ktam204 commited on
Commit
6af91c6
·
verified ·
1 Parent(s): 8a1e60b

Upload folder using huggingface_hub

Browse files
Files changed (36) hide show
  1. v0-20250524-093253/args.json +372 -0
  2. v0-20250524-093253/checkpoint-145/README.md +202 -0
  3. v0-20250524-093253/checkpoint-145/adapter_config.json +37 -0
  4. v0-20250524-093253/checkpoint-145/adapter_model.safetensors +3 -0
  5. v0-20250524-093253/checkpoint-145/additional_config.json +1 -0
  6. v0-20250524-093253/checkpoint-145/args.json +372 -0
  7. v0-20250524-093253/checkpoint-145/global_step145/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
  8. v0-20250524-093253/checkpoint-145/global_step145/zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  9. v0-20250524-093253/checkpoint-145/global_step145/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
  10. v0-20250524-093253/checkpoint-145/global_step145/zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  11. v0-20250524-093253/checkpoint-145/global_step145/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
  12. v0-20250524-093253/checkpoint-145/global_step145/zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
  13. v0-20250524-093253/checkpoint-145/global_step145/zero_pp_rank_3_mp_rank_00_model_states.pt +3 -0
  14. v0-20250524-093253/checkpoint-145/global_step145/zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
  15. v0-20250524-093253/checkpoint-145/latest +1 -0
  16. v0-20250524-093253/checkpoint-145/rng_state_0.pth +3 -0
  17. v0-20250524-093253/checkpoint-145/rng_state_1.pth +3 -0
  18. v0-20250524-093253/checkpoint-145/rng_state_2.pth +3 -0
  19. v0-20250524-093253/checkpoint-145/rng_state_3.pth +3 -0
  20. v0-20250524-093253/checkpoint-145/scheduler.pt +3 -0
  21. v0-20250524-093253/checkpoint-145/trainer_state.json +304 -0
  22. v0-20250524-093253/checkpoint-145/training_args.bin +3 -0
  23. v0-20250524-093253/checkpoint-145/zero_to_fp32.py +760 -0
  24. v0-20250524-093253/images/train_epoch.png +0 -0
  25. v0-20250524-093253/images/train_grad_norm.png +0 -0
  26. v0-20250524-093253/images/train_learning_rate.png +0 -0
  27. v0-20250524-093253/images/train_loss.png +0 -0
  28. v0-20250524-093253/images/train_memory(GiB).png +0 -0
  29. v0-20250524-093253/images/train_total_flos.png +0 -0
  30. v0-20250524-093253/images/train_train_loss.png +0 -0
  31. v0-20250524-093253/images/train_train_runtime.png +0 -0
  32. v0-20250524-093253/images/train_train_samples_per_second.png +0 -0
  33. v0-20250524-093253/images/train_train_speed(iter_s).png +0 -0
  34. v0-20250524-093253/images/train_train_steps_per_second.png +0 -0
  35. v0-20250524-093253/logging.jsonl +32 -0
  36. v0-20250524-093253/runs/events.out.tfevents.1748079401.6fdddaaae532.441.0 +3 -0
v0-20250524-093253/args.json ADDED
@@ -0,0 +1,372 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model": "/kaggle/input/qwen-3/transformers/32b-awq/1",
3
+ "model_type": "qwen3",
4
+ "model_revision": null,
5
+ "task_type": "causal_lm",
6
+ "torch_dtype": "float16",
7
+ "attn_impl": "flash_attn",
8
+ "num_labels": null,
9
+ "problem_type": null,
10
+ "rope_scaling": null,
11
+ "device_map": null,
12
+ "max_memory": {},
13
+ "local_repo_path": null,
14
+ "init_strategy": null,
15
+ "template": "qwen3",
16
+ "system": null,
17
+ "max_length": 2560,
18
+ "truncation_strategy": "delete",
19
+ "max_pixels": null,
20
+ "agent_template": null,
21
+ "norm_bbox": null,
22
+ "use_chat_template": true,
23
+ "padding_free": false,
24
+ "padding_side": "right",
25
+ "loss_scale": "default",
26
+ "sequence_parallel_size": 1,
27
+ "response_prefix": null,
28
+ "template_backend": "swift",
29
+ "dataset": [
30
+ "combined_messages.jsonl"
31
+ ],
32
+ "val_dataset": [],
33
+ "split_dataset_ratio": 0.0,
34
+ "data_seed": 42,
35
+ "dataset_num_proc": 8,
36
+ "load_from_cache_file": true,
37
+ "dataset_shuffle": true,
38
+ "val_dataset_shuffle": false,
39
+ "streaming": false,
40
+ "interleave_prob": null,
41
+ "stopping_strategy": "first_exhausted",
42
+ "shuffle_buffer_size": 1000,
43
+ "download_mode": "reuse_dataset_if_exists",
44
+ "columns": {},
45
+ "strict": false,
46
+ "remove_unused_columns": true,
47
+ "model_name": [
48
+ null,
49
+ null
50
+ ],
51
+ "model_author": [
52
+ null,
53
+ null
54
+ ],
55
+ "custom_dataset_info": [],
56
+ "quant_method": null,
57
+ "quant_bits": null,
58
+ "hqq_axis": null,
59
+ "bnb_4bit_compute_dtype": "float32",
60
+ "bnb_4bit_quant_type": "nf4",
61
+ "bnb_4bit_use_double_quant": true,
62
+ "bnb_4bit_quant_storage": null,
63
+ "max_new_tokens": 64,
64
+ "temperature": 0.0,
65
+ "top_k": null,
66
+ "top_p": null,
67
+ "repetition_penalty": null,
68
+ "num_beams": 1,
69
+ "stream": false,
70
+ "stop_words": [],
71
+ "logprobs": false,
72
+ "top_logprobs": null,
73
+ "ckpt_dir": null,
74
+ "lora_modules": [],
75
+ "tuner_backend": "peft",
76
+ "train_type": "lora",
77
+ "adapters": [],
78
+ "external_plugins": [],
79
+ "seed": 42,
80
+ "model_kwargs": {},
81
+ "load_args": false,
82
+ "load_data_args": false,
83
+ "use_hf": false,
84
+ "hub_token": null,
85
+ "custom_register_path": [],
86
+ "ddp_timeout": 1800,
87
+ "ddp_backend": null,
88
+ "ignore_args_error": false,
89
+ "use_swift_lora": false,
90
+ "output_dir": "/kaggle/tmp/save_checkpoint/v0-20250524-093253",
91
+ "overwrite_output_dir": false,
92
+ "do_train": false,
93
+ "do_eval": false,
94
+ "do_predict": false,
95
+ "eval_strategy": "steps",
96
+ "prediction_loss_only": false,
97
+ "per_device_train_batch_size": 1,
98
+ "per_device_eval_batch_size": 1,
99
+ "per_gpu_train_batch_size": null,
100
+ "per_gpu_eval_batch_size": null,
101
+ "gradient_accumulation_steps": 8,
102
+ "eval_accumulation_steps": null,
103
+ "eval_delay": 0,
104
+ "torch_empty_cache_steps": null,
105
+ "learning_rate": 1e-05,
106
+ "weight_decay": 0.1,
107
+ "adam_beta1": 0.9,
108
+ "adam_beta2": 0.95,
109
+ "adam_epsilon": 1e-08,
110
+ "max_grad_norm": 1.0,
111
+ "num_train_epochs": 3.0,
112
+ "max_steps": 145,
113
+ "lr_scheduler_type": "cosine",
114
+ "lr_scheduler_kwargs": null,
115
+ "warmup_ratio": 0.05,
116
+ "warmup_steps": 0,
117
+ "log_level": "passive",
118
+ "log_level_replica": "warning",
119
+ "log_on_each_node": true,
120
+ "logging_dir": "/kaggle/tmp/save_checkpoint/v0-20250524-093253/runs",
121
+ "logging_strategy": "steps",
122
+ "logging_first_step": true,
123
+ "logging_steps": 5,
124
+ "logging_nan_inf_filter": true,
125
+ "save_strategy": "steps",
126
+ "save_steps": 20000.0,
127
+ "save_total_limit": 4,
128
+ "save_safetensors": true,
129
+ "save_on_each_node": false,
130
+ "save_only_model": false,
131
+ "restore_callback_states_from_checkpoint": false,
132
+ "no_cuda": false,
133
+ "use_cpu": false,
134
+ "use_mps_device": false,
135
+ "jit_mode_eval": false,
136
+ "use_ipex": false,
137
+ "bf16": false,
138
+ "fp16": true,
139
+ "fp16_opt_level": "O1",
140
+ "half_precision_backend": "auto",
141
+ "bf16_full_eval": false,
142
+ "fp16_full_eval": false,
143
+ "tf32": null,
144
+ "local_rank": 0,
145
+ "tpu_num_cores": null,
146
+ "tpu_metrics_debug": false,
147
+ "debug": null,
148
+ "dataloader_drop_last": false,
149
+ "eval_steps": 20000.0,
150
+ "dataloader_num_workers": 8,
151
+ "dataloader_prefetch_factor": null,
152
+ "past_index": -1,
153
+ "run_name": "/kaggle/tmp/save_checkpoint/v0-20250524-093253",
154
+ "disable_tqdm": null,
155
+ "label_names": null,
156
+ "load_best_model_at_end": false,
157
+ "metric_for_best_model": "loss",
158
+ "greater_is_better": false,
159
+ "ignore_data_skip": false,
160
+ "fsdp": "",
161
+ "fsdp_min_num_params": 0,
162
+ "fsdp_config": null,
163
+ "tp_size": 0,
164
+ "fsdp_transformer_layer_cls_to_wrap": null,
165
+ "accelerator_config": {
166
+ "dispatch_batches": false
167
+ },
168
+ "deepspeed": {
169
+ "fp16": {
170
+ "enabled": "auto",
171
+ "loss_scale": 0,
172
+ "loss_scale_window": 1000,
173
+ "initial_scale_power": 16,
174
+ "hysteresis": 2,
175
+ "min_loss_scale": 1
176
+ },
177
+ "bf16": {
178
+ "enabled": "auto"
179
+ },
180
+ "zero_optimization": {
181
+ "stage": 3,
182
+ "offload_optimizer": {
183
+ "device": "none",
184
+ "pin_memory": true
185
+ },
186
+ "offload_param": {
187
+ "device": "none",
188
+ "pin_memory": true
189
+ },
190
+ "overlap_comm": false,
191
+ "contiguous_gradients": true,
192
+ "sub_group_size": 1000000000.0,
193
+ "reduce_bucket_size": "auto",
194
+ "zero_quantized_weights": false,
195
+ "zero_quantized_gradients": false,
196
+ "stage3_prefetch_bucket_size": "auto",
197
+ "stage3_param_persistence_threshold": "auto",
198
+ "stage3_max_live_parameters": 1000000000.0,
199
+ "stage3_max_reuse_distance": 1000000000.0,
200
+ "stage3_gather_16bit_weights_on_model_save": true
201
+ },
202
+ "gradient_accumulation_steps": "auto",
203
+ "gradient_clipping": "auto",
204
+ "steps_per_print": 2000,
205
+ "train_batch_size": "auto",
206
+ "train_micro_batch_size_per_gpu": "auto",
207
+ "wall_clock_breakdown": false
208
+ },
209
+ "label_smoothing_factor": 0.0,
210
+ "optim": "adamw_torch",
211
+ "optim_args": null,
212
+ "adafactor": false,
213
+ "group_by_length": false,
214
+ "length_column_name": "length",
215
+ "report_to": [
216
+ "tensorboard"
217
+ ],
218
+ "ddp_find_unused_parameters": null,
219
+ "ddp_bucket_cap_mb": null,
220
+ "ddp_broadcast_buffers": null,
221
+ "dataloader_pin_memory": true,
222
+ "dataloader_persistent_workers": false,
223
+ "skip_memory_metrics": true,
224
+ "use_legacy_prediction_loop": false,
225
+ "push_to_hub": false,
226
+ "resume_from_checkpoint": null,
227
+ "hub_model_id": null,
228
+ "hub_strategy": "every_save",
229
+ "hub_private_repo": null,
230
+ "hub_always_push": false,
231
+ "gradient_checkpointing": true,
232
+ "gradient_checkpointing_kwargs": null,
233
+ "include_inputs_for_metrics": false,
234
+ "include_for_metrics": [],
235
+ "eval_do_concat_batches": true,
236
+ "fp16_backend": "auto",
237
+ "push_to_hub_model_id": null,
238
+ "push_to_hub_organization": null,
239
+ "push_to_hub_token": null,
240
+ "mp_parameters": "",
241
+ "auto_find_batch_size": false,
242
+ "full_determinism": false,
243
+ "torchdynamo": null,
244
+ "ray_scope": "last",
245
+ "torch_compile": false,
246
+ "torch_compile_backend": null,
247
+ "torch_compile_mode": null,
248
+ "include_tokens_per_second": false,
249
+ "include_num_input_tokens_seen": false,
250
+ "neftune_noise_alpha": null,
251
+ "optim_target_modules": null,
252
+ "batch_eval_metrics": false,
253
+ "eval_on_start": false,
254
+ "use_liger_kernel": true,
255
+ "eval_use_gather_object": false,
256
+ "average_tokens_across_devices": false,
257
+ "sortish_sampler": false,
258
+ "predict_with_generate": false,
259
+ "generation_max_length": null,
260
+ "generation_num_beams": null,
261
