ktaek94 commited on
Commit
2bbd84f
1 Parent(s): 31af066

Upload 10 files

Browse files
README.md ADDED
@@ -0,0 +1,492 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:10501
8
+ - loss:CosineSimilarityLoss
9
+ base_model: klue/roberta-base
10
+ widget:
11
+ - source_sentence: 이어 내년 4월부터 전자증명서는 건강보험자격확인서와 건강보험료 납부확인서 등 13종으로 늘어나고 사용처도 중앙부처는
12
+ 물론 은행과 보험사 등으로도 확대된다.
13
+ sentences:
14
+ - 4대 보험료 납부유예 및 감면조치는 4월에 납부해야 하는 3월 보험료부터 적용된다.
15
+ - 그 외에는 모든 것에 만족했습니다.
16
+ - 영하의 추운 날씨에는 장갑 잊지 말고 꼭 끼렴.
17
+ - source_sentence: 야생동물 질병관리를 전담할 국가기관인 국립야생동물질병관리원이 올해 광주광역시 광산구 삼거동 일원에 개원 예정이다.
18
+ sentences:
19
+ - 위치는 좋으나 생활하기 좀 불편합니다.
20
+ - 역에서 매우 가깝고, 쇼핑몰과 쇼핑몰 사이에는 숙소가 있습니다.
21
+ - 추후 인도네시아와도 화상회의 및 온라인 세미나를 개최할 예정이다.
22
+ - source_sentence: 작은 먹거리는 숙소 들어오게 전에 사는걸 추천해요.
23
+ sentences:
24
+ - 제일 최근에 스팸이 도착한 시간을 알려줘
25
+ - 저는 당신이 숙소에 들어오기 전에 작은 음식을 사는 것을 추천합니다.
26
+ - 올해는 황사 며칠동안 왔어?
27
+ - source_sentence: 언제 만나는 것이 더 좋으실까요, 저녁 일곱시? 여덟시?
28
+ sentences:
29
+ - 이번주 일요일 약속 언제인지 궁금해.
30
+ - 전자레인지와 가스레인지 중에 요리하고 싶은 걸로 알려줘
31
+ - 뜨거운물말고 찬물로 세탁하고 더운물로 헹궈야될 것 같지 않아?
32
+ - source_sentence: 지금까지 이탈리아 여행중에 가장 좋은 숙소였습니다
33
+ sentences:
34
+ - 지금까지 가본 호텔보다 더 좋은 숙소였습니다.
35
+ - ‘코로나 아세안 대응기금’, ‘필수의료물품 비축제도’는 아세안+3가 함께 만들어낸 의미 있는 결과입니다.
36
+ - 하루에 삼십분보단 한 시간 이상은 라디오 들어
37
+ pipeline_tag: sentence-similarity
38
+ library_name: sentence-transformers
39
+ metrics:
40
+ - pearson_cosine
41
+ - spearman_cosine
42
+ - pearson_manhattan
43
+ - spearman_manhattan
44
+ - pearson_euclidean
45
+ - spearman_euclidean
46
+ - pearson_dot
47
+ - spearman_dot
48
+ - pearson_max
49
+ - spearman_max
50
+ co2_eq_emissions:
51
+ emissions: 13.607209111220918
52
+ energy_consumed: 0.0310949426904377
53
+ source: codecarbon
54
+ training_type: fine-tuning
55
+ on_cloud: false
56
+ cpu_model: 12th Gen Intel(R) Core(TM) i5-12400
57
+ ram_total_size: 31.784194946289062
58
+ hours_used: 0.154
59
+ hardware_used: 1 x NVIDIA GeForce RTX 3060
60
+ model-index:
61
+ - name: SentenceTransformer based on klue/roberta-base
62
+ results:
63
+ - task:
64
+ type: semantic-similarity
65
+ name: Semantic Similarity
66
+ dataset:
67
+ name: Unknown
68
+ type: unknown
69
+ metrics:
70
+ - type: pearson_cosine
71
+ value: 0.34770715374416716
72
+ name: Pearson Cosine
73
+ - type: spearman_cosine
74
+ value: 0.35560473197486514
75
+ name: Spearman Cosine
76
+ - type: pearson_manhattan
77
+ value: 0.3673847148331908
78
+ name: Pearson Manhattan
79
+ - type: spearman_manhattan
80
+ value: 0.36460670798564826
81
+ name: Spearman Manhattan
82
+ - type: pearson_euclidean
83
+ value: 0.36074518113660536
84
+ name: Pearson Euclidean
85
+ - type: spearman_euclidean
86
+ value: 0.35482778401649034
87
+ name: Spearman Euclidean
88
+ - type: pearson_dot
89
+ value: 0.21251176317804726
90
+ name: Pearson Dot
91
+ - type: spearman_dot
92
+ value: 0.20063256899469895
93
+ name: Spearman Dot
94
+ - type: pearson_max
95
+ value: 0.3673847148331908
96
+ name: Pearson Max
97
+ - type: spearman_max
98
+ value: 0.36460670798564826
99
+ name: Spearman Max
100
+ - type: pearson_cosine
101
+ value: 0.9591996448990093
102
+ name: Pearson Cosine
103
+ - type: spearman_cosine
104
