936", "percentage": "63.57%", "elapsed_time": "10h 22m 55s", "remaining_time": "5h 57m 0s"}
121
+ {"loss": 0.55204997, "grad_norm": 0.64517944, "learning_rate": 9.49e-06, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015809, "epoch": 1.91913531, "global_step/max_steps": "600/936", "percentage": "64.10%", "elapsed_time": "10h 28m 8s", "remaining_time": "5h 51m 45s"}
122
+ {"loss": 0.54695177, "grad_norm": 0.62519423, "learning_rate": 9.24e-06, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015812, "epoch": 1.93514812, "global_step/max_steps": "605/936", "percentage": "64.64%", "elapsed_time": "10h 33m 18s", "remaining_time": "5h 46m 29s"}
123
+ {"loss": 0.56501989, "grad_norm": 0.61982048, "learning_rate": 9e-06, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015812, "epoch": 1.95116093, "global_step/max_steps": "610/936", "percentage": "65.17%", "elapsed_time": "10h 38m 33s", "remaining_time": "5h 41m 15s"}
124
+ {"loss": 0.53078766, "grad_norm": 0.63561612, "learning_rate": 8.76e-06, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015813, "epoch": 1.96717374, "global_step/max_steps": "615/936", "percentage": "65.71%", "elapsed_time": "10h 43m 47s", "remaining_time": "5h 36m 1s"}
125
+ {"loss": 0.55520983, "grad_norm": 0.66011745, "learning_rate": 8.52e-06, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015815, "epoch": 1.98318655, "global_step/max_steps": "620/936", "percentage": "66.24%", "elapsed_time": "10h 48m 58s", "remaining_time": "5h 30m 46s"}
126
+ {"loss": 0.55757914, "grad_norm": 0.64936355, "learning_rate": 8.28e-06, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015818, "epoch": 1.99919936, "global_step/max_steps": "625/936", "percentage": "66.77%", "elapsed_time": "10h 54m 5s", "remaining_time": "5h 25m 28s"}
127
+ {"loss": 0.52105627, "grad_norm": 0.61302059, "learning_rate": 8.04e-06, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015839, "epoch": 2.01281025, "global_step/max_steps": "630/936", "percentage": "67.31%", "elapsed_time": "10h 58m 31s", "remaining_time": "5h 19m 51s"}
128
+ {"loss": 0.53484406, "grad_norm": 0.61695648, "learning_rate": 7.81e-06, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015839, "epoch": 2.02882306, "global_step/max_steps": "635/936", "percentage": "67.84%", "elapsed_time": "11h 3m 46s", "remaining_time": "5h 14m 38s"}
129
+ {"loss": 0.48503141, "grad_norm": 0.65024846, "learning_rate": 7.58e-06, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015839, "epoch": 2.04483587, "global_step/max_steps": "640/936", "percentage": "68.38%", "elapsed_time": "11h 9m 1s", "remaining_time": "5h 9m 25s"}
130
+ {"loss": 0.52498808, "grad_norm": 0.6899964, "learning_rate": 7.35e-06, "memory(GiB)": 21.89, "train_speed(iter/s)": 0.015787, "epoch": 2.06084868, "global_step/max_steps": "645/936", "percentage": "68.91%", "elapsed_time": "11h 16m 31s", "remaining_time": "5h 5m 13s"}
v0-20250526-142723/runs/events.out.tfevents.1748269983.e0b00eb95078.491.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:06fc0271b4f4505a579610cf7d1d0655171607267cc56b67c8cbdcfbed850035
3
+ size 50114