+ "generation_config": null,
262
+ "check_model": true,
263
+ "acc_strategy": "token",
264
+ "train_dataloader_shuffle": true,
265
+ "max_epochs": null,
266
+ "aligner_lr": null,
267
+ "vit_lr": null,
268
+ "optimizer": null,
269
+ "metric_warmup_step": 0,
270
+ "fsdp_num": 1,
271
+ "acc_steps": 1,
272
+ "eval_use_evalscope": false,
273
+ "eval_datasets": [],
274
+ "eval_limit": null,
275
+ "eval_datasets_args": null,
276
+ "eval_generation_config": null,
277
+ "freeze_parameters": [],
278
+ "freeze_parameters_regex": null,
279
+ "freeze_parameters_ratio": 0.0,
280
+ "trainable_parameters": [],
281
+ "trainable_parameters_regex": null,
282
+ "freeze_llm": false,
283
+ "freeze_vit": true,
284
+ "freeze_aligner": true,
285
+ "target_modules": [
286
+ "all-linear"
287
+ ],
288
+ "target_regex": null,
289
+ "modules_to_save": [],
290
+ "lora_rank": 16,
291
+ "lora_alpha": 32,
292
+ "lora_dropout": 0.05,
293
+ "lora_bias": "none",
294
+ "lora_dtype": null,
295
+ "lorap_lr_ratio": null,
296
+ "use_rslora": false,
297
+ "use_dora": false,
298
+ "lora_ga_batch_size": 2,
299
+ "lora_ga_iters": 2,
300
+ "lora_ga_max_length": 1024,
301
+ "lora_ga_direction": "ArB2r",
302
+ "lora_ga_scale": "stable",
303
+ "lora_ga_stable_gamma": 16,
304
+ "init_weights": true,
305
+ "fourier_n_frequency": 2000,
306
+ "fourier_scaling": 300.0,
307
+ "boft_block_size": 4,
308
+ "boft_block_num": 0,
309
+ "boft_n_butterfly_factor": 1,
310
+ "boft_dropout": 0.0,
311
+ "vera_rank": 256,
312
+ "vera_projection_prng_key": 0,
313
+ "vera_dropout": 0.0,
314
+ "vera_d_initial": 0.1,
315
+ "adapter_act": "gelu",
316
+ "adapter_length": 128,
317
+ "use_galore": false,
318
+ "galore_target_modules": null,
319
+ "galore_rank": 128,
320
+ "galore_update_proj_gap": 50,
321
+ "galore_scale": 1.0,
322
+ "galore_proj_type": "std",
323
+ "galore_optim_per_parameter": false,
324
+ "galore_with_embedding": false,
325
+ "galore_quantization": false,
326
+ "galore_proj_quant": false,
327
+ "galore_proj_bits": 4,
328
+ "galore_proj_group_size": 256,
329
+ "galore_cos_threshold": 0.4,
330
+ "galore_gamma_proj": 2,
331
+ "galore_queue_size": 5,
332
+ "adalora_target_r": 8,
333
+ "adalora_init_r": 12,
334
+ "adalora_tinit": 0,
335
+ "adalora_tfinal": 0,
336
+ "adalora_deltaT": 1,
337
+ "adalora_beta1": 0.85,
338
+ "adalora_beta2": 0.85,
339
+ "adalora_orth_reg_weight": 0.5,
340
+ "llamapro_num_new_blocks": 4,
341
+ "llamapro_num_groups": null,
342
+ "lisa_activated_layers": 0,
343
+ "lisa_step_interval": 20,
344
+ "reft_layer_key": null,
345
+ "reft_layers": null,
346
+ "reft_rank": 4,
347
+ "reft_intervention_type": "LoreftIntervention",
348
+ "reft_args": null,
349
+ "swanlab_token": null,
350
+ "swanlab_project": null,
351
+ "swanlab_workspace": null,
352
+ "swanlab_exp_name": null,
353
+ "swanlab_mode": "cloud",
354
+ "add_version": true,
355
+ "resume_only_model": false,
356
+ "create_checkpoint_symlink": false,
357
+ "packing": true,
358
+ "lazy_tokenize": false,
359
+ "loss_type": null,
360
+ "metric": null,
361
+ "zero_hpz_partition_size": null,
362
+ "rank": 0,
363
+ "global_world_size": 4,
364
+ "local_world_size": 4,
365
+ "model_suffix": "1",
366
+ "model_info": "ModelInfo(model_type='qwen3', model_dir='/kaggle/input/qwen-3/transformers/32b-awq/1', torch_dtype=torch.float16, max_model_len=40960, quant_method='awq', quant_bits=4, rope_scaling=None, config=None, task_type='causal_lm', num_labels=None)",
367
+ "model_meta": "ModelMeta(model_type='qwen3', model_groups=[ModelGroup(models=[Model(ms_model_id='Qwen/Qwen3-0.6B-Base', hf_model_id='Qwen/Qwen3-0.6B-Base', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-1.7B-Base', hf_model_id='Qwen/Qwen3-1.7B-Base', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-4B-Base', hf_model_id='Qwen/Qwen3-4B-Base', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-8B-Base', hf_model_id='Qwen/Qwen3-8B-Base', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-14B-Base', hf_model_id='Qwen/Qwen3-14B-Base', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-32B-Base', hf_model_id='Qwen/Qwen3-32B-Base', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-0.6B', hf_model_id='Qwen/Qwen3-0.6B', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-1.7B', hf_model_id='Qwen/Qwen3-1.7B', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-4B', hf_model_id='Qwen/Qwen3-4B', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-8B', hf_model_id='Qwen/Qwen3-8B', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-14B', hf_model_id='Qwen/Qwen3-14B', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-32B', hf_model_id='Qwen/Qwen3-32B', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-0.6B-FP8', hf_model_id='Qwen/Qwen3-0.6B-FP8', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-1.7B-FP8', hf_model_id='Qwen/Qwen3-1.7B-FP8', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-4B-FP8', hf_model_id='Qwen/Qwen3-4B-FP8', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-8B-FP8', hf_model_id='Qwen/Qwen3-8B-FP8', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-14B-FP8', hf_model_id='Qwen/Qwen3-14B-FP8', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-32B-FP8', hf_model_id='Qwen/Qwen3-32B-FP8', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-4B-AWQ', hf_model_id='Qwen/Qwen3-4B-AWQ', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-8B-AWQ', hf_model_id='Qwen/Qwen3-8B-AWQ', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-14B-AWQ', hf_model_id='Qwen/Qwen3-14B-AWQ', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-32B-AWQ', hf_model_id='Qwen/Qwen3-32B-AWQ', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='swift/Qwen3-32B-AWQ', hf_model_id=None, model_path=None, ms_revision=None, hf_revision=None)], ignore_patterns=None, requires=None, tags=[])], template='qwen3', get_function=<function get_model_tokenizer_with_flash_attn at 0x7f92b0440400>, model_arch='llama', architectures=['Qwen3ForCausalLM'], additional_saved_files=[], torch_dtype=None, is_multimodal=False, is_reward=False, task_type=None, ignore_patterns=None, requires=['transformers>=4.51'], tags=[])",
368
+ "model_dir": "/kaggle/input/qwen-3/transformers/32b-awq/1",
369
+ "hub": "<class 'swift.hub.hub.MSHub'>",
370
+ "evaluation_strategy": "steps",
371
+ "training_args": "Seq2SeqTrainingArguments(output_dir='/kaggle/tmp/save_checkpoint/v0-20250524-093253', overwrite_output_dir=False, do_train=False, do_eval=True, do_predict=False, eval_strategy=<IntervalStrategy.STEPS: 'steps'>, prediction_loss_only=False, per_device_train_batch_size=1, per_device_eval_batch_size=1, per_gpu_train_batch_size=None, per_gpu_eval_batch_size=None, gradient_accumulation_steps=8, eval_accumulation_steps=None, eval_delay=0, torch_empty_cache_steps=None, learning_rate=1e-05, weight_decay=0.1, adam_beta1=0.9, adam_beta2=0.95, adam_epsilon=1e-08, max_grad_norm=1.0, num_train_epochs=3.0, max_steps=145, lr_scheduler_type=<SchedulerType.COSINE: 'cosine'>, lr_scheduler_kwargs=None, warmup_ratio=0.05, warmup_steps=0, log_level='passive', log_level_replica='warning', log_on_each_node=True, logging_dir='/kaggle/tmp/save_checkpoint/v0-20250524-093253/runs', logging_strategy=<IntervalStrategy.STEPS: 'steps'>, logging_first_step=True, logging_steps=5, logging_nan_inf_filter=True, save_strategy=<SaveStrategy.STEPS: 'steps'>, save_steps=20000, save_total_limit=4, save_safetensors=True, save_on_each_node=False, save_only_model=False, restore_callback_states_from_checkpoint=False, no_cuda=False, use_cpu=False, use_mps_device=False, seed=42, data_seed=42, jit_mode_eval=False, use_ipex=False, bf16=False, fp16=True, fp16_opt_level='O1', half_precision_backend='auto', bf16_full_eval=False, fp16_full_eval=False, tf32=None, local_rank=0, ddp_backend=None, tpu_num_cores=None, tpu_metrics_debug=False, debug=[], dataloader_drop_last=False, eval_steps=20000, dataloader_num_workers=8, dataloader_prefetch_factor=10, past_index=-1, run_name='/kaggle/tmp/save_checkpoint/v0-20250524-093253', disable_tqdm=False, remove_unused_columns=False, label_names=None, load_best_model_at_end=False, metric_for_best_model='loss', greater_is_better=False, ignore_data_skip=False, fsdp=[], fsdp_min_num_params=0, fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, tp_size=0, fsdp_transformer_layer_cls_to_wrap=None, accelerator_config=AcceleratorConfig(split_batches=False, dispatch_batches=False, even_batches=True, use_seedable_sampler=True, non_blocking=False, gradient_accumulation_kwargs=None, use_configured_state=False), deepspeed={'fp16': {'enabled': 'auto', 'loss_scale': 0, 'loss_scale_window': 1000, 'initial_scale_power': 16, 'hysteresis': 2, 'min_loss_scale': 1}, 'bf16': {'enabled': 'auto'}, 'zero_optimization': {'stage': 3, 'offload_optimizer': {'device': 'none', 'pin_memory': True}, 'offload_param': {'device': 'none', 'pin_memory': True}, 'overlap_comm': False, 'contiguous_gradients': True, 'sub_group_size': 1000000000.0, 'reduce_bucket_size': 'auto', 'zero_quantized_weights': False, 'zero_quantized_gradients': False, 'stage3_prefetch_bucket_size': 'auto', 'stage3_param_persistence_threshold': 'auto', 'stage3_max_live_parameters': 1000000000.0, 'stage3_max_reuse_distance': 1000000000.0, 'stage3_gather_16bit_weights_on_model_save': True}, 'gradient_accumulation_steps': 'auto', 'gradient_clipping': 'auto', 'steps_per_print': 2000, 'train_batch_size': 'auto', 'train_micro_batch_size_per_gpu': 'auto', 'wall_clock_breakdown': False}, label_smoothing_factor=0.0, optim=<OptimizerNames.ADAMW_TORCH: 'adamw_torch'>, optim_args=None, adafactor=False, group_by_length=False, length_column_name='length', report_to=['tensorboard'], ddp_find_unused_parameters=None, ddp_bucket_cap_mb=None, ddp_broadcast_buffers=None, dataloader_pin_memory=True, dataloader_persistent_workers=False, skip_memory_metrics=True, use_legacy_prediction_loop=False, push_to_hub=False, resume_from_checkpoint=None, hub_model_id=None, hub_strategy=<HubStrategy.EVERY_SAVE: 'every_save'>, hub_token=None, hub_private_repo=None, hub_always_push=False, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, include_inputs_for_metrics=False, include_for_metrics=[], eval_do_concat_batches=True, fp16_backend='auto', push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=None, mp_parameters='', auto_find_batch_size=False, full_determinism=False, torchdynamo=None, ray_scope='last', ddp_timeout=1800, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, include_tokens_per_second=None, include_num_input_tokens_seen=None, neftune_noise_alpha=None, optim_target_modules=None, batch_eval_metrics=False, eval_on_start=False, use_liger_kernel=True, eval_use_gather_object=False, average_tokens_across_devices=None, sortish_sampler=False, predict_with_generate=False, generation_max_length=None, generation_num_beams=None, generation_config=None, check_model=True, acc_strategy='token', train_dataloader_shuffle=True, max_epochs=None, aligner_lr=None, vit_lr=None, optimizer=None, metric_warmup_step=0, fsdp_num=1, acc_steps=1, eval_use_evalscope=False, eval_datasets=[], eval_limit=None, eval_datasets_args=None, eval_generation_config=None, train_type='lora', local_repo_path=None, galore_config=None)"