+ value: 0.9206205258325634
105
+ name: Spearman Cosine
106
+ - type: pearson_manhattan
107
+ value: 0.9531423622288514
108
+ name: Pearson Manhattan
109
+ - type: spearman_manhattan
110
+ value: 0.920406431818358
111
+ name: Spearman Manhattan
112
+ - type: pearson_euclidean
113
+ value: 0.9532828644532834
114
+ name: Pearson Euclidean
115
+ - type: spearman_euclidean
116
+ value: 0.9201721809761834
117
+ name: Spearman Euclidean
118
+ - type: pearson_dot
119
+ value: 0.9482313505749467
120
+ name: Pearson Dot
121
+ - type: spearman_dot
122
+ value: 0.9016036223997308
123
+ name: Spearman Dot
124
+ - type: pearson_max
125
+ value: 0.9591996448990093
126
+ name: Pearson Max
127
+ - type: spearman_max
128
+ value: 0.9206205258325634
129
+ name: Spearman Max
130
+ ---
131
+
132
+ # SentenceTransformer based on klue/roberta-base
133
+
134
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [klue/roberta-base](https://huggingface.co/klue/roberta-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
135
+
136
+ ## Model Details
137
+
138
+ ### Model Description
139
+ - **Model Type:** Sentence Transformer
140
+ - **Base model:** [klue/roberta-base](https://huggingface.co/klue/roberta-base) <!-- at revision 02f94ba5e3fcb7e2a58a390b8639b0fac974a8da -->
141
+ - **Maximum Sequence Length:** 512 tokens
142
+ - **Output Dimensionality:** 768 tokens
143
+ - **Similarity Function:** Cosine Similarity
144
+ <!-- - **Training Dataset:** Unknown -->
145
+ <!-- - **Language:** Unknown -->
146
+ <!-- - **License:** Unknown -->
147
+
148
+ ### Model Sources
149
+
150
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
151
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
152
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
153
+
154
+ ### Full Model Architecture
155
+
156
+ ```
157
+ SentenceTransformer(
158
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
159
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
160
+ )
161
+ ```
162
+
163
+ ## Usage
164
+
165
+ ### Direct Usage (Sentence Transformers)
166
+
167
+ First install the Sentence Transformers library:
168
+
169
+ ```bash
170
+ pip install -U sentence-transformers
171
+ ```
172
+
173
+ Then you can load this model and run inference.
174
+ ```python
175
+ from sentence_transformers import SentenceTransformer
176
+
177
+ # Download from the 🤗 Hub
178
+ model = SentenceTransformer("sentence_transformers_model_id")
179
+ # Run inference
180
+ sentences = [
181
+ '지금까지 이탈리아 여행중에 가장 좋은 숙소였습니다',
182
+ '지금까지 가본 호텔보다 더 좋은 숙소였습니다.',
183
+ '‘코로나 아세안 대응기금’, ‘필수의료물품 비축제도’는 아세안+3가 함께 만들어낸 의미 있는 결과입니다.',
184
+ ]
185
+ embeddings = model.encode(sentences)
186
+ print(embeddings.shape)
187
+ # [3, 768]
188
+
189
+ # Get the similarity scores for the embeddings
190
+ similarities = model.similarity(embeddings, embeddings)
191
+ print(similarities.shape)
192
+ # [3, 3]
193
+ ```
194
+
195
+ <!--
196
+ ### Direct Usage (Transformers)
197
+
198
+ <details><summary>Click to see the direct usage in Transformers</summary>
199
+
200
+ </details>
201
+ -->
202
+
203
+ <!--
204
+ ### Downstream Usage (Sentence Transformers)
205
+
206
+ You can finetune this model on your own dataset.