372
+ }
v0-20250524-093253/checkpoint-145/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /kaggle/input/qwen-3/transformers/32b-awq/1
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
v0-20250524-093253/checkpoint-145/adapter_config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/kaggle/input/qwen-3/transformers/32b-awq/1",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 32,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0.05,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": [],
21
+ "peft_type": "LORA",
22
+ "r": 16,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": [
26
+ "q_proj",
27
+ "down_proj",
28
+ "k_proj",
29
+ "gate_proj",
30
+ "v_proj",
31
+ "o_proj",
32
+ "up_proj"
33
+ ],
34
+ "task_type": "CAUSAL_LM",
35
+ "use_dora": false,
36
+ "use_rslora": false
37
+ }
v0-20250524-093253/checkpoint-145/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4d667887bd1ef5350769ecea5d69b898eeb814de0e272766853b90685747875e
3
+ size 268556160
v0-20250524-093253/checkpoint-145/additional_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"lora_dtype": null, "lorap_lr_ratio": null, "lorap_emb_lr": 1e-06}
v0-20250524-093253/checkpoint-145/args.json ADDED
@@ -0,0 +1,372 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model": "/kaggle/input/qwen-3/transformers/32b-awq/1",
3
+ "model_type": "qwen3",
4
+ "model_revision": null,
5
+ "task_type": "causal_lm",
6
+ "torch_dtype": "float16",
7
+ "attn_impl": "flash_attn",
8
+ "num_labels": null,
9
+ "problem_type": null,
10
+ "rope_scaling": null,
11
+ "device_map": null,
12
+ "max_memory": {},
13
+ "local_repo_path": null,
14
+ "init_strategy": null,
15
+ "template": "qwen3",
16
+ "system": null,
17
+ "max_length": 2560,
18
+ "truncation_strategy": "delete",
19
+ "max_pixels": null,
20
+ "agent_template": null,
21
+ "norm_bbox": null,
22
+ "use_chat_template": true,
23
+ "padding_free": false,
24
+ "padding_side": "right",
25
+ "loss_scale": "default",
26
+ "sequence_parallel_size": 1,
27
+ "response_prefix": null,
28
+ "template_backend": "swift",
29
+ "dataset": [
30
+ "combined_messages.jsonl"
31
+ ],
32
+ "val_dataset": [],
33
+ "split_dataset_ratio": 0.0,
34
+ "data_seed": 42,
35
+ "dataset_num_proc": 8,
36
+ "load_from_cache_file": true,
37
+ "dataset_shuffle": true,
38
+ "val_dataset_shuffle": false,
39
+ "streaming": false,
40
+ "interleave_prob": null,
41
+ "stopping_strategy": "first_exhausted",
42
+ "shuffle_buffer_size": 1000,
43
+ "download_mode": "reuse_dataset_if_exists",
44
+ "columns": {},
45
+ "strict": false,
46
+ "remove_unused_columns": true,
47
+ "model_name": [
48
+ null,
49
+ null
50
+ ],
51
+ "model_author": [
52
+ null,
53
+ null
54
+ ],
55
+ "custom_dataset_info": [],
56
+ "quant_method": null,
57
+ "quant_bits": null,
58
+ "hqq_axis": null,
59
+ "bnb_4bit_compute_dtype": "float32",
60
+ "bnb_4bit_quant_type": "nf4",
61
+ "bnb_4bit_use_double_quant": true,
62
+ "bnb_4bit_quant_storage": null,
63
+ "max_new_tokens": 64,
64
+ "temperature": 0.0,
65
+ "top_k": null,
66
+ "top_p": null,
67
+ "repetition_penalty": null,
68
+ "num_beams": 1,
69
+ "stream": false,
70
+ "stop_words": [],
71
+ "logprobs": false,
72
+ "top_logprobs": null,
73
+ "ckpt_dir": null,
74
+ "lora_modules": [],
75
+ "tuner_backend": "peft",
76
+ "train_type": "lora",
77
+ "adapters": [],
78
+ "external_plugins": [],
79
+ "seed": 42,
80
+ "model_kwargs": {},
81
+ "load_args": false,
82
+ "load_data_args": false,
83
+ "use_hf": false,
84
+ "hub_token": null,
85
+ "custom_register_path": [],
86
+ "ddp_timeout": 1800,
87
+ "ddp_backend": null,
88
+ "ignore_args_error": false,
89
+ "use_swift_lora": false,
90
+ "output_dir": "/kaggle/tmp/save_checkpoint/v0-20250524-093253",
91
+ "overwrite_output_dir": false,
92
+ "do_train": false,
93
+ "do_eval": false,
94
+ "do_predict": false,
95
+ "eval_strategy": "steps",
96
+ "prediction_loss_only": false,
97
+ "per_device_train_batch_size": 1,
98
+ "per_device_eval_batch_size": 1,
99
+ "per_gpu_train_batch_size": null,
100
+ "per_gpu_eval_batch_size": null,
101
+ "gradient_accumulation_steps": 8,
102
+ "eval_accumulation_steps": null,
103
+ "eval_delay": 0,
104
+ "torch_empty_cache_steps": null,
105
+ "learning_rate": 1e-05,
106
+ "weight_decay": 0.1,
107
+ "adam_beta1": 0.9,
108
+ "adam_beta2": 0.95,
109
+ "adam_epsilon": 1e-08,
110
+ "max_grad_norm": 1.0,
111
+ "num_train_epochs": 3.0,
112
+ "max_steps": 145,
113
+ "lr_scheduler_type": "cosine",
114
+ "lr_scheduler_kwargs": null,
115
+ "warmup_ratio": 0.05,
116
+ "warmup_steps": 0,
117
+ "log_level": "passive",
118
+ "log_level_replica": "warning",
119
+ "log_on_each_node": true,
120
+ "logging_dir": "/kaggle/tmp/save_checkpoint/v0-20250524-093253/runs",
121
+ "logging_strategy": "steps",
122
+ "logging_first_step": true,
123
+ "logging_steps": 5,
124
+ "logging_nan_inf_filter": true,
125
+ "save_strategy": "steps",
126
+ "save_steps": 20000.0,
127
+ "save_total_limit": 4,
128
+ "save_safetensors": true,
129
+ "save_on_each_node": false,
130
+ "save_only_model": false,
131
+ "restore_callback_states_from_checkpoint": false,
132
+ "no_cuda": false,
133
+ "use_cpu": false,
134
+ "use_mps_device": false,
135
+ "jit_mode_eval": false,
136
+ "use_ipex": false,
137
+ "bf16": false,
138
+ "fp16": true,
139
+ "fp16_opt_level": "O1",
140
+ "half_precision_backend": "auto",
141
+ "bf16_full_eval": false,
142
+ "fp16_full_eval": false,
143
+ "tf32": null,
144
+ "local_rank": 0,
145
+ "tpu_num_cores": null,
146
+ "tpu_metrics_debug": false,
147
+ "debug": null,
148
+ "dataloader_drop_last": false,
149
+ "eval_steps": 20000.0,
150
+ "dataloader_num_workers": 8,
151
+ "dataloader_prefetch_factor": null,
152
+ "past_index": -1,
153
+ "run_name": "/kaggle/tmp/save_checkpoint/v0-20250524-093253",
154
+ "disable_tqdm": null,
155
+ "label_names": null,
156
+ "load_best_model_at_end": false,
157
+ "metric_for_best_model": "loss",
158
+ "greater_is_better": false,
159
+ "ignore_data_skip": false,
160
+ "fsdp": "",
161
+ "fsdp_min_num_params": 0,
162
+ "fsdp_config": null,
163
+ "tp_size": 0,
164
+ "fsdp_transformer_layer_cls_to_wrap": null,
165
+ "accelerator_config": {
166
+ "dispatch_batches": false
167
+ },
168
+ "deepspeed": {
169
+ "fp16": {
170
+ "enabled": "auto",
171
+ "loss_scale": 0,
172
+ "loss_scale_window": 1000,
173
+ "initial_scale_power": 16,
174
+ "hysteresis": 2,
175
+ "min_loss_scale": 1
176
+ },
177
+ "bf16": {
178
+ "enabled": "auto"
179
+ },
180
+ "zero_optimization": {
181
+ "stage": 3,
182
+ "offload_optimizer": {
183
+ "device": "none",
184
+ "pin_memory": true
185
+ },
186
+ "offload_param": {
187
+ "device": "none",
188
+ "pin_memory": true
189
+ },
190
+ "overlap_comm": false,
191
+ "contiguous_gradients": true,
192
+ "sub_group_size": 1000000000.0,
193
+ "reduce_bucket_size": "auto",
194
+ "zero_quantized_weights": false,
195
+ "zero_quantized_gradients": false,
196
+ "stage3_prefetch_bucket_size": "auto",
197
+ "stage3_param_persistence_threshold": "auto",
198
+ "stage3_max_live_parameters": 1000000000.0,
199
+ "stage3_max_reuse_distance": 1000000000.0,
200
+ "stage3_gather_16bit_weights_on_model_save": true
201
+ },
202
+ "gradient_accumulation_steps": "auto",
203
+ "gradient_clipping": "auto",
204
+ "steps_per_print": 2000,
205
+ "train_batch_size": "auto",
206
+ "train_micro_batch_size_per_gpu": "auto",
207
+ "wall_clock_breakdown": false
208
+ },
209
+ "label_smoothing_factor": 0.0,
210
+ "optim": "adamw_torch",
211
+ "optim_args": null,
212
+ "adafactor": false,
213
+ "group_by_length": false,
214
+ "length_column_name": "length",
215
+ "report_to": [
216
+ "tensorboard"
217
+ ],
218
+ "ddp_find_unused_parameters": null,
219
+ "ddp_bucket_cap_mb": null,
220
+ "ddp_broadcast_buffers": null,
221
+ "dataloader_pin_memory": true,
222
+ "dataloader_persistent_workers": false,
223
+ "skip_memory_metrics": true,
224
+ "use_legacy_prediction_loop": false,
225
+ "push_to_hub": false,
226
+ "resume_from_checkpoint": null,
227
+ "hub_model_id": null,
228
+ "hub_strategy": "every_save",
229
+ "hub_private_repo": null,
230
+ "hub_always_push": false,
231
+ "gradient_checkpointing": true,
232
+ "gradient_checkpointing_kwargs": null,
233
+ "include_inputs_for_metrics": false,
234
+ "include_for_metrics": [],
235
+ "eval_do_concat_batches": true,
236
+ "fp16_backend": "auto",
237
+ "push_to_hub_model_id": null,
238
+ "push_to_hub_organization": null,
239
+ "push_to_hub_token": null,
240
+ "mp_parameters": "",
241
+ "auto_find_batch_size": false,
242
+ "full_determinism": false,
243
+ "torchdynamo": null,
244
+ "ray_scope": "last",
245
+ "torch_compile": false,
246
+ "torch_compile_backend": null,
247
+ "torch_compile_mode": null,
248
+ "include_tokens_per_second": false,
249
+ "include_num_input_tokens_seen": false,
250
+ "neftune_noise_alpha": null,
251
+ "optim_target_modules": null,
252
+ "batch_eval_metrics": false,
253
+ "eval_on_start": false,
254
+ "use_liger_kernel": true,
255
+ "eval_use_gather_object": false,
256
+ "average_tokens_across_devices": false,
257
+ "sortish_sampler": false,
258
+ "predict_with_generate": false,
259
+ "generation_max_length": null,
260
+ "generation_num_beams": null,
261
+ "generation_config": null,
262
+ "check_model": true,
263
+ "acc_strategy": "token",
264
+ "train_dataloader_shuffle": true,
265
+ "max_epochs": null,
266
+ "aligner_lr": null,
267
+ "vit_lr": null,
268
+ "optimizer": null,
269
+ "metric_warmup_step": 0,
270
+ "fsdp_num": 1,
271
+ "acc_steps": 1,
272
+ "eval_use_evalscope": false,
273
+ "eval_datasets": [],
274
+ "eval_limit": null,
275
+ "eval_datasets_args": null,
276
+ "eval_generation_config": null,
277
+ "freeze_parameters": [],
278
+ "freeze_parameters_regex": null,
279
+ "freeze_parameters_ratio": 0.0,
280
+ "trainable_parameters": [],
281
+ "trainable_parameters_regex": null,
282
+ "freeze_llm": false,
283
+ "freeze_vit": true,
284
+ "freeze_aligner": true,
285
+ "target_modules": [
286
+ "all-linear"
287
+ ],
288
+ "target_regex": null,
289
+ "modules_to_save": [],
290
+ "lora_rank": 16,
291
+ "lora_alpha": 32,
292
+ "lora_dropout": 0.05,
293
+ "lora_bias": "none",
294
+ "lora_dtype": null,
295
+ "lorap_lr_ratio": null,
296
+ "use_rslora": false,
297
+ "use_dora": false,
298
+ "lora_ga_batch_size": 2,
299
+ "lora_ga_iters": 2,
300
+ "lora_ga_max_length": 1024,
301
+ "lora_ga_direction": "ArB2r",
302
+ "lora_ga_scale": "stable",
303
+ "lora_ga_stable_gamma": 16,
304
+ "init_weights": true,
305
+ "fourier_n_frequency": 2000,
306
+ "fourier_scaling": 300.0,
307
+ "boft_block_size": 4,
308
+ "boft_block_num": 0,
309
+ "boft_n_butterfly_factor": 1,
310
+ "boft_dropout": 0.0,
311
+ "vera_rank": 256,
312
+ "vera_projection_prng_key": 0,
313
+ "vera_dropout": 0.0,
314
+ "vera_d_initial": 0.1,
315
+ "adapter_act": "gelu",
316
+ "adapter_length": 128,
317
+ "use_galore": false,
318
+ "galore_target_modules": null,
319
+ "galore_rank": 128,
320
+ "galore_update_proj_gap": 50,
321
+ "galore_scale": 1.0,
322
+ "galore_proj_type": "std",
323
+ "galore_optim_per_parameter": false,
324
+ "galore_with_embedding": false,
325
+ "galore_quantization": false,
326
+ "galore_proj_quant": false,
327
+ "galore_proj_bits": 4,
328
+ "galore_proj_group_size": 256,
329
+ "galore_cos_threshold": 0.4,
330
+ "galore_gamma_proj": 2,
331
+ "galore_queue_size": 5,
332
+ "adalora_target_r": 8,
333
+ "adalora_init_r": 12,
334
+ "adalora_tinit": 0,
335
+ "adalora_tfinal": 0,
336
+ "adalora_deltaT": 1,
337
+ "adalora_beta1": 0.85,
338
+ "adalora_beta2": 0.85,
339
+ "adalora_orth_reg_weight": 0.5,
340
+ "llamapro_num_new_blocks": 4,
341
+ "llamapro_num_groups": null,
342
+ "lisa_activated_layers": 0,
343
+ "lisa_step_interval": 20,
344
+ "reft_layer_key": null,
345
+ "reft_layers": null,
346
+ "reft_rank": 4,
347
+ "reft_intervention_type": "LoreftIntervention",
348
+ "reft_args": null,
349
+ "swanlab_token": null,
350
+ "swanlab_project": null,
351
+ "swanlab_workspace": null,
352
+ "swanlab_exp_name": null,
353
+ "swanlab_mode": "cloud",
354
+ "add_version": true,
355
+ "resume_only_model": false,
356
+ "create_checkpoint_symlink": false,
357
+ "packing": true,
358
+ "lazy_tokenize": false,
359
+ "loss_type": null,
360
+ "metric": null,
361
+ "zero_hpz_partition_size": null,
362
+ "rank": 0,
363
+ "global_world_size": 4,
364
+ "local_world_size": 4,
365
+ "model_suffix": "1",
366
+ "model_info": "ModelInfo(model_type='qwen3', model_dir='/kaggle/input/qwen-3/transformers/32b-awq/1', torch_dtype=torch.float16, max_model_len=40960, quant_method='awq', quant_bits=4, rope_scaling=None, config=None, task_type='causal_lm', num_labels=None)",
367
+ "model_meta": "ModelMeta(model_type='qwen3', model_groups=[ModelGroup(models=[Model(ms_model_id='Qwen/Qwen3-0.6B-Base', hf_model_id='Qwen/Qwen3-0.6B-Base', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-1.7B-Base', hf_model_id='Qwen/Qwen3-1.7B-Base', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-4B-Base', hf_model_id='Qwen/Qwen3-4B-Base', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-8B-Base', hf_model_id='Qwen/Qwen3-8B-Base', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-14B-Base', hf_model_id='Qwen/Qwen3-14B-Base', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-32B-Base', hf_model_id='Qwen/Qwen3-32B-Base', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-0.6B', hf_model_id='Qwen/Qwen3-0.6B', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-1.7B', hf_model_id='Qwen/Qwen3-1.7B', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-4B', hf_model_id='Qwen/Qwen3-4B', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-8B', hf_model_id='Qwen/Qwen3-8B', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-14B', hf_model_id='Qwen/Qwen3-14B', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-32B', hf_model_id='Qwen/Qwen3-32B', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-0.6B-FP8', hf_model_id='Qwen/Qwen3-0.6B-FP8', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-1.7B-FP8', hf_model_id='Qwen/Qwen3-1.7B-FP8', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-4B-FP8', hf_model_id='Qwen/Qwen3-4B-FP8', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-8B-FP8', hf_model_id='Qwen/Qwen3-8B-FP8', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-14B-FP8', hf_model_id='Qwen/Qwen3-14B-FP8', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-32B-FP8', hf_model_id='Qwen/Qwen3-32B-FP8', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-4B-AWQ', hf_model_id='Qwen/Qwen3-4B-AWQ', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-8B-AWQ', hf_model_id='Qwen/Qwen3-8B-AWQ', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-14B-AWQ', hf_model_id='Qwen/Qwen3-14B-AWQ', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-32B-AWQ', hf_model_id='Qwen/Qwen3-32B-AWQ', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='swift/Qwen3-32B-AWQ', hf_model_id=None, model_path=None, ms_revision=None, hf_revision=None)], ignore_patterns=None, requires=None, tags=[])], template='qwen3', get_function=<function get_model_tokenizer_with_flash_attn at 0x7f92b0440400>, model_arch='llama', architectures=['Qwen3ForCausalLM'], additional_saved_files=[], torch_dtype=None, is_multimodal=False, is_reward=False, task_type=None, ignore_patterns=None, requires=['transformers>=4.51'], tags=[])",
368
+ "model_dir": "/kaggle/input/qwen-3/transformers/32b-awq/1",
369
+ "hub": "<class 'swift.hub.hub.MSHub'>",
370
+ "evaluation_strategy": "steps",
371
+ "training_args": "Seq2SeqTrainingArguments(output_dir='/kaggle/tmp/save_checkpoint/v0-20250524-093253', overwrite_output_dir=False, do_train=False, do_eval=True, do_predict=False, eval_strategy=<IntervalStrategy.STEPS: 'steps'>, prediction_loss_only=False, per_device_train_batch_size=1, per_device_eval_batch_size=1, per_gpu_train_batch_size=None, per_gpu_eval_batch_size=None, gradient_accumulation_steps=8, eval_accumulation_steps=None, eval_delay=0, torch_empty_cache_steps=None, learning_rate=1e-05, weight_decay=0.1, adam_beta1=0.9, adam_beta2=0.95, adam_epsilon=1e-08, max_grad_norm=1.0, num_train_epochs=3.0, max_steps=145, lr_scheduler_type=<SchedulerType.COSINE: 'cosine'>, lr_scheduler_kwargs=None, warmup_ratio=0.05, warmup_steps=0, log_level='passive', log_level_replica='warning', log_on_each_node=True, logging_dir='/kaggle/tmp/save_checkpoint/v0-20250524-093253/runs', logging_strategy=<IntervalStrategy.STEPS: 'steps'>, logging_first_step=True, logging_steps=5, logging_nan_inf_filter=True, save_strategy=<SaveStrategy.STEPS: 'steps'>, save_steps=20000, save_total_limit=4, save_safetensors=True, save_on_each_node=False, save_only_model=False, restore_callback_states_from_checkpoint=False, no_cuda=False, use_cpu=False, use_mps_device=False, seed=42, data_seed=42, jit_mode_eval=False, use_ipex=False, bf16=False, fp16=True, fp16_opt_level='O1', half_precision_backend='auto', bf16_full_eval=False, fp16_full_eval=False, tf32=None, local_rank=0, ddp_backend=None, tpu_num_cores=None, tpu_metrics_debug=False, debug=[], dataloader_drop_last=False, eval_steps=20000, dataloader_num_workers=8, dataloader_prefetch_factor=10, past_index=-1, run_name='/kaggle/tmp/save_checkpoint/v0-20250524-093253', disable_tqdm=False, remove_unused_columns=False, label_names=None, load_best_model_at_end=False, metric_for_best_model='loss', greater_is_better=False, ignore_data_skip=False, fsdp=[], fsdp_min_num_params=0, fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, tp_size=0, fsdp_transformer_layer_cls_to_wrap=None, accelerator_config=AcceleratorConfig(split_batches=False, dispatch_batches=False, even_batches=True, use_seedable_sampler=True, non_blocking=False, gradient_accumulation_kwargs=None, use_configured_state=False), deepspeed={'fp16': {'enabled': 'auto', 'loss_scale': 0, 'loss_scale_window': 1000, 'initial_scale_power': 16, 'hysteresis': 2, 'min_loss_scale': 1}, 'bf16': {'enabled': 'auto'}, 'zero_optimization': {'stage': 3, 'offload_optimizer': {'device': 'none', 'pin_memory': True}, 'offload_param': {'device': 'none', 'pin_memory': True}, 'overlap_comm': False, 'contiguous_gradients': True, 'sub_group_size': 1000000000.0, 'reduce_bucket_size': 'auto', 'zero_quantized_weights': False, 'zero_quantized_gradients': False, 'stage3_prefetch_bucket_size': 'auto', 'stage3_param_persistence_threshold': 'auto', 'stage3_max_live_parameters': 1000000000.0, 'stage3_max_reuse_distance': 1000000000.0, 'stage3_gather_16bit_weights_on_model_save': True}, 'gradient_accumulation_steps': 'auto', 'gradient_clipping': 'auto', 'steps_per_print': 2000, 'train_batch_size': 'auto', 'train_micro_batch_size_per_gpu': 'auto', 'wall_clock_breakdown': False}, label_smoothing_factor=0.0, optim=<OptimizerNames.ADAMW_TORCH: 'adamw_torch'>, optim_args=None, adafactor=False, group_by_length=False, length_column_name='length', report_to=['tensorboard'], ddp_find_unused_parameters=None, ddp_bucket_cap_mb=None, ddp_broadcast_buffers=None, dataloader_pin_memory=True, dataloader_persistent_workers=False, skip_memory_metrics=True, use_legacy_prediction_loop=False, push_to_hub=False, resume_from_checkpoint=None, hub_model_id=None, hub_strategy=<HubStrategy.EVERY_SAVE: 'every_save'>, hub_token=None, hub_private_repo=None, hub_always_push=False, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, include_inputs_for_metrics=False, include_for_metrics=[], eval_do_concat_batches=True, fp16_backend='auto', push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=None, mp_parameters='', auto_find_batch_size=False, full_determinism=False, torchdynamo=None, ray_scope='last', ddp_timeout=1800, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, include_tokens_per_second=None, include_num_input_tokens_seen=None, neftune_noise_alpha=None, optim_target_modules=None, batch_eval_metrics=False, eval_on_start=False, use_liger_kernel=True, eval_use_gather_object=False, average_tokens_across_devices=None, sortish_sampler=False, predict_with_generate=False, generation_max_length=None, generation_num_beams=None, generation_config=None, check_model=True, acc_strategy='token', train_dataloader_shuffle=True, max_epochs=None, aligner_lr=None, vit_lr=None, optimizer=None, metric_warmup_step=0, fsdp_num=1, acc_steps=1, eval_use_evalscope=False, eval_datasets=[], eval_limit=None, eval_datasets_args=None, eval_generation_config=None, train_type='lora', local_repo_path=None, galore_config=None)"
372
+ }
v0-20250524-093253/checkpoint-145/global_step145/zero_pp_rank_0_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df7368b9b63940b1c31ac6ec88076d9d4556576b90b8b5081ed3f789011a730a
3
+ size 16214111450
v0-20250524-093253/checkpoint-145/global_step145/zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a3be95ca97f1ed9fb9e223ce21963a6ddbe5dcf3138ae2d957d8288ccfcb5d00
3
+ size 402657416
v0-20250524-093253/checkpoint-145/global_step145/zero_pp_rank_1_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6f8db313c02f7a01eacaf7da50df158a0a0835d46810e94100ffc962d683a80c
3
+ size 16214111450
v0-20250524-093253/checkpoint-145/global_step145/zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e20e3411a66cb171b5048dc601980852d65cd8ccfff37d0adc76343e341cc41d