207
+
208
+ <details><summary>Click to expand</summary>
209
+
210
+ </details>
211
+ -->
212
+
213
+ <!--
214
+ ### Out-of-Scope Use
215
+
216
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
217
+ -->
218
+
219
+ ## Evaluation
220
+
221
+ ### Metrics
222
+
223
+ #### Semantic Similarity
224
+
225
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
226
+
227
+ | Metric | Value |
228
+ |:-------------------|:-----------|
229
+ | pearson_cosine | 0.3477 |
230
+ | spearman_cosine | 0.3556 |
231
+ | pearson_manhattan | 0.3674 |
232
+ | spearman_manhattan | 0.3646 |
233
+ | pearson_euclidean | 0.3607 |
234
+ | spearman_euclidean | 0.3548 |
235
+ | pearson_dot | 0.2125 |
236
+ | spearman_dot | 0.2006 |
237
+ | pearson_max | 0.3674 |
238
+ | **spearman_max** | **0.3646** |
239
+
240
+ #### Semantic Similarity
241
+
242
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
243
+
244
+ | Metric | Value |
245
+ |:-------------------|:-----------|
246
+ | pearson_cosine | 0.9592 |
247
+ | spearman_cosine | 0.9206 |
248
+ | pearson_manhattan | 0.9531 |
249
+ | spearman_manhattan | 0.9204 |
250
+ | pearson_euclidean | 0.9533 |
251
+ | spearman_euclidean | 0.9202 |
252
+ | pearson_dot | 0.9482 |
253
+ | spearman_dot | 0.9016 |
254
+ | pearson_max | 0.9592 |
255
+ | **spearman_max** | **0.9206** |
256
+
257
+ <!--
258
+ ## Bias, Risks and Limitations
259
+
260
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
261
+ -->
262
+
263
+ <!--
264
+ ### Recommendations
265
+
266
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
267
+ -->
268
+
269
+ ## Training Details
270
+
271
+ ### Training Dataset
272
+
273
+ #### Unnamed Dataset
274
+
275
+
276
+ * Size: 10,501 training samples
277
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
278
+ * Approximate statistics based on the first 1000 samples:
279
+ | | sentence_0 | sentence_1 | label |
280
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
281
+ | type | string | string | float |
282
+ | details | <ul><li>min: 7 tokens</li><li>mean: 20.14 tokens</li><li>max: 59 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 19.71 tokens</li><li>max: 68 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.44</li><li>max: 1.0</li></ul> |
283
+ * Samples:
284
+ | sentence_0 | sentence_1 | label |
285
+ |:----------------------------------------------------------------------------|:----------------------------------------------------------------------------------------|:------------------|
286
+ | <code>가스레인지 사용하지 않도록 유의해주세요</code> | <code>가스레인지 사용은 삼가주세요</code> | <code>0.74</code> |
287
+ | <code>이번주하고 다음주 중에 언제 동기 모임이 있어?</code> | <code>언제 자연어처리 학회 논문 접수가 마감되나요?</code> | <code>0.02</code> |
288
+ | <code>또한 각 부처는 생활방역 관련 업무를 종합·체계적으로 수행하기 위해 기관별로 생활방역 전담팀(TF)을 구성한다.</code> | <code>또한 생활방지와 관련된 업무를 종합적이고 체계적으로 수행하기 위하여 각 부서별로 생활방역 전담 태스크포스(TF)를 구성하여야 합니다.</code> | <code>0.72</code> |
289
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
290
+ ```json
291
+ {
292
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
293
+ }
294
+ ```
295
+
296
+ ### Training Hyperparameters
297
+ #### Non-Default Hyperparameters
298
+
299
+ - `eval_strategy`: steps
300
+ - `per_device_train_batch_size`: 16
301
+ - `per_device_eval_batch_size`: 16
302
+ - `num_train_epochs`: 4
303
+ - `multi_dataset_batch_sampler`: round_robin
304
+
305
+ #### All Hyperparameters
306
+ <details><summary>Click to expand</summary>
307
+
308
+ - `overwrite_output_dir`: False
309
+ - `do_predict`: False
310
+ - `eval_strategy`: steps
311
+ - `prediction_loss_only`: True
312
+ - `per_device_train_batch_size`: 16
313
+ - `per_device_eval_batch_size`: 16
314
+ - `per_gpu_train_batch_size`: None
315
+ - `per_gpu_eval_batch_size`: None
316
+ - `gradient_accumulation_steps`: 1
317
+ - `eval_accumulation_steps`: None
318
+ - `torch_empty_cache_steps`: None
319
+ - `learning_rate`: 5e-05
320
+ - `weight_decay`: 0.0
321
+ - `adam_beta1`: 0.9
322
+ - `adam_beta2`: 0.999
323
+ - `adam_epsilon`: 1e-08
324
+ - `max_grad_norm`: 1
325
+ - `num_train_epochs`: 4
326
+ - `max_steps`: -1
327
+ - `lr_scheduler_type`: linear
328
+ - `lr_scheduler_kwargs`: {}
329
+ - `warmup_ratio`: 0.0
330
+ - `warmup_steps`: 0
331
+ - `log_level`: passive
332
+ - `log_level_replica`: warning
333
+ - `log_on_each_node`: True
334
+ - `logging_nan_inf_filter`: True
335
+ - `save_safetensors`: True
336
+ - `save_on_each_node`: False
337
+ - `save_only_model`: False
338
+ - `restore_callback_states_from_checkpoint`: False
339
+ - `no_cuda`: False
340
+ - `use_cpu`: False
341
+ - `use_mps_device`: False
342
+ - `seed`: 42
343
+ - `data_seed`: None
344
+ - `jit_mode_eval`: False
345
+ - `use_ipex`: False
346
+ - `bf16`: False
347
+ - `fp16`: False
348
+ - `fp16_opt_level`: O1
349
+ - `half_precision_backend`: auto
350
+ - `bf16_full_eval`: False
351
+ - `fp16_full_eval`: False
352
+ - `tf32`: None
353
+ - `local_rank`: 0
354
+ - `ddp_backend`: None
355
+ - `tpu_num_cores`: None
356
+ - `tpu_metrics_debug`: False
357
+ - `debug`: []
358
+ - `dataloader_drop_last`: False
359
+ - `dataloader_num_workers`: 0
360
+ - `dataloader_prefetch_factor`: None
361
+ - `past_index`: -1
362
+ - `disable_tqdm`: False
363
+ - `remove_unused_columns`: True
364
+ - `label_names`: None
365
+ - `load_best_model_at_end`: False
366
+ - `ignore_data_skip`: False
367
+ - `fsdp`: []
368
+ - `fsdp_min_num_params`: 0
369
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
370
+ - `fsdp_transformer_layer_cls_to_wrap`: None
371
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
372
+ - `deepspeed`: None
373
+ - `label_smoothing_factor`: 0.0
374
+ - `optim`: adamw_torch
375
+ - `optim_args`: None
376
+ - `adafactor`: False
377
+ - `group_by_length`: False
378
+ - `length_column_name`: length
379
+ - `ddp_find_unused_parameters`: None
380
+ - `ddp_bucket_cap_mb`: None
381
+ - `ddp_broadcast_buffers`: False
382
+ - `dataloader_pin_memory`: True
383
+ - `dataloader_persistent_workers`: False
384
+ - `skip_memory_metrics`: True
385
+ - `use_legacy_prediction_loop`: False
386
+ - `push_to_hub`: False
387
+ - `resume_from_checkpoint`: None
388
+ - `hub_model_id`: None
389
+ - `hub_strategy`: every_save
390
+ - `hub_private_repo`: False
391
+ - `hub_always_push`: False
392
+ - `gradient_checkpointing`: False
393
+ - `gradient_checkpointing_kwargs`: None
394
+ - `include_inputs_for_metrics`: False
395
+ - `eval_do_concat_batches`: True
396
+ - `fp16_backend`: auto
397
+ - `push_to_hub_model_id`: None
398
+ - `push_to_hub_organization`: None
399
+ - `mp_parameters`:
400
+ - `auto_find_batch_size`: False
401
+ - `full_determinism`: False
402
+ - `torchdynamo`: None
403
+ - `ray_scope`: last
404