3
+ size 402657416
v0-20250524-093253/checkpoint-145/global_step145/zero_pp_rank_2_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a1b97b0c9ecf0856451a7c73979fc5773d0b525682f941e778f40f6a0f9aec53
3
+ size 16214111450
v0-20250524-093253/checkpoint-145/global_step145/zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf9b3c59b4e2e21459e962c22a9da3d0909bf28e3c4bdb87257c7d2a9d1b96df
3
+ size 402657416
v0-20250524-093253/checkpoint-145/global_step145/zero_pp_rank_3_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b7dcf5db397e81d50ffd64f332ca7029b99a00ba92a2b60ee2f3f5b01f6a54b5
3
+ size 16214111450
v0-20250524-093253/checkpoint-145/global_step145/zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:60d3580add2d1047fe12b465726028e60f0b7930af1aef139aa9cdb5d4f367fc
3
+ size 402657416
v0-20250524-093253/checkpoint-145/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step145
v0-20250524-093253/checkpoint-145/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:59629676b9fb61f84625eaccbc580d703440606ec99ce8c81217e0a69ce58c63
3
+ size 15024
v0-20250524-093253/checkpoint-145/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3ff352cc33b88b63ace6fe743d2695593b8b0694e0877f955d142b1b1d85e4ae
3
+ size 15024
v0-20250524-093253/checkpoint-145/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6ba10da131c8866069ae747365b003e7f88e7d802c04d773de27b61493d3b8f9
3
+ size 15024
v0-20250524-093253/checkpoint-145/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:813dcf56f85c535a2d43a1d087a3dcf6001bb7f0bdb51b89e93babd7645cffd0
3
+ size 15024
v0-20250524-093253/checkpoint-145/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db4352bef0be33b8a1b28d2977a44444244574960dca9ceea862d2756caa5951
3
+ size 1064
v0-20250524-093253/checkpoint-145/trainer_state.json ADDED
@@ -0,0 +1,304 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 1.3923444976076556,
6
+ "eval_steps": 20000,
7
+ "global_step": 145,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.009569377990430622,
14
+ "grad_norm": 0.2706571612243278,
15
+ "learning_rate": 1.25e-06,
16
+ "loss": 1.282003402709961,
17
+ "memory(GiB)": 21.77,
18
+ "step": 1,
19
+ "train_speed(iter/s)": 0.001564
20
+ },
21
+ {
22
+ "epoch": 0.04784688995215311,
23
+ "grad_norm": 0.2461135829320829,
24
+ "learning_rate": 6.25e-06,
25
+ "loss": 1.2337775230407715,
26
+ "memory(GiB)": 21.78,
27
+ "step": 5,
28
+ "train_speed(iter/s)": 0.004383
29
+ },
30
+ {
31
+ "epoch": 0.09569377990430622,
32
+ "grad_norm": 0.2702148949856562,
33
+ "learning_rate": 9.998685442495921e-06,
34
+ "loss": 1.2982383728027345,
35
+ "memory(GiB)": 21.78,
36
+ "step": 10,
37
+ "train_speed(iter/s)": 0.005653
38
+ },
39
+ {
40
+ "epoch": 0.14354066985645933,
41
+ "grad_norm": 0.3321986630658551,
42
+ "learning_rate": 9.96717061090737e-06,
43
+ "loss": 1.2901645660400392,
44
+ "memory(GiB)": 21.78,
45
+ "step": 15,
46
+ "train_speed(iter/s)": 0.006254
47
+ },
48
+ {
49
+ "epoch": 0.19138755980861244,
50
+ "grad_norm": 0.3174438634553813,
51
+ "learning_rate": 9.893893600021112e-06,
52
+ "loss": 1.2279772758483887,
53
+ "memory(GiB)": 21.78,
54
+ "step": 20,
55
+ "train_speed(iter/s)": 0.006605
56
+ },
57
+ {
58
+ "epoch": 0.23923444976076555,
59
+ "grad_norm": 0.27053459186104295,
60
+ "learning_rate": 9.744540883654348e-06,
61
+ "loss": 1.1513174057006836,
62
+ "memory(GiB)": 21.78,
63
+ "step": 25,
64
+ "train_speed(iter/s)": 0.006842
65
+ },
66
+ {
67
+ "epoch": 0.28708133971291866,
68
+ "grad_norm": 0.25081558070186083,
69
+ "learning_rate": 9.532884015793432e-06,
70
+ "loss": 1.1070896148681642,
71
+ "memory(GiB)": 21.78,
72
+ "step": 30,
73
+ "train_speed(iter/s)": 0.006999
74
+ },
75
+ {
76
+ "epoch": 0.3349282296650718,
77
+ "grad_norm": 0.23218401740452566,
78
+ "learning_rate": 9.261702422706014e-06,
79
+ "loss": 1.0501691818237304,
80
+ "memory(GiB)": 21.78,
81
+ "step": 35,
82
+ "train_speed(iter/s)": 0.007123
83
+ },
84
+ {
85
+ "epoch": 0.3827751196172249,
86
+ "grad_norm": 0.2823006211224807,
87
+ "learning_rate": 8.934557194805787e-06,
88
+ "loss": 1.0827344894409179,
89
+ "memory(GiB)": 21.78,
90
+ "step": 40,
91
+ "train_speed(iter/s)": 0.007221
92
+ },
93
+ {
94
+ "epoch": 0.430622009569378,
95
+ "grad_norm": 0.23525214759145596,
96
+ "learning_rate": 8.635410802610724e-06,
97
+ "loss": 1.0963855743408204,
98
+ "memory(GiB)": 21.78,
99
+ "step": 45,
100
+ "train_speed(iter/s)": 0.007297
101
+ },
102
+ {
103
+ "epoch": 0.4784688995215311,
104
+ "grad_norm": 0.20742657682072496,
105
+ "learning_rate": 8.218815000254233e-06,
106
+ "loss": 1.0068815231323243,
107
+ "memory(GiB)": 21.78,
108
+ "step": 50,
109
+ "train_speed(iter/s)": 0.007357
110
+ },
111
+ {
112
+ "epoch": 0.5263157894736842,
113
+ "grad_norm": 0.22805995137674134,
114
+ "learning_rate": 7.85482304143168e-06,
115
+ "loss": 1.0203540802001954,
116
+ "memory(GiB)": 21.78,
117
+ "step": 55,
118
+ "train_speed(iter/s)": 0.007409
119
+ },
120
+ {
121
+ "epoch": 0.5741626794258373,
122
+ "grad_norm": 0.20165450321692324,
123
+ "learning_rate": 7.366458056952668e-06,
124
+ "loss": 0.9780466079711914,
125
+ "memory(GiB)": 21.78,
126
+ "step": 60,
127
+ "train_speed(iter/s)": 0.007455
128
+ },
129
+ {
130
+ "epoch": 0.6220095693779905,
131
+ "grad_norm": 0.199012899156939,
132
+ "learning_rate": 6.953069282051397e-06,
133
+ "loss": 0.9825104713439942,
134
+ "memory(GiB)": 21.78,
135
+ "step": 65,
136
+ "train_speed(iter/s)": 0.007493
137
+ },
138
+ {
139
+ "epoch": 0.6698564593301436,
140
+ "grad_norm": 0.2081613998493501,
141
+ "learning_rate": 6.413662575601391e-06,
142
+ "loss": 0.946727180480957,
143
+ "memory(GiB)": 21.78,
144
+ "step": 70,
145
+ "train_speed(iter/s)": 0.007527
146
+ },
147
+ {
148
+ "epoch": 0.7177033492822966,
149
+ "grad_norm": 0.22453289945010507,
150
+ "learning_rate": 5.85569199765534e-06,
151
+ "loss": 0.8994219779968262,
152
+ "memory(GiB)": 21.78,
153
+ "step": 75,
154
+ "train_speed(iter/s)": 0.007557
155
+ },
156
+ {
157
+ "epoch": 0.7655502392344498,
158
+ "grad_norm": 0.21336179466516533,
159
+ "learning_rate": 5.400867635577335e-06,
160
+ "loss": 0.9210289001464844,
161
+ "memory(GiB)": 21.78,
162
+ "step": 80,
163
+ "train_speed(iter/s)": 0.007582
164
+ },
165
+ {
166
+ "epoch": 0.8133971291866029,
167
+ "grad_norm": 0.22573528118443292,
168
+ "learning_rate": 4.82804891282148e-06,
169
+ "loss": 0.8701043128967285,
170
+ "memory(GiB)": 21.78,
171
+ "step": 85,
172
+ "train_speed(iter/s)": 0.007607
173
+ },
174
+ {
175
+ "epoch": 0.861244019138756,
176
+ "grad_norm": 0.21799704012638957,
177
+ "learning_rate": 4.4849601957642295e-06,
178
+ "loss": 0.9298532485961915,
179
+ "memory(GiB)": 21.78,
180
+ "step": 90,
181
+ "train_speed(iter/s)": 0.007629
182
+ },
183
+ {
184
+ "epoch": 0.9090909090909091,
185
+ "grad_norm": 0.19326711904836624,
186
+ "learning_rate": 3.9193566913562915e-06,
187
+ "loss": 0.8740135192871094,
188
+ "memory(GiB)": 21.78,
189
+ "step": 95,
190
+ "train_speed(iter/s)": 0.007652
191
+ },
192
+ {
193
+ "epoch": 0.9569377990430622,
194
+ "grad_norm": 0.21098028861251147,
195
+ "learning_rate": 3.3679439308082777e-06,
196
+ "loss": 0.8556365966796875,
197
+ "memory(GiB)": 21.78,
198
+ "step": 100,
199
+ "train_speed(iter/s)": 0.007671
200
+ },
201
+ {
202
+ "epoch": 1.0095693779904307,
203
+ "grad_norm": 0.37090403251290727,
204
+ "learning_rate": 2.8379629317468604e-06,
205
+ "loss": 1.0103090286254883,
206
+ "memory(GiB)": 21.78,
207
+ "step": 105,
208
+ "train_speed(iter/s)": 0.007671
209
+ },
210
+ {
211
+ "epoch": 1.0574162679425838,
212
+ "grad_norm": 0.19065542468928018,
213
+ "learning_rate": 2.3363732751439926e-06,
214
+ "loss": 0.8336589813232422,
215
+ "memory(GiB)": 21.78,
216
+ "step": 110,
217
+ "train_speed(iter/s)": 0.007686
218
+ },
219
+ {
220
+ "epoch": 1.1052631578947367,
221
+ "grad_norm": 0.21371302666579803,
222
+ "learning_rate": 1.8697617138002545e-06,
223
+ "loss": 0.8434018135070801,
224
+ "memory(GiB)": 21.78,
225
+ "step": 115,
226
+ "train_speed(iter/s)": 0.007702
227
+ },
228
+ {
229
+ "epoch": 1.1531100478468899,
230
+ "grad_norm": 0.1847907807903183,
231
+ "learning_rate": 1.4442556767166371e-06,
232
+ "loss": 0.8389086723327637,
233
+ "memory(GiB)": 21.78,
234
+ "step": 120,
235
+ "train_speed(iter/s)": 0.007716
236
+ },
237
+ {
238
+ "epoch": 1.200956937799043,
239
+ "grad_norm": 0.19264095570367787,
240
+ "learning_rate": 1.065442805194214e-06,
241
+ "loss": 0.8394393920898438,
242
+ "memory(GiB)": 21.78,
243
+ "step": 125,
244
+ "train_speed(iter/s)": 0.007728
245
+ },
246
+ {
247
+ "epoch": 1.2488038277511961,
248
+ "grad_norm": 0.17967776829987528,
249
+ "learning_rate": 7.993767510623834e-07,
250
+ "loss": 0.8480266571044922,
251
+ "memory(GiB)": 21.78,
252
+ "step": 130,
253
+ "train_speed(iter/s)": 0.007741
254
+ },
255
+ {
256
+ "epoch": 1.2966507177033493,
257
+ "grad_norm": 0.1987524262770605,
258
+ "learning_rate": 5.686280224315189e-07,
259
+ "loss": 0.8555088043212891,
260
+ "memory(GiB)": 21.78,
261
+ "step": 135,
262
+ "train_speed(iter/s)": 0.007753
263
+ },
264
+ {
265
+ "epoch": 1.3444976076555024,
266
+ "grad_norm": 0.18234341608384294,
267
+ "learning_rate": 3.3278302965308593e-07,
268
+ "loss": 0.8338512420654297,
269
+ "memory(GiB)": 21.78,
270
+ "step": 140,
271
+ "train_speed(iter/s)": 0.007763
272
+ },
273
+ {
274
+ "epoch": 1.3923444976076556,
275
+ "grad_norm": 0.17853149361029216,
276
+ "learning_rate": 1.5822678963435479e-07,
277
+ "loss": 0.8144865036010742,
278
+ "memory(GiB)": 21.78,
279
+ "step": 145,
280
+ "train_speed(iter/s)": 0.007774
281
+ }
282
+ ],
283
+ "logging_steps": 5,
284
+ "max_steps": 145,
285
+ "num_input_tokens_seen": 0,
286
+ "num_train_epochs": 2,
287
+ "save_steps": 20000,
288
+ "stateful_callbacks": {
289
+ "TrainerControl": {
290
+ "args": {
291
+ "should_epoch_stop": false,
292
+ "should_evaluate": false,
293
+ "should_log": false,
294
+ "should_save": true,
295
+ "should_training_stop": true
296
+ },
297
+ "attributes": {}
298
+ }
299
+ },
300
+ "total_flos": 192893522542592.0,
301
+ "train_batch_size": 1,
302
+ "trial_name": null,
303
+ "trial_params": null
304
+ }
v0-20250524-093253/checkpoint-145/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:714ff9e8dd9356cbc079828a0c3782dbe4bc7792803b21817fcebca9d6f6d24b
3
+ size 8312
v0-20250524-093253/checkpoint-145/zero_to_fp32.py ADDED
@@ -0,0 +1,760 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import gc
25
+ import json
26
+ import numpy as np
27
+ from tqdm import tqdm
28
+ from collections import OrderedDict
29
+ from dataclasses import dataclass
30
+
31
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
32
+ # DeepSpeed data structures it has to be available in the current python environment.
33
+ from deepspeed.utils import logger
34
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
35
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
36
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
37
+
38
+
39
+ @dataclass
40
+ class zero_model_state:
41
+ buffers: dict()
42
+ param_shapes: dict()
43
+ shared_params: list
44
+ ds_version: int
45
+ frozen_param_shapes: dict()
46
+ frozen_param_fragments: dict()
47
+
48
+
49
+ debug = 0
50
+
51
+ # load to cpu
52
+ device = torch.device('cpu')
53
+
54
+
55
+ def atoi(text):
56
+ return int(text) if text.isdigit() else text
57
+
58
+
59
+ def natural_keys(text):
60
+ '''
61
+ alist.sort(key=natural_keys) sorts in human order
62
+ http://nedbatchelder.com/blog/200712/human_sorting.html
63
+ (See Toothy's implementation in the comments)
64
+ '''
65
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
66
+
67
+
68
+ def get_model_state_file(checkpoint_dir, zero_stage):
69
+ if not os.path.isdir(checkpoint_dir):
70
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
71
+
72
+ # there should be only one file
73
+ if zero_stage <= 2:
74
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
75
+ elif zero_stage == 3:
76
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
77
+
78
+ if not os.path.exists(file):
79
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
80
+
81
+ return file
82
+
83
+
84
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
85
+ # XXX: need to test that this simple glob rule works for multi-node setup too
86
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
87
+
88
+ if len(ckpt_files) == 0:
89
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
90
+
91
+ return ckpt_files
92
+
93
+
94
+ def get_optim_files(checkpoint_dir):
95
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
96
+
97
+
98
+ def get_model_state_files(checkpoint_dir):
99
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
100
+
101
+
102
+ def parse_model_states(files):
103
+ zero_model_states = []
104
+ for file in files:
105
+ state_dict = torch.load(file, map_location=device, weights_only=False)
106
+
107
+ if BUFFER_NAMES not in state_dict:
108
+ raise ValueError(f"{file} is not a model state checkpoint")
109
+ buffer_names = state_dict[BUFFER_NAMES]
110
+ if debug:
111
+ print("Found buffers:", buffer_names)
112
+
113
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
114
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
115
+ param_shapes = state_dict[PARAM_SHAPES]
116
+
117
+ # collect parameters that are included in param_shapes
118
+ param_names = []
119
+ for s in param_shapes:
120
+ for name in s.keys():
121
+ param_names.append(name)
122
+
123
+ # update with frozen parameters
124
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
125
+ if frozen_param_shapes is not None:
126
+ if debug:
127
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
128
+ param_names += list(frozen_param_shapes.keys())
129
+
130
+ # handle shared params
131
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
132
+
133
+ ds_version = state_dict.get(DS_VERSION, None)
134
+
135
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
136
+
137
+ z_model_state = zero_model_state(buffers=buffers,
138
+ param_shapes=param_shapes,
139
+ shared_params=shared_params,
140
+ ds_version=ds_version,
141
+ frozen_param_shapes=frozen_param_shapes,
142
+ frozen_param_fragments=frozen_param_fragments)
143
+ zero_model_states.append(z_model_state)
144
+
145
+ return zero_model_states
146
+
147
+
148
+ def parse_optim_states(files, ds_checkpoint_dir):
149
+ total_files = len(files)
150
+ state_dicts = []
151
+ for f in tqdm(files, desc='Loading checkpoint shards'):
152
+ state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
153
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
154
+ # and also handle the case where it was already removed by another helper script
155
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
156
+ state_dicts.append(state_dict)
157
+
158
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
159
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
160
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
161
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
162
+
163
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
164
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
165
+ # use the max of the partition_count to get the dp world_size.
166
+
167
+ if type(world_size) is list:
168
+ world_size = max(world_size)
169
+
170
+ if world_size != total_files:
171
+ raise ValueError(
172
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
173
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
174
+ )
175
+
176
+ # the groups are named differently in each stage
177
+ if zero_stage <= 2:
178
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
179
+ elif zero_stage == 3:
180
+ fp32_groups_key = FP32_FLAT_GROUPS
181
+ else:
182
+ raise ValueError(f"unknown zero stage {zero_stage}")
183
+
184
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
185
+ return zero_stage, world_size, fp32_flat_groups
186
+
187
+
188
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
189
+ """
190
+ Returns fp32 state_dict reconstructed from ds checkpoint
191
+
192
+ Args:
193
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
194
+
195
+ """
196
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
197
+
198
+ optim_files = get_optim_files(ds_checkpoint_dir)
199
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
200
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
201
+
202
+ model_files = get_model_state_files(ds_checkpoint_dir)
203
+
204
+ zero_model_states = parse_model_states(model_files)
205
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
206
+
207
+ if zero_stage <= 2:
208
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
209
+ exclude_frozen_parameters)
210
+ elif zero_stage == 3:
211
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
212
+ exclude_frozen_parameters)
213
+
214
+
215
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
+ return
218
+
219
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
+
222
+ if debug:
223
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
+
226
+ wanted_params = len(frozen_param_shapes)
227
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
+ print(f'Frozen params: Have {avail_numel} numels to process.')
230
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
+
232
+ total_params = 0
233
+ total_numel = 0
234
+ for name, shape in frozen_param_shapes.items():
235
+ total_params += 1
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+
239
+ state_dict[name] = frozen_param_fragments[name]
240
+
241
+ if debug:
242
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
+
244
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
+
246
+
247
+ def _has_callable(obj, fn):
248
+ attr = getattr(obj, fn, None)
249
+ return callable(attr)
250
+
251
+
252
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
253
+ param_shapes = zero_model_states[0].param_shapes
254
+
255
+ # Reconstruction protocol:
256
+ #
257
+ # XXX: document this
258
+
259
+ if debug:
260
+ for i in range(world_size):
261
+ for j in range(len(fp32_flat_groups[0])):
262
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
263
+
264
+ # XXX: memory usage doubles here (zero2)
265
+ num_param_groups = len(fp32_flat_groups[0])
266
+ merged_single_partition_of_fp32_groups = []
267
+ for i in range(num_param_groups):
268
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
269
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
270
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
271
+ avail_numel = sum(
272
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
273
+
274
+ if debug:
275
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
276
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
277
+ # not asserting if there is a mismatch due to possible padding
278
+ print(f"Have {avail_numel} numels to process.")
279
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
280
+
281
+ # params
282
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
283
+ # out-of-core computing solution
284
+ total_numel = 0
285
+ total_params = 0
286
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
287
+ offset = 0
288
+ avail_numel = full_single_fp32_vector.numel()
289
+ for name, shape in shapes.items():
290
+
291
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
292
+ total_numel += unpartitioned_numel
293
+ total_params += 1
294
+
295
+ if debug:
296
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
297
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
298
+ offset += unpartitioned_numel
299
+
300
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
301
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
302
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
303
+ # live optimizer object, so we are checking that the numbers are within the right range
304
+ align_to = 2 * world_size
305
+
306
+ def zero2_align(x):
307
+ return align_to * math.ceil(x / align_to)
308
+
309
+ if debug:
310
+ print(f"original offset={offset}, avail_numel={avail_numel}")
311
+
312
+ offset = zero2_align(offset)
313
+ avail_numel = zero2_align(avail_numel)
314
+
315
+ if debug:
316
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
317
+
318
+ # Sanity check
319
+ if offset != avail_numel:
320
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
321
+
322
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
323
+
324
+
325
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
326
+ exclude_frozen_parameters):
327
+ state_dict = OrderedDict()
328
+
329
+ # buffers
330
+ buffers = zero_model_states[0].buffers
331
+ state_dict.update(buffers)
332
+ if debug:
333
+ print(f"added {len(buffers)} buffers")
334
+
335
+ if not exclude_frozen_parameters:
336
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
337
+
338
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
339
+
340
+ # recover shared parameters
341
+ for pair in zero_model_states[0].shared_params:
342
+ if pair[1] in state_dict:
343
+ state_dict[pair[0]] = state_dict[pair[1]]
344
+
345
+ return state_dict
346
+
347
+
348
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
349
+ remainder = unpartitioned_numel % world_size
350
+ padding_numel = (world_size - remainder) if remainder else 0
351
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
352
+ return partitioned_numel, padding_numel
353
+
354
+
355
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
356
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
357
+ return
358
+
359
+ if debug:
360
+ for i in range(world_size):
361
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
362
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
363
+
364
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
365
+ wanted_params = len(frozen_param_shapes)
366
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
367
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
368
+ print(f'Frozen params: Have {avail_numel} numels to process.')
369
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
370
+
371
+ total_params = 0
372
+ total_numel = 0
373
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
374
+ total_params += 1
375
+ unpartitioned_numel = shape.numel()
376
+ total_numel += unpartitioned_numel
377
+
378
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
379
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
380
+
381
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
382
+
383
+ if debug:
384
+ print(
385
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
386
+ )
387
+
388
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
389
+
390
+
391
+ class GatheredTensor:
392
+ """
393
+ A pseudo tensor that collects partitioned weights.
394
+ It is more memory efficient when there are multiple groups.
395
+ """
396
+
397
+ def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
398
+ self.flat_groups = flat_groups
399
+ self.flat_groups_offset = flat_groups_offset
400
+ self.offset = offset
401
+ self.partitioned_numel = partitioned_numel
402
+ self.shape = shape
403
+ self.dtype = self.flat_groups[0][0].dtype
404
+
405
+ def contiguous(self):
406
+ """
407
+ Merge partitioned weights from flat_groups into a single tensor.
408
+ """
409
+ end_idx = self.offset + self.partitioned_numel
410
+ world_size = len(self.flat_groups)
411
+ pad_flat_param_chunks = []
412
+
413
+ for rank_i in range(world_size):
414
+ # for each rank, we need to collect weights from related group/groups
415
+ flat_groups_at_rank_i = self.flat_groups[rank_i]
416
+ start_group_id = None
417
+ end_group_id = None
418
+ for group_id in range(len(self.flat_groups_offset)):
419
+ if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
420
+ start_group_id = group_id
421
+ if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
422
+ end_group_id = group_id
423
+ break
424
+ # collect weights from related group/groups
425
+ for group_id in range(start_group_id, end_group_id + 1):
426
+ flat_tensor = flat_groups_at_rank_i[group_id]
427
+ start_offset = self.offset - self.flat_groups_offset[group_id]
428
+ end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
429
+ pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
430
+
431
+ # collect weights from all ranks
432
+ pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
433
+ param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
434
+ return param
435
+
436
+
437
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
438
+ param_shapes = zero_model_states[0].param_shapes
439
+ avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
440
+
441
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
442
+ # param, re-consolidating each param, while dealing with padding if any
443
+
444
+ # merge list of dicts, preserving order
445
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
446
+
447
+ if debug:
448
+ for i in range(world_size):
449
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
450
+
451
+ wanted_params = len(param_shapes)
452
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
453
+ # not asserting if there is a mismatch due to possible padding
454
+ avail_numel = fp32_flat_groups[0].numel() * world_size
455
+ print(f"Trainable params: Have {avail_numel} numels to process.")
456
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
457
+
458
+ # params
459
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
460
+ # out-of-core computing solution
461
+ offset = 0
462
+ total_numel = 0
463
+ total_params = 0
464
+ flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
465
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
466
+ unpartitioned_numel = shape.numel()
467
+ total_numel += unpartitioned_numel
468
+ total_params += 1
469
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
470
+
471
+ if debug:
472
+ print(
473
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
474
+ )
475
+
476
+ # memory efficient tensor
477
+ tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
478
+ state_dict[name] = tensor
479
+ offset += partitioned_numel
480
+
481
+ offset *= world_size
482
+
483
+ # Sanity check
484
+ if offset != avail_numel:
485
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
486
+
487
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
488
+
489
+
490
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
491
+ exclude_frozen_parameters):
492
+ state_dict = OrderedDict()
493
+
494
+ # buffers
495
+ buffers = zero_model_states[0].buffers
496
+ state_dict.update(buffers)
497
+ if debug:
498
+ print(f"added {len(buffers)} buffers")
499
+
500
+ if not exclude_frozen_parameters:
501
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
502
+
503
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
504
+
505
+ # recover shared parameters
506
+ for pair in zero_model_states[0].shared_params:
507
+ if pair[1] in state_dict:
508
+ state_dict[pair[0]] = state_dict[pair[1]]
509
+
510
+ return state_dict
511
+
512
+
513
+ def to_torch_tensor(state_dict, return_empty_tensor=False):
514
+ """
515
+ Convert state_dict of GatheredTensor to torch tensor
516
+ """
517
+ torch_state_dict = {}
518
+ converted_tensors = {}
519
+ for name, tensor in state_dict.items():
520
+ tensor_id = id(tensor)
521
+ if tensor_id in converted_tensors: # shared tensors
522
+ shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
523
+ torch_state_dict[name] = shared_tensor
524
+ else:
525
+ converted_tensors[tensor_id] = name
526
+ if return_empty_tensor:
527
+ torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
528
+ else:
529
+ torch_state_dict[name] = tensor.contiguous()
530
+ return torch_state_dict
531
+
532
+
533
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
534
+ tag=None,
535
+ exclude_frozen_parameters=False,
536
+ lazy_mode=False):
537
+ """
538
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
539
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
540
+ via a model hub.
541
+
542
+ Args:
543
+ - ``checkpoint_dir``: path to the desired checkpoint folder
544
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
545
+ - ``exclude_frozen_parameters``: exclude frozen parameters
546
+ - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
547
+ Convert the pesduo tensor to torch tensor by ``.contiguous()``
548
+
549
+ Returns:
550
+ - pytorch ``state_dict``
551
+
552
+ A typical usage might be ::
553
+
554
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
555
+ # do the training and checkpoint saving
556
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
557
+ model = model.cpu() # move to cpu
558
+ model.load_state_dict(state_dict)
559
+ # submit to model hub or save the model to share with others
560
+
561
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
562
+ application. i.e. you will need to re-initialize the deepspeed engine, since
563
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
564
+
565
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
566
+
567
+ Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
568
+ You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
569
+ the checkpoint. Or you can load state_dict in lazy mode ::
570
+
571
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
572
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
573
+ for name, lazy_tensor in state_dict.item():
574
+ tensor = lazy_tensor.contiguous() # to cpu
575
+ print(name, tensor)
576
+ # del tensor to release memory if it no longer in use
577
+ """
578
+ if tag is None:
579
+ latest_path = os.path.join(checkpoint_dir, 'latest')
580
+ if os.path.isfile(latest_path):
581
+ with open(latest_path, 'r') as fd:
582
+ tag = fd.read().strip()
583
+ else:
584
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
585
+
586
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
587
+
588
+ if not os.path.isdir(ds_checkpoint_dir):
589
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
590
+
591
+ state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
592
+ if lazy_mode:
593
+ return state_dict
594
+ else:
595
+ return to_torch_tensor(state_dict)
596
+
597
+
598
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
599
+ output_dir,
600
+ max_shard_size="5GB",
601
+ safe_serialization=False,
602
+ tag=None,
603
+ exclude_frozen_parameters=False):
604
+ """
605
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
606
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
607
+
608
+ Args:
609
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
610
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
611
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
612
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
613
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
614
+ - ``exclude_frozen_parameters``: exclude frozen parameters
615
+ """
616
+
617
+ # Dependency pre-check
618
+ if safe_serialization:
619
+ try:
620
+ from safetensors.torch import save_file
621
+ except ImportError:
622
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
623
+ raise
624
+ if max_shard_size is not None:
625
+ try:
626
+ from huggingface_hub import split_torch_state_dict_into_shards
627
+ except ImportError:
628
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
629
+ raise
630
+
631
+ # Convert zero checkpoint to state_dict
632
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
633
+ tag,
634
+ exclude_frozen_parameters,
635
+ lazy_mode=True)
636
+
637
+ # Shard the model if it is too big.
638
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
639
+ if max_shard_size is not None:
640
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
641
+ # an memory-efficient approach for sharding
642
+ empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
643
+ state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
644
+ filename_pattern=filename_pattern,
645
+ max_shard_size=max_shard_size)
646
+ else:
647
+ from collections import namedtuple
648
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
649
+ state_dict_split = StateDictSplit(is_sharded=False,
650
+ filename_to_tensors={weights_name: list(state_dict.keys())})
651
+
652
+ # Save the model by shard
653
+ os.makedirs(output_dir, exist_ok=True)
654
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
655
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
656
+ shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
657
+ shard_state_dict = to_torch_tensor(shard_state_dict)
658
+ output_path = os.path.join(output_dir, shard_file)
659
+ if safe_serialization:
660
+ save_file(shard_state_dict, output_path, metadata={"format": "pt"})
661
+ else:
662
+ torch.save(shard_state_dict, output_path)
663
+ # release the memory of current shard
664
+ for tensor_name in list(shard_state_dict.keys()):
665
+ del state_dict[tensor_name]
666
+ del shard_state_dict[tensor_name]
667
+ del shard_state_dict
668
+ gc.collect()
669
+
670
+ # Save index if sharded
671
+ if state_dict_split.is_sharded:
672
+ index = {
673
+ "metadata": state_dict_split.metadata,
674
+ "weight_map": state_dict_split.tensor_to_filename,
675
+ }
676
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
677
+ save_index_file = os.path.join(output_dir, save_index_file)
678
+ with open(save_index_file, "w", encoding="utf-8") as f:
679
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
680
+ f.write(content)
681
+
682
+
683
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
684
+ """
685
+ 1. Put the provided model to cpu
686
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
687
+ 3. Load it into the provided model
688
+
689
+ Args:
690
+ - ``model``: the model object to update
691
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
692
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
693
+
694
+ Returns:
695
+ - ``model`: modified model
696
+
697
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
698
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
699
+ conveniently placed for you in the checkpoint folder.
700
+
701
+ A typical usage might be ::
702
+
703
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
704
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
705
+ # submit to model hub or save the model to share with others
706
+
707
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
708
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
709
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
710
+
711
+ """
712
+ logger.info(f"Extracting fp32 weights")
713
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
714
+
715
+ logger.info(f"Overwriting model with fp32 weights")
716
+ model = model.cpu()
717
+ model.load_state_dict(state_dict, strict=False)
718
+
719
+ return model
720
+
721
+
722
+ if __name__ == "__main__":
723
+ parser = argparse.ArgumentParser()
724
+ parser.add_argument("checkpoint_dir",
725
+ type=str,
726
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
727
+ parser.add_argument("output_dir",
728
+ type=str,
729
+ help="directory to the pytorch fp32 state_dict output files"
730
+ "(e.g. path/checkpoint-12-output/)")
731
+ parser.add_argument(
732
+ "--max_shard_size",
733
+ type=str,
734
+ default="5GB",
735
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
736
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
737
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
738
+ "without CPU OOM issues.")
739
+ parser.add_argument(
740
+ "--safe_serialization",
741
+ default=False,
742
+ action='store_true',
743
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
744
+ parser.add_argument("-t",
745
+ "--tag",
746
+ type=str,
747
+ default=None,
748
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
749
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
750
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
751
+ args = parser.parse_args()
752
+
753
+ debug = args.debug
754
+
755
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
756
+ args.output_dir,
757
+ max_shard_size=args.max_shard_size,
758
+ safe_serialization=args.safe_serialization,
759
+ tag=args.tag,
760
+ exclude_frozen_parameters=args.exclude_frozen_parameters)
v0-20250524-093253/images/train_epoch.png ADDED
v0-20250524-093253/images/train_grad_norm.png ADDED
v0-20250524-093253/images/train_learning_rate.png ADDED
v0-20250524-093253/images/train_loss.png ADDED
v0-20250524-093253/images/train_memory(GiB).png ADDED
v0-20250524-093253/images/train_total_flos.png ADDED
v0-20250524-093253/images/train_train_loss.png ADDED
v0-20250524-093253/images/train_train_runtime.png ADDED
v0-20250524-093253/images/train_train_samples_per_second.png ADDED
v0-20250524-093253/images/train_train_speed(iter_s).png ADDED
v0-20250524-093253/images/train_train_steps_per_second.png ADDED
v0-20250524-093253/logging.jsonl ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"loss": 1.2820034, "grad_norm": 0.27065716, "learning_rate": 1.25e-06, "memory(GiB)": 21.77, "train_speed(iter/s)": 0.001564, "epoch": 0.00956938, "global_step/max_steps": "1/145", "percentage": "0.69%", "elapsed_time": "7m 48s", "remaining_time": "18h 44m 42s"}
2
+ {"loss": 1.23377752, "grad_norm": 0.24611358, "learning_rate": 6.25e-06, "memory(GiB)": 21.78, "train_speed(iter/s)": 0.004383, "epoch": 0.04784689, "global_step/max_steps": "5/145", "percentage": "3.45%", "elapsed_time": "16m 10s", "remaining_time": "7h 32m 43s"}
3
+ {"loss": 1.29823837, "grad_norm": 0.27021489, "learning_rate": 1e-05, "memory(GiB)": 21.78, "train_speed(iter/s)": 0.005653, "epoch": 0.09569378, "global_step/max_steps": "10/145", "percentage": "6.90%", "elapsed_time": "26m 38s", "remaining_time": "5h 59m 33s"}
4
+ {"loss": 1.29016457, "grad_norm": 0.33219866, "learning_rate": 9.97e-06, "memory(GiB)": 21.78, "train_speed(iter/s)": 0.006254, "epoch": 0.14354067, "global_step/max_steps": "15/145", "percentage": "10.34%", "elapsed_time": "37m 7s", "remaining_time": "5h 21m 48s"}
5
+ {"loss": 1.22797728, "grad_norm": 0.31744386, "learning_rate": 9.89e-06, "memory(GiB)": 21.78, "train_speed(iter/s)": 0.006605, "epoch": 0.19138756, "global_step/max_steps": "20/145", "percentage": "13.79%", "elapsed_time": "47m 37s", "remaining_time": "4h 57m 37s"}
6
+ {"loss": 1.15131741, "grad_norm": 0.27053459, "learning_rate": 9.74e-06, "memory(GiB)": 21.78, "train_speed(iter/s)": 0.006842, "epoch": 0.23923445, "global_step/max_steps": "25/145", "percentage": "17.24%", "elapsed_time": "58m 3s", "remaining_time": "4h 38m 39s"}
7
+ {"loss": 1.10708961, "grad_norm": 0.25081558, "learning_rate": 9.53e-06, "memory(GiB)": 21.78, "train_speed(iter/s)": 0.006999, "epoch": 0.28708134, "global_step/max_steps": "30/145", "percentage": "20.69%", "elapsed_time": "1h 8m 35s", "remaining_time": "4h 22m 56s"}
8
+ {"loss": 1.05016918, "grad_norm": 0.23218402, "learning_rate": 9.26e-06, "memory(GiB)": 21.78, "train_speed(iter/s)": 0.007123, "epoch": 0.33492823, "global_step/max_steps": "35/145", "percentage": "24.14%", "elapsed_time": "1h 19m 3s", "remaining_time": "4h 8m 26s"}
9
+ {"loss": 1.08273449, "grad_norm": 0.28230062, "learning_rate": 8.93e-06, "memory(GiB)": 21.78, "train_speed(iter/s)": 0.007221, "epoch": 0.38277512, "global_step/max_steps": "40/145", "percentage": "27.59%", "elapsed_time": "1h 29m 28s", "remaining_time": "3h 54m 53s"}
10
+ {"loss": 1.09638557, "grad_norm": 0.23525215, "learning_rate": 8.64e-06, "memory(GiB)": 21.78, "train_speed(iter/s)": 0.007297, "epoch": 0.43062201, "global_step/max_steps": "45/145", "percentage": "31.03%", "elapsed_time": "1h 39m 56s", "remaining_time": "3h 42m 5s"}
11
+ {"loss": 1.00688152, "grad_norm": 0.20742658, "learning_rate": 8.22e-06, "memory(GiB)": 21.78, "train_speed(iter/s)": 0.007357, "epoch": 0.4784689, "global_step/max_steps": "50/145", "percentage": "34.48%", "elapsed_time": "1h 50m 25s", "remaining_time": "3h 29m 47s"}
12
+ {"loss": 1.02035408, "grad_norm": 0.22805995, "learning_rate": 7.85e-06, "memory(GiB)": 21.78, "train_speed(iter/s)": 0.007409, "epoch": 0.52631579, "global_step/max_steps": "55/145", "percentage": "37.93%", "elapsed_time": "2h 0m 52s", "remaining_time": "3h 17m 47s"}
13
+ {"loss": 0.97804661, "grad_norm": 0.2016545, "learning_rate": 7.37e-06, "memory(GiB)": 21.78, "train_speed(iter/s)": 0.007455, "epoch": 0.57416268, "global_step/max_steps": "60/145", "percentage": "41.38%", "elapsed_time": "2h 11m 17s", "remaining_time": "3h 6m 0s"}
14
+ {"loss": 0.98251047, "grad_norm": 0.1990129, "learning_rate": 6.95e-06, "memory(GiB)": 21.78, "train_speed(iter/s)": 0.007493, "epoch": 0.62200957, "global_step/max_steps": "65/145", "percentage": "44.83%", "elapsed_time": "2h 21m 43s", "remaining_time": "2h 54m 26s"}
15
+ {"loss": 0.94672718, "grad_norm": 0.2081614, "learning_rate": 6.41e-06, "memory(GiB)": 21.78, "train_speed(iter/s)": 0.007527, "epoch": 0.66985646, "global_step/max_steps": "70/145", "percentage": "48.28%", "elapsed_time": "2h 32m 8s", "remaining_time": "2h 43m 0s"}
16
+ {"loss": 0.89942198, "grad_norm": 0.2245329, "learning_rate": 5.86e-06, "memory(GiB)": 21.78, "train_speed(iter/s)": 0.007557, "epoch": 0.71770335, "global_step/max_steps": "75/145", "percentage": "51.72%", "elapsed_time": "2h 42m 34s", "remaining_time": "2h 31m 43s"}
17
+ {"loss": 0.9210289, "grad_norm": 0.21336179, "learning_rate": 5.4e-06, "memory(GiB)": 21.78, "train_speed(iter/s)": 0.007582, "epoch": 0.76555024, "global_step/max_steps": "80/145", "percentage": "55.17%", "elapsed_time": "2h 52m 59s", "remaining_time": "2h 20m 33s"}
18
+ {"loss": 0.87010431, "grad_norm": 0.22573528, "learning_rate": 4.83e-06, "memory(GiB)": 21.78, "train_speed(iter/s)": 0.007607, "epoch": 0.81339713, "global_step/max_steps": "85/145", "percentage": "58.62%", "elapsed_time": "3h 3m 22s", "remaining_time": "2h 9m 26s"}
19
+ {"loss": 0.92985325, "grad_norm": 0.21799704, "learning_rate": 4.48e-06, "memory(GiB)": 21.78, "train_speed(iter/s)": 0.007629, "epoch": 0.86124402, "global_step/max_steps": "90/145", "percentage": "62.07%", "elapsed_time": "3h 13m 45s", "remaining_time": "1h 58m 24s"}
20
+ {"loss": 0.87401352, "grad_norm": 0.19326712, "learning_rate": 3.92e-06, "memory(GiB)": 21.78, "train_speed(iter/s)": 0.007652, "epoch": 0.90909091, "global_step/max_steps": "95/145", "percentage": "65.52%", "elapsed_time": "3h 24m 5s", "remaining_time": "1h 47m 24s"}
21
+ {"loss": 0.8556366, "grad_norm": 0.21098029, "learning_rate": 3.37e-06, "memory(GiB)": 21.78, "train_speed(iter/s)": 0.007671, "epoch": 0.9569378, "global_step/max_steps": "100/145", "percentage": "68.97%", "elapsed_time": "3h 34m 24s", "remaining_time": "1h 36m 29s"}
22
+ {"loss": 1.01030903, "grad_norm": 0.37090403, "learning_rate": 2.84e-06, "memory(GiB)": 21.78, "train_speed(iter/s)": 0.007671, "epoch": 1.00956938, "global_step/max_steps": "105/145", "percentage": "72.41%", "elapsed_time": "3h 45m 17s", "remaining_time": "1h 25m 49s"}
23
+ {"loss": 0.83365898, "grad_norm": 0.19065542, "learning_rate": 2.34e-06, "memory(GiB)": 21.78, "train_speed(iter/s)": 0.007686, "epoch": 1.05741627, "global_step/max_steps": "110/145", "percentage": "75.86%", "elapsed_time": "3h 55m 40s", "remaining_time": "1h 14m 59s"}
24
+ {"loss": 0.84340181, "grad_norm": 0.21371303, "learning_rate": 1.87e-06, "memory(GiB)": 21.78, "train_speed(iter/s)": 0.007702, "epoch": 1.10526316, "global_step/max_steps": "115/145", "percentage": "79.31%", "elapsed_time": "4h 6m 0s", "remaining_time": "1h 4m 10s"}
25
+ {"loss": 0.83890867, "grad_norm": 0.18479078, "learning_rate": 1.44e-06, "memory(GiB)": 21.78, "train_speed(iter/s)": 0.007716, "epoch": 1.15311005, "global_step/max_steps": "120/145", "percentage": "82.76%", "elapsed_time": "4h 16m 21s", "remaining_time": "53m 24s"}
26
+ {"loss": 0.83943939, "grad_norm": 0.19264096, "learning_rate": 1.07e-06, "memory(GiB)": 21.78, "train_speed(iter/s)": 0.007728, "epoch": 1.20095694, "global_step/max_steps": "125/145", "percentage": "86.21%", "elapsed_time": "4h 26m 43s", "remaining_time": "42m 40s"}
27
+ {"loss": 0.84802666, "grad_norm": 0.17967777, "learning_rate": 8e-07, "memory(GiB)": 21.78, "train_speed(iter/s)": 0.007741, "epoch": 1.24880383, "global_step/max_steps": "130/145", "percentage": "89.66%", "elapsed_time": "4h 37m 2s", "remaining_time": "31m 58s"}
28
+ {"loss": 0.8555088, "grad_norm": 0.19875243, "learning_rate": 5.7e-07, "memory(GiB)": 21.78, "train_speed(iter/s)": 0.007753, "epoch": 1.29665072, "global_step/max_steps": "135/145", "percentage": "93.10%", "elapsed_time": "4h 47m 21s", "remaining_time": "21m 17s"}
29
+ {"loss": 0.83385124, "grad_norm": 0.18234342, "learning_rate": 3.3e-07, "memory(GiB)": 21.78, "train_speed(iter/s)": 0.007763, "epoch": 1.34449761, "global_step/max_steps": "140/145", "percentage": "96.55%", "elapsed_time": "4h 57m 42s", "remaining_time": "10m 37s"}
30
+ {"loss": 0.8144865, "grad_norm": 0.17853149, "learning_rate": 1.6e-07, "memory(GiB)": 21.78, "train_speed(iter/s)": 0.007774, "epoch": 1.3923445, "global_step/max_steps": "145/145", "percentage": "100.00%", "elapsed_time": "5h 8m 1s", "remaining_time": "0s"}
31
+ {"train_runtime": 18607.5143, "train_samples_per_second": 0.249, "train_steps_per_second": 0.008, "total_flos": 192893522542592.0, "train_loss": 0.98447133, "epoch": 1.3923445, "global_step/max_steps": "145/145", "percentage": "100.00%", "elapsed_time": "5h 10m 7s", "remaining_time": "0s"}
32
+ {"train_dataset": "2519.251345±54.688871, min=2317.000000, max=2560.000000, size=3346", "model_parameter_info": "PeftModelForCausalLM: 1690.7192M Params (134.2177M Trainable [7.9385%]), 4174.9709M Buffers.", "last_model_checkpoint": "/kaggle/tmp/save_checkpoint/v0-20250524-093253/checkpoint-145", "best_model_checkpoint": null, "best_metric": null, "global_step": 145, "log_history": [{"loss": 1.282003402709961, "grad_norm": 0.2706571612243278, "learning_rate": 1.25e-06, "memory(GiB)": 21.77, "train_speed(iter/s)": 0.001564, "epoch": 0.009569377990430622, "step": 1}, {"loss": 1.2337775230407715, "grad_norm": 0.2461135829320829, "learning_rate": 6.25e-06, "memory(GiB)": 21.78, "train_speed(iter/s)": 0.004383, "epoch": 0.04784688995215311, "step": 5}, {"loss": 1.2982383728027345, "grad_norm": 0.2702148949856562, "learning_rate": 9.998685442495921e-06, "memory(GiB)": 21.78, "train_speed(iter/s)": 0.005653, "epoch": 0.09569377990430622, "step": 10}, {"loss": 1.2901645660400392, "grad_norm": 0.3321986630658551, "learning_rate": 9.96717061090737e-06, "memory(GiB)": 21.78, "train_speed(iter/s)": 0.006254, "epoch": 0.14354066985645933, "step": 15}, {"loss": 1.2279772758483887, "grad_norm": 0.3174438634553813, "learning_rate": 9.893893600021112e-06, "memory(GiB)": 21.78, "train_speed(iter/s)": 0.006605, "epoch": 0.19138755980861244, "step": 20}, {"loss": 1.1513174057006836, "grad_norm": 0.27053459186104295, "learning_rate": 9.744540883654348e-06, "memory(GiB)": 21.78, "train_speed(iter/s)": 0.006842, "epoch": 0.23923444976076555, "step": 25}, {"loss": 1.1070896148681642, "grad_norm": 0.25081558070186083, "learning_rate": 9.532884015793432e-06, "memory(GiB)": 21.78, "train_speed(iter/s)": 0.006999, "epoch": 0.28708133971291866, "step": 30}, {"loss": 1.0501691818237304, "grad_norm": 0.23218401740452566, "learning_rate": 9.261702422706014e-06, "memory(GiB)": 21.78, "train_speed(iter/s)": 0.007123, "epoch": 0.3349282296650718, "step": 35}, {"loss": 1.0827344894409179, "grad_norm": 0.2823006211224807, "learning_rate": 8.934557194805787e-06, "memory(GiB)": 21.78, "train_speed(iter/s)": 0.007221, "epoch": 0.3827751196172249, "step": 40}, {"loss": 1.0963855743408204, "grad_norm": 0.23525214759145596, "learning_rate": 8.635410802610724e-06, "memory(GiB)": 21.78, "train_speed(iter/s)": 0.007297, "epoch": 0.430622009569378, "step": 45}, {"loss": 1.0068815231323243, "grad_norm": 0.20742657682072496, "learning_rate": 8.218815000254233e-06, "memory(GiB)": 21.78, "train_speed(iter/s)": 0.007357, "epoch": 0.4784688995215311, "step": 50}, {"loss": 1.0203540802001954, "grad_norm": 0.22805995137674134, "learning_rate": 7.85482304143168e-06, "memory(GiB)": 21.78, "train_speed(iter/s)": 0.007409, "epoch": 0.5263157894736842, "step": 55}, {"loss": 0.9780466079711914, "grad_norm": 0.20165450321692324, "learning_rate": 7.366458056952668e-06, "memory(GiB)": 21.78, "train_speed(iter/s)": 0.007455, "epoch": 0.5741626794258373, "step": 60}, {"loss": 0.9825104713439942, "grad_norm": 0.199012899156939, "learning_rate": 6.953069282051397e-06, "memory(GiB)": 21.78, "train_speed(iter/s)": 0.007493, "epoch": 0.6220095693779905, "step": 65}, {"loss": 0.946727180480957, "grad_norm": 0.2081613998493501, "learning_rate": 6.413662575601391e-06, "memory(GiB)": 21.78, "train_speed(iter/s)": 0.007527, "epoch": 0.6698564593301436, "step": 70}, {"loss": 0.8994219779968262, "grad_norm": 0.22453289945010507, "learning_rate": 5.85569199765534e-06, "memory(GiB)": 21.78, "train_speed(iter/s)": 0.007557, "epoch": 0.7177033492822966, "step": 75}, {"loss": 0.9210289001464844, "grad_norm": 0.21336179466516533, "learning_rate": 5.400867635577335e-06, "memory(GiB)": 21.78, "train_speed(iter/s)": 0.007582, "epoch": 0.7655502392344498, "step": 80}, {"loss": 0.8701043128967285, "grad_norm": 0.22573528118443292, "learning_rate": 4.82804891282148e-06, "memory(GiB)": 21.78, "train_speed(iter/s)": 0.007607, "epoch": 0.8133971291866029, "step": 85}, {"loss": 0.9298532485961915, "grad_norm": 0.21799704012638957, "learning_rate": 4.4849601957642295e-06, "memory(GiB)": 21.78, "train_speed(iter/s)": 0.007629, "epoch": 0.861244019138756, "step": 90}, {"loss": 0.8740135192871094, "grad_norm": 0.19326711904836624, "learning_rate": 3.9193566913562915e-06, "memory(GiB)": 21.78, "train_speed(iter/s)": 0.007652, "epoch": 0.9090909090909091, "step": 95}, {"loss": 0.8556365966796875, "grad_norm": 0.21098028861251147, "learning_rate": 3.3679439308082777e-06, "memory(GiB)": 21.78, "train_speed(iter/s)": 0.007671, "epoch": 0.9569377990430622, "step": 100}, {"loss": 1.0103090286254883, "grad_norm": 0.37090403251290727, "learning_rate": 2.8379629317468604e-06, "memory(GiB)": 21.78, "train_speed(iter/s)": 0.007671, "epoch": 1.0095693779904307, "step": 105}, {"loss": 0.8336589813232422, "grad_norm": 0.19065542468928018, "learning_rate": 2.3363732751439926e-06, "memory(GiB)": 21.78, "train_speed(iter/s)": 0.007686, "epoch": 1.0574162679425838, "step": 110}, {"loss": 0.8434018135070801, "grad_norm": 0.21371302666579803, "learning_rate": 1.8697617138002545e-06, "memory(GiB)": 21.78, "train_speed(iter/s)": 0.007702, "epoch": 1.1052631578947367, "step": 115}, {"loss": 0.8389086723327637, "grad_norm": 0.1847907807903183, "learning_rate": 1.4442556767166371e-06, "memory(GiB)": 21.78, "train_speed(iter/s)": 0.007716, "epoch": 1.1531100478468899, "step": 120}, {"loss": 0.8394393920898438, "grad_norm": 0.19264095570367787, "learning_rate": 1.065442805194214e-06, "memory(GiB)": 21.78, "train_speed(iter/s)": 0.007728, "epoch": 1.200956937799043, "step": 125}, {"loss": 0.8480266571044922, "grad_norm": 0.17967776829987528, "learning_rate": 7.993767510623834e-07, "memory(GiB)": 21.78, "train_speed(iter/s)": 0.007741, "epoch": 1.2488038277511961, "step": 130}, {"loss": 0.8555088043212891, "grad_norm": 0.1987524262770605, "learning_rate": 5.686280224315189e-07, "memory(GiB)": 21.78, "train_speed(iter/s)": 0.007753, "epoch": 1.2966507177033493, "step": 135}, {"loss": 0.8338512420654297, "grad_norm": 0.18234341608384294, "learning_rate": 3.3278302965308593e-07, "memory(GiB)": 21.78, "train_speed(iter/s)": 0.007763, "epoch": 1.3444976076555024, "step": 140}, {"loss": 0.8144865036010742, "grad_norm": 0.17853149361029216, "learning_rate": 1.5822678963435479e-07, "memory(GiB)": 21.78, "train_speed(iter/s)": 0.007774, "epoch": 1.3923444976076556, "step": 145}, {"train_runtime": 18607.5143, "train_samples_per_second": 0.249, "train_steps_per_second": 0.008, "total_flos": 192893522542592.0, "train_loss": 0.9844713342600855, "epoch": 1.3923444976076556, "step": 145}], "memory": 21.77734375}
v0-20250524-093253/runs/events.out.tfevents.1748079401.6fdddaaae532.441.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f71fc2d2bc5cde20904488ae24134c7036ca004e80cd72d4d21d44543ce399ef
3
+ size 17334