+ - `ddp_timeout`: 1800
405
+ - `torch_compile`: False
406
+ - `torch_compile_backend`: None
407
+ - `torch_compile_mode`: None
408
+ - `dispatch_batches`: None
409
+ - `split_batches`: None
410
+ - `include_tokens_per_second`: False
411
+ - `include_num_input_tokens_seen`: False
412
+ - `neftune_noise_alpha`: None
413
+ - `optim_target_modules`: None
414
+ - `batch_eval_metrics`: False
415
+ - `eval_on_start`: False
416
+ - `use_liger_kernel`: False
417
+ - `eval_use_gather_object`: False
418
+ - `batch_sampler`: batch_sampler
419
+ - `multi_dataset_batch_sampler`: round_robin
420
+
421
+ </details>
422
+
423
+ ### Training Logs
424
+ | Epoch | Step | Training Loss | spearman_max |
425
+ |:------:|:----:|:-------------:|:------------:|
426
+ | 0 | 0 | - | 0.3646 |
427
+ | 0.7610 | 500 | 0.0278 | - |
428
+ | 1.0 | 657 | - | 0.9187 |
429
+ | 1.5221 | 1000 | 0.0085 | 0.9117 |
430
+ | 2.0 | 1314 | - | 0.9201 |
431
+ | 2.2831 | 1500 | 0.0044 | - |
432
+ | 3.0 | 1971 | - | 0.9186 |
433
+ | 3.0441 | 2000 | 0.0034 | 0.9199 |
434
+ | 3.8052 | 2500 | 0.0027 | - |
435
+ | 4.0 | 2628 | - | 0.9206 |
436
+
437
+
438
+ ### Environmental Impact
439
+ Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
440
+ - **Energy Consumed**: 0.031 kWh
441
+ - **Carbon Emitted**: 0.014 kg of CO2
442
+ - **Hours Used**: 0.154 hours
443
+
444
+ ### Training Hardware
445
+ - **On Cloud**: No
446
+ - **GPU Model**: 1 x NVIDIA GeForce RTX 3060
447
+ - **CPU Model**: 12th Gen Intel(R) Core(TM) i5-12400
448
+ - **RAM Size**: 31.78 GB
449
+
450
+ ### Framework Versions
451
+ - Python: 3.12.4
452
+ - Sentence Transformers: 3.2.1
453
+ - Transformers: 4.45.2
454
+ - PyTorch: 2.4.0+cu121
455
+ - Accelerate: 0.29.3
456
+ - Datasets: 2.19.0
457
+ - Tokenizers: 0.20.1
458
+
459
+ ## Citation
460
+
461
+ ### BibTeX
462
+
463
+ #### Sentence Transformers
464
+ ```bibtex
465
+ @inproceedings{reimers-2019-sentence-bert,
466
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
467
+ author = "Reimers, Nils and Gurevych, Iryna",
468
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
469
+ month = "11",
470
+ year = "2019",
471
+ publisher = "Association for Computational Linguistics",
472
+ url = "https://arxiv.org/abs/1908.10084",
473
+ }
474
+ ```
475
+
476
+ <!--
477
+ ## Glossary
478
+
479
+ *Clearly define terms in order to be accessible across audiences.*
480
+ -->
481
+
482
+ <!--
483
+ ## Model Card Authors
484
+
485
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
486
+ -->
487
+
488
+ <!--
489
+ ## Model Card Contact
490
+
491
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
492
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "klue/roberta-base",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.45.2",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.2.1",
4
+ "transformers": "4.45.2",
5
+ "pytorch": "2.4.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:66d4d8c1944439892f2b337c44152e39622e3479209c21389cc81e3a215f6738
3
+ size 442494816
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "model_max_length": 512,
52
+ "never_split": null,
53
+ "pad_token": "[PAD]",
54
+ "sep_token": "[SEP]",
55
+ "strip_accents": null,
56
+ "tokenize_chinese_chars": true,
57
+ "tokenizer_class": "BertTokenizer",
58
+ "unk_token": "[UNK]"
59
